Chemical Forms and Health Risk of Cadmium in Water Spinach Grown in Contaminated Soil with An Increased Level of Phosphorus
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Soil Properties and Cd in Soil Solutions
3.2. Cd Accumulation
3.3. Chemical Form
3.4. Health Risk Assessment
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gallego, S.M.; Pena, L.B.; Barcia, R.A.; Azpilicueta, C.E.; Iannone, M.F.; Rosales, E.P.; Zawoznik, M.S.; Groppa, M.D.; Benavides, M.P. Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Environ. Exp. Bot. 2012, 83, 33–46. [Google Scholar] [CrossRef]
- Wu, F.B.; Dong, J.; Qian, Q.Q.; Zhang, G.P. Subcellular distribution and chemical form of Cd and Ca-Zn interaction in different barley genotypes. Chemosphere 2005, 60, 1437–1446. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Liu, J.L.; Lu, Z.W.; Wang, X.M.; Zhang, Z.; Shi, G.G. Effects of iron deficiency on subcellular distribution and chemical forms of cadmium in peanut roots in relation to its translocation. Environ. Exp. Bot. 2014, 97, 40–48. [Google Scholar] [CrossRef]
- Fu, X.; Dou, C.; Chen, Y.; Chen, X.; Shi, J. Subcellular distribution and chemical forms of cadmium in Phytplacca americana L. J. Hazard. Mater. 2011, 186, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.F.; Wu, J.F.; Shang, D.R.; Ning, J.S.; Zhai, Y.X.; Shend, X.F.; Ding, H.Y. Subcellular distribution and chemical forms of cadmium in the edible seaweed, Porphyra yezoensis. Food Chem. 2015, 168, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.Y. Subcellular distribution and chemical forms of cadmium in Impatiens walleriana in relation to its phytoextraction potential. Chemosphere 2015, 138, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Q.; Wang, Y.; Yang, Z.; Yuan, J. Effects of phosphorus supplied in soil on subcellular distribution and chemical grows in two Chinese flowering cabbage (Brassica parachinensis L.) cultivars differing in cadmium accumulation. Food Chem. Toxicol. 2011, 49, 2260–2267. [Google Scholar] [CrossRef]
- He, S.Y.; Wu, Q.L.; He, Z.L. Growth-promoting hormone DA-6 assists phytoextraction and detoxification of Cd by ryegrass. Int. J. Phytoremediat. 2015, 17, 597–603. [Google Scholar] [CrossRef]
- Ding, P.; Zhuang, P.; Li, Z.; Xia, H.P.; Lu, H.P. Accumulation and detoxification of cadmium by larvae of Prodenia litura (Lepidoptera: Noctuidae) feeding on Cd-enriched amaranth leaves. Chemosphere 2013, 91, 28–34. [Google Scholar] [CrossRef]
- Yu, Z.G.; Zhou, Q.X. Growth responses and cadmium accumulation of Mirabilis jalapa L. under interaction between cadmium and phosphorous. J. Hazard. Mater. 2009, 167, 38–43. [Google Scholar] [CrossRef]
