Neural Classification of Compost Maturity by Means of the Self-Organising Feature Map Artificial Neural Network and Learning Vector Quantization Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- − a lightbox
- − a steering module (a module driver connected with a step motor),
- − a reflex camera (NIKON D5100—DX matrix standard),
- − an AF-S DX 18–105 mm f/3.5–5.6G VR Nikkor lens and an ARKAS TS01 stand
2.2. Methods
3. Results and Discussion
- − the number of epochs: 3000,
- − training rate: 0.9–0.01,
- − epsilon: 0.35,
- − beta: 0.25.
- − 0.15324 for the training file,
- − 0.14722 for the validating file,
- − 0.14426 for the testing file.
4. Conclusions
- The SOFM network model optimized with the LVQ1 algorithm was characterised by the best classification parameters—its RMS error amounted to 0.15324 for the training file, 0.14722 for the validating file, and 0.14426 for the testing file.
- Optically recorded phases of compost maturation can be categorized into five classes.
- The SOFM structure with 30 input variables and 1 output variable in the form of a labelled, square topological map including 225 nodes was an optimal separating structure for five compost maturity classes, which represented five time phases.
- The ‘non-pattern’ SOFM classifier proved to be an effective instrument supporting the automated identification of five compost quality classes based on graphic information encoded in the form of digital images of the organic compost material.
Author Contributions
Funding
Conflicts of Interest
References
- Xue, W.; Hu, X.; Wei, Z.; Mei, X.; Chen, X.; Xu, Y. A fast and easy method for predicting agricultural waste compost maturity by image-based deep learning. Bioresour. Technol. 2019, 290, 121761. [Google Scholar] [CrossRef] [PubMed]
- Przybył, K.; Pilarska, A.; Duda, A.; Wojcieszak, D.; Frankowski, J.; Koszela, K.; Boniecki, P.; Kujawa, S.; Mueller, W.; Zaborowicz, M. Health properties and evaluation of quality of dried strawberry fruit produced using the convective drying method with neural image analysis. In Proceedings of the Eleventh International Conference on Digital Image Processing (ICDIP 2019), Guangzhou, China, 13 May 2019. [Google Scholar]
- Li, C.; Yu, C. Performance evaluation of public non-profit hospitals using a BP artificial neural network: The case of Hubei province in China. Int. J. Environ. Res. Public Health 2013, 10, 3619–3633. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, H.; Cao, G. Quick Estimation Model for the Concentration of Indoor Airborne Culturable Bacteria: An Application of Machine Learning. Int. J. Environ. Res. Public Health 2017, 14, 857. [Google Scholar] [CrossRef] [PubMed]
- Cerbin, S.; Nowakowski, K.; Dach, J.; Pilarski, K.; Boniecki, P.; Przybyl, J.; Lewicki, A. Possibilities of neural image analysis implementation in monitoring of microalgae production as a substrate for biogas plant. In Proceedings of the 4th International Conference on Digital Image Processing (ICDIP 2012), Kuala Lumpur, Malaysia, 7–8 April 2012. [Google Scholar]
- Kujawa, S.; Nowakowski, K.; Tomczak, R.J.; Dach, J.; Boniecki, P.; Weres, J.; Mueller, W.; Raba, B.; Piechota, T.; Rodríguez Carmona, P.C. Neural image analysis for maturity classification of sewage sludge composted with maize straw. Comput. Electron. Agric. 2014, 109, 302–310. [Google Scholar] [CrossRef]
- Huang, L.; Huang, J.; Wang, W. The Sustainable Development Assessment of Reservoir Resettlement Based on a BP Neural Network. Int. J. Environ. Res. Public Health 2018, 15, 146. [Google Scholar] [CrossRef] [PubMed]
- Kohonen, T. Automatic formation of topological maps of patterns in a selforganizing system. In Proceedings of the 2nd scandinavian Conference on Image Analysis, Helsinki, Finland, 15–17 June 1981. [Google Scholar]
- Lachmair, J.; Merényi, E.; Porrmanna, M.; Rückert, U. A reconfigurable neuroprocessor for self-organizing feature maps. Neurocomputing 2013, 112, 189–199. [Google Scholar] [CrossRef]
- Saraswati, A.; Van Nguyen, T.; Hagenbuchner, M.; Tsoi, A.C. High-resolution Self-Organizing Maps for advanced visualization and dimension reduction. Neural Netw. 2018, 105, 166–184. [Google Scholar] [CrossRef] [PubMed]