- Sun, Y.B.; Sun, G.H.; Xu, Y.M.; Liang, X.F.; Wang, L. Evaluation of effectiveness of sepiolite, bentonite, and phosphate amendments on the stabilization remediation of cadmium-contaminated soils. J. Environ. Manag. 2016, 166, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Lambert, R.; Grant, C.; Sauvé, S. Cadmium and zinc in soil solution extracts following the application of phosphorus fertilizers. Sci. Total Environ. 2007, 378, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.P.; Flaten, D.N.; Tenuta, M.; Grimmett, M.G.; Gawalko, E.J.; Grant, C.A. Soil solution dynamics and plant uptake of cadmium and zinc by durum wheat following phosphorus fertilization. Plant. Soil 2011, 338, 423–434. [Google Scholar] [CrossRef]
- Dong, J.; Mao, W.H.; Zhang, G.P.; Wu, F.B.; Cai, Y. Root excretion and plant tolerance to cadmium toxicity-a review. Plant. Soil Environ. 2007, 53, 193–200. [Google Scholar] [CrossRef]
- Gao, X.; Tenuta, M.; Flaten, D.N.; Grant, C.A. Cadmium concentration in flax colonized by mycorrhizal fungi depends on soil phosphorous and cadmium concentrations. Commun. Soil Sci. Plant. Anal. 2011, 42, 1882–1897. [Google Scholar] [CrossRef]
- Yao, Q.; Yang, R.H.; Long, L.K.; Zhu, H.H. Phosphate application enhances the resistance of arbuscular mycorrhizae in clover plants to cadmium via polyphosphate accumulation in fungal hyphae. Environ. Exp. Bot. 2014, 108, 63–70. [Google Scholar] [CrossRef]
- Sumners, M.E.; Miller, W.P. Cation exchange capacity and exchange coefficients. In Methods of Soil Analysis. Part 3. Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; SSSA Inc.: Madison, WI, USA; ASA Inc.: Madison, WI, USA, 1996; pp. 1201–1229. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis. Part 3. Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; SSSA Inc.: Madison, WI, USA; ASA Inc.: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Gee, G.W.; Bauder, J.W. Particle-size analysis. In Methods of Soil Analysis. Part 1. Physical and Mineralogical Method, 2nd ed.; Klute, A., Ed.; SSSA Inc.: Madison, WI, USA; ASA Inc.: Madison, WI, USA, 1986; pp. 383–412. [Google Scholar]
- Thomas, G.W. Soil pH and soil acidity, In Methods of Soil Analysis. Part. 3. Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; SSSA Inc.: Madison, WI, USA; ASA Inc.: Madison, WI, USA, 1996; pp. 475–490. [Google Scholar]
- Rhoades, J.D. Salinity: Electrical conductivity and total dissolved solids. In Methods of Soil Analysis. Part 3. Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; SSSA Inc.: Madison, WI, USA; ASA Inc.: Madison, WI, USA, 1996; pp. 417–435. [Google Scholar]
- Bray, R.H.; Kurtz, L.T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–45. [Google Scholar] [CrossRef]
- Yin, A.; Yang, Z.; Ebbs, S.; Yuan, J.G.; Wang, J.B.; Yang, J.Z. Effects of phosphorus on chemical forms of Cd in plants of four spinach (Spinaciaoleracea L.) cultivars differing in Cd accumulation. Environ. Sci. Pollut. Res. 2016, 6, 5753–5762. [Google Scholar] [CrossRef]
- Wang, J.L.; Yuan, J.G.; Yang, Z.Y.; Huang, B.F.; Zhou, Y.H.; Xin, J.L.; Gong, Y.L.; Yu, H. Variation in cadmium accumulation among 30 cultivars and cadmium subcellular distribution in 2 selected cultivars of water spinach (Ipomoea aquatica Forsk). J. Agric. Food Chem. 2009, 57, 8942–8949. [Google Scholar] [CrossRef]
- Du, J.N.; Yan, C.L.; Li, Z.D. Phosphorus and cadmium interactions in Kandelia obovata (S.L.) in relation to cadmium tolerance. Environ. Sci. Pollut. Res. Int. 2014, 21, 355–365. [Google Scholar] [CrossRef]
- Jiang, H.M.; Yang, J.C.; Zhang, J.F. Effects of external phosphorous on the cell ultrastructure and the chlorophyll content of maize under cadmium and zinc stress. Environ. Pollut. 2007, 147, 750–756. [Google Scholar] [CrossRef] [PubMed]
- Antoniadis, V.; Shaheen, S.M.; Boersch, J.; Frohne, T.; Laing, G.D.; Rinklebe, J. Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. J. Environ. Manag. 2017, 186, 192–200. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. Scientific Opinion of the Panel on Contaminants in the Food Chain on a request from the European Commission of cadmium in food. ESFA J. 2009, 980, 1–139. [Google Scholar]
- Kim, K.; Melough, M.M.; Vance, T.M.; Noh, H.; Koo, S.I.; Chun, O.K. Dietary cadmium intake and sources in the US. Nutrients 2019, 11, 2. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.M.; Lai, H.Y. Effect of inoculation with arbuscular mycorrhizal fungi and blanching on the bioaccessibility of heavy metals in water spinach (Ipomoea aquatica Forsk.). Ecotox. Environ. Safe. 2018, 162, 563–570. [Google Scholar] [CrossRef]
- Mnisi, R.L.; Ndibewu, P.P.; Mafu, L.D.; Bwembya, G.C. Bioaccessibility and risk assessment of essential and non-essential elements in vegetables commonly consumed in Swaziland. Ecotox. Environ. Safe. 2017, 144, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.C.; Lai, H.Y. Subcellular distribution of cadmium in two paddy rice varieties with different cooking methods. Agric. Sci. 2016, 7, 383–395. [Google Scholar] [CrossRef]
- Afonso, C.; Costa, S.; Cardoso, C.; Oliveira, R.; Lourenço, H.M.; Viula, A. Benefits and risks associated with consumption of raw, cooked, and canned tuna (Thunnus spp.) based on the bioaccessibility of selenium and methylmercury. Environ. Res. 2015, 143, 130–137. [Google Scholar] [CrossRef]
- Pelfrêne, A.; Waterlot, C.; Guerin, A.; Proix, N.; Richard, A.; Douay, F. Use of an in vitro digestion method to estimate human bioaccessibility of Cd in vegetables grown in smelter-impacted soils: The influence of cooking. Environ. Geochem. Health 2015, 37, 767–778. [Google Scholar] [CrossRef]
Soil Series 1 | CEC 2 (cmolc/kg) | OC 3 (%) | Sand (%) | Silt (%) | Clay (%) | Texture |
---|---|---|---|---|---|---|
Wa | 7.23 | 0.84 | 54 | 17 | 29 | Sandy clay loam |
Eh | 6.18 | 1.04 | 16 | 48 | 36 | Silty clay loam |
Tk | 9.29 | 1.07 | 19 | 52 | 29 | Silty clay |
Yu | 7.82 | 1.85 | 40 | 31 | 29 | Clay loam |
Treatment 1 | pH | EC (dS/m) 2 | Available P Conc. (mg/kg) | SPAD Reading 2 | Shoot Height (cm) | Dry Weight (g/plant) |
---|---|---|---|---|---|---|
Wa | 7.50–7.68 a 3,4 | 1.09 ± 0.09 a | 7.60 ± 0.97 b | 42.9 ± 7.5 a | 9.5 ± 3.9 a | 0.40 ± 0.10 a |
Eh | 7.43–7.61 a | 2.96 ± 0.22 a | 10.40 ± 0.38 a | 43.9 ± 6.5 a | 11.1 ± 3.6 a | 0.67 ± 0.21 a |
Tk | 7.47–7.56 a | 1.29 ± 0.19 a | 15.56 ± 0.42 a | 40.5 ± 5.8 a | 10.1 ± 4.2 a | 0.47 ± 0.21 a |