- Dach, J.; Koszela, K.; Boniecki, P.; Zaborowicz, M.; Lewicki, A.; Czekała, W.; Skwarcz, J.; Piekarska-Boniecka, H.; Białobrzewski, I. The use of neural modeling to estimation the methane production from slurry fermentation processes. Renew. Sust. Energy Rev. 2016, 56, 603–610. [Google Scholar] [CrossRef]
- Boniecki, P.; Dach, J.; Pilarski, K.; Piekarska-Boniecka, H. Artificial neural networks in modeling process of emission of ammonia during composting sewage. Atmos. Environ. 2012, 57, 49–54. [Google Scholar] [CrossRef]
- Boniecki, P.; Nowakowski, K.; Tomczak, R.Ł. Neural networks type MLP in the process of identification chosen varieties of maize. In Proceedings of the 3rd International Conference on Digital Image Processing (ICDIP), Chengdu, China, 15–17 April 2011. [Google Scholar]
- Nowakowski, K.; Boniecki, P.; Dach, J. The Identification of Mechanical Damages of Kernels Basis on Neural Image Analysis. In Proceedings of the International Conference on Digital Image Processing (ICDIP), Bangkok, Thailand, 7–9 March 2009. [Google Scholar]
- Boniecki, P.; Dach, J.; Nowakowski, K.; Jakubek, A. Neural image analysis of maturity stage during composting of sewage sludge. In Proceedings of the International Conference on Digital Image Processing (ICDIP), Bangkok, Thailand, 7–9 March 2009. [Google Scholar]
- Koszela, K.; Otrząsek, J.; Zaborowicz, M.; Boniecki, P.; Mueller, W.; Raba, B.; Lewicki, A.; Przybył, K. Quality assessment of microwave-vacuum dried material with the use of computer image analysis and neural model. In Proceedings of the 6th International Conference on Digital Image Processing (ICDIP), Athens, Grecee, 21–22 April 2014. [Google Scholar]
- Boniecki, P.; Piekarska-Boniecka, H.; Świerczyński, K.; Koszela, K.; Zaborowicz, M.; Przybył, J. Detection of the granary weevil based on x-ray images of damaged wheat kernels. J. Stored Prod. Res. 2014, 56, 38–42. [Google Scholar] [CrossRef]
- Brinkrolf, J.; Göpfert, C.; Hammer, B. Differential privacy for learning vector quantization. Neurocomputing 2019, 342, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Nowakowski, K.; Boniecki, P.; Tomczak, R.Ł. Identification process of corn and barley kernels damages using neural image analysis. In Proceedings of the 3rd International Conference on Digital Image Processing (ICDIP), Chengdu, China, 15–17 April 2011. [Google Scholar]
- Kolasa-Wiecek, A. Use of artificial neural networks in predicting direct nitrous oxide emissions from agricultural soils. Ecol. Chem. Eng. S 2013, 20, 419–428. [Google Scholar] [CrossRef]
- Jachner, S.; Gerald van den Boogaart, K.; Petzoldt, T. Statistical methods for the qualitative assessment of dynamic models with time delay (R Package qualV). J. Stat. Softw. 2007, 22, 1–30. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boniecki, P.; Idzior-Haufa, M.; Pilarska, A.A.; Pilarski, K.; Kolasa-Wiecek, A. Neural Classification of Compost Maturity by Means of the Self-Organising Feature Map Artificial Neural Network and Learning Vector Quantization Algorithm. Int. J. Environ. Res. Public Health 2019, 16, 3294. https://doi.org/10.3390/ijerph16183294
Boniecki P, Idzior-Haufa M, Pilarska AA, Pilarski K, Kolasa-Wiecek A. Neural Classification of Compost Maturity by Means of the Self-Organising Feature Map Artificial Neural Network and Learning Vector Quantization Algorithm. International Journal of Environmental Research and Public Health. 2019; 16(18):3294. https://doi.org/10.3390/ijerph16183294
Chicago/Turabian StyleBoniecki, Piotr, Małgorzata Idzior-Haufa, Agnieszka A. Pilarska, Krzysztof Pilarski, and Alicja Kolasa-Wiecek. 2019. "Neural Classification of Compost Maturity by Means of the Self-Organising Feature Map Artificial Neural Network and Learning Vector Quantization Algorithm" International Journal of Environmental Research and Public Health 16, no. 18: 3294. https://doi.org/10.3390/ijerph16183294
APA StyleBoniecki, P., Idzior-Haufa, M., Pilarska, A. A., Pilarski, K., & Kolasa-Wiecek, A. (2019). Neural Classification of Compost Maturity by Means of the Self-Organising Feature Map Artificial Neural Network and Learning Vector Quantization Algorithm. International Journal of Environmental Research and Public Health, 16(18), 3294. https://doi.org/10.3390/ijerph16183294