Yu | 7.21–7.39 a | 4.89 ± 1.18 a | 13.34 ± 0.52 a | 45.2 ± 6.1 a | 8.0 ± 2.9 a | 0.60 ± 0.33 a |
Wa + P | 7.47–7.63 a | 1.32 ± 0.23 a | 10.63 ± 1.31 a | 39.3 ± 8.6 a | 6.9 ± 2.8 a | 0.48 ± 0.12 a |
Eh + P | 7.42–7.55 a | 2.90 ± 0.31 a | 12.04 ± 0.32 a | 42.7 ± 5.2 a | 10.0 ± 3.8 a | 0.77 ± 0.38 a |
Tk + P | 7.43–7.54 a | 1.39 ± 0.29 a | 16.95 ± 2.91 a | 41.5 ± 4.7 a | 10.9 ± 4.3 a | 0.42 ± 0.09 a |
Yu + P | 7.36–7.46 a | 5.13 ± 0.60 a | 14.43 ± 1.29 a | 41.7 ± 9.2 a | 9.3 ± 3.6 a | 0.59 ± 0.30 a |
Cd in Plant | Control | P Addition |
---|---|---|
Root conc. (mg/kg) | 26.73 ± 11.64 1 | 22.67 ± 6.96 |
Shoot conc. (mg/kg) | 17.07 ± 10.73 | 21.49 ± 9.11 *,2 |
Bioconcentration factor (BCF) | 5.66 ± 3.43 | 7.15 ± 2.83 * |
Translocation factor (TF) | 0.68 ± 0.17 | 0.94 ± 0.21 * |
Chemical form in the root | ||
FE (%) | 58.3 ± 20.7 | 32.6 ± 22.2 |
FW (%) | 9.4 ± 18.8 | 15.9 ± 10.9 |
FNaCl (%) | 6.1 ± 7.1 | 21.9 ± 28.0 |
FHAc (%) | 9.0 ± 6.8 | 4.3 ± 4.5 |
FHCl (%) | 8.6 ± 11.1 | 13.1 ± 15.5 |
FR (%) | 8.6 ± 10.4 | 12.2 ± 8.4 |
Chemical form in the shoot | ||
FE (%) | 44.8 ± 19.9 | 33.1 ± 7.6 |
FW (%) | 32.2 ± 21.0 | 23.9 ± 18.3 * |
FNaCl (%) | 7.0 ± 5.0 | 7.2 ± 5.3 |
FHAc (%) | 6.1 ± 6.2 | 13.4 ± 11.7 |
FHCl (%) | 5.3 ± 4.3 | 11.8 ± 4.1 * |
FR (%) | 4.6 ± 6.1 | 10.6 ± 7.6 * |
Treatment 1 | Average Daily Dose 2 (ADDv; μg/kg·BW/day) | Hazard Quotient (HQv) | ||||
---|---|---|---|---|---|---|
ADDv-TC | ADDv-CF | ADDv-SD | HQv-TC | HQv-CF | HQv-SD | |
Wa | 0.57 | 0.11 | 0.12 | 2.42 | 1.27 | 0.53 |
Eh | 3.25 | 0.84 | 0.71 | 13.89 | 10.09 | 3.06 |
Tk | 1.44 | 0.29 | 0.32 | 6.14 | 3.49 | 1.35 |
Yu | 1.88 | 0.51 | 0.41 | 8.03 | 6.06 | 1.77 |
Wa + P | 1.24 | 0.30 | 0.27 | 5.31 | 3.63 | 1.17 |
Eh + P | 3.53 | 1.63 | 0.78 | 15.10 | 19.51 | 3.32 |
Tk + P | 2.06 | 1.22 | 0.45 | 8.81 | 14.57 | 1.94 |
Yu + P | 2.13 | 0.91 | 0.47 | 9.12 | 10.83 | 2.01 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lam, C.-M.; Chen, K.-S.; Lai, H.-Y. Chemical Forms and Health Risk of Cadmium in Water Spinach Grown in Contaminated Soil with An Increased Level of Phosphorus. Int. J. Environ. Res. Public Health 2019, 16, 3322. https://doi.org/10.3390/ijerph16183322
Lam C-M, Chen K-S, Lai H-Y. Chemical Forms and Health Risk of Cadmium in Water Spinach Grown in Contaminated Soil with An Increased Level of Phosphorus. International Journal of Environmental Research and Public Health. 2019; 16(18):3322. https://doi.org/10.3390/ijerph16183322
Chicago/Turabian StyleLam, Chun-Ming, Kuei-San Chen, and Hung-Yu Lai. 2019. "Chemical Forms and Health Risk of Cadmium in Water Spinach Grown in Contaminated Soil with An Increased Level of Phosphorus" International Journal of Environmental Research and Public Health 16, no. 18: 3322. https://doi.org/10.3390/ijerph16183322
APA StyleLam, C. -M., Chen, K. -S., & Lai, H. -Y. (2019). Chemical Forms and Health Risk of Cadmium in Water Spinach Grown in Contaminated Soil with An Increased Level of Phosphorus. International Journal of Environmental Research and Public Health, 16(18), 3322. https://doi.org/10.3390/ijerph16183322