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Abstract: The problem of air pollution is a persistent issue for mankind and becoming increasingly
serious in recent years, which has drawn worldwide attention. Establishing a scientific and effective
air quality early-warning system is really significant and important. Regretfully, previous research
didn’t thoroughly explore not only air pollutant prediction but also air quality evaluation, and relevant
research work is still scarce, especially in China. Therefore, a novel air quality early-warning system
composed of prediction and evaluation was developed in this study. Firstly, the advanced data
preprocessing technology Improved Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (ICEEMDAN) combined with the powerful swarm intelligence algorithm Whale
Optimization Algorithm (WOA) and the efficient artificial neural network Extreme Learning Machine
(ELM) formed the prediction model. Then the predictive results were further analyzed by the method
of fuzzy comprehensive evaluation, which offered intuitive air quality information and corresponding
measures. The proposed system was tested in the Jing-Jin-Ji region of China, a representative research
area in the world, and the daily concentration data of six main air pollutants in Beijing, Tianjin,
and Shijiazhuang for two years were used to validate the accuracy and efficiency. The results show
that the prediction model is superior to other benchmark models in pollutant concentration prediction
and the evaluation model is satisfactory in air quality level reporting compared with the actual status.
Therefore, the proposed system is believed to play an important role in air pollution control and
smart city construction all over the world in the future.

Keywords: air pollutant concentration prediction; air quality evaluation; air pollution early-warning
handbook; Jing-Jin-Ji region; smart city construction

1. Introduction

Air is one of the most basic elements for human survival and good air quality is necessary
for human health. Unfortunately, air pollution has become a global problem, which has aroused
widespread concern from scholars, governments and the public. Some studies have found that
exposure to air pollutants is associated with the occurrence of many diseases such as respiratory
disease, cardiovascular disease and even cancer, contributing to as many as 4–9 million human
deaths per year globally [1,2]. The situation in China is also grim. With the rapid development of
industrialization and urbanization, more and more fossil fuels are being burned, which results in
increasing emissions of sulphur, nitrogen and particulate matter, causing deteriorating air quality and
frequent hazy weather. As the “Capital Economic Circle” and future world-class urban agglomeration,
influenced by adverse geographical and meteorological conditions along with industrial structure,
the Jing-Jin-Ji region has become one of the most heavily polluted areas, with frequent long duration,
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wide range and severe degree regional pollution events. To solve this serious problem, researchers
have done a lot of work, including air pollutant prediction and air quality evaluation.

Numerous forecasting models have been proposed, mainly for pollutant concentration. According
to their principles, these forecasting models can be divided into three categories: statistic forecasting
models, numerical forecasting models and machine learning models.

Statistic forecasting models have been widely used in air quality forecasting from the early days
because of their simplicity and rapidity, and they still have value in application and research up to now.
They can predict pollutant concentrations in the future only by studying the relationship between
pollutant concentration and meteorological factors from past records without information about
pollution sources. Common statistical models include the multiple linear regression model (MLR) [3],
autoregressive integrated moving average model (ARIMA) [4], grey model (GM) and Markov model.
For example, Elbayoumi et al. [5] used MLR to predict the annual indoor concentrations of PM2.5

and PM10 by analyzing the meteorological variables (wind speed, temperature and relative humidity)
collected from 12 natural ventilation systems. Jian et al. [6] used ARIMA to study the effects of
meteorological factors on the concentrations of ultrafine particles and PM10 in Hangzhou under heavy
traffic conditions. A first-order variable grey differential equation model was proposed by Pai et al. [7]
to predict the hourly PM concentration in Banqiao, Taiwan. A Hidden Markov Model (HMMS) was
used to predict daily average PM2.5 concentrations [8]. Although these statistic forecasting models
(linear method) have been widely used in PM concentration prediction (non-linear process), their
accuracy is largely limited by their linear mapping ability. Most of the air pollutant time series in the
real world are non-linear and irregular, so statistic forecasting model may not be suitable for these data.

Since the 1990s, with the development of computer technology and the abundance of air
pollution data, numerical forecasting models have been greatly developed and are currently in
the third generation. Based on the idea of “One Atmosphere”, they realize two-way coupling
between atmospheric dynamics and atmospheric chemistry which can simulate atmospheric physical
and chemical processes on different scales and therefore predict the concentrations of different air
pollutants [9]. Numerical forecasting model usually consist of meteorological modules, emission
modules and chemical modules following this principle that weather or climate modules provide
meteorological background fields which drive the chemical transport modules. At present, common
numerical forecasting models include the U.S. Models-3 and WRF-Chem, Polyphemus from France as
well as Nested Air Quality Prediction Modeling System (NAQPMS) from China [10–12]. Although
numerical forecasting models are helpful to reveal the mechanism of pollution processes, their accuracy,
especially in severe air pollution incidents, is greatly limited by some difficulties such as inaccurate
atmospheric boundary layer simulation schemes, insufficient emission inventory of pollution sources
and limited knowledge of atmospheric physical and chemical process. Furthermore, they require a lot
of computing time.

Machine learning belongs to the field of artificial intelligence. The arrival of the big data era has
brought unprecedented opportunities for the development of machine learning. Machine learning
has excellent performance in regression and classification problems, and it is usually recognized as
one of the most powerful tools in pollutant prediction for its high robustness and fault tolerance.
Therefore, there are increasingly studies on pollutant concentration prediction with machine learning
models. For example, support vector machine (SVM) [13] and artificial neural network (ANN) [14] are
commonly selected. Paschalidou et.al [15] used a radial basis function (RBF) and multilayer perceptron
(MLP) to predict hourly concentrations of PM2.5 in Cyprus. Wu et al. [16] acquired predictions of PM10

concentrations using a general regression neural network (GRNN).
Pollutant concentration data are too abstract for the public to understand, and people are eager

for simplified and intuitive information to quickly understand the state of ambient air, which means
air quality evaluation is indispensable. When it comes to methods of air quality evaluation, the most
commonly used method is the air quality index (AQI) originally proposed by the US Environmental
Protection Agency (EPA). AQI is widely used worldwide, while the standards vary among countries.
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China’s standard comes from “Technical Regulation on Air Quality Index (on trial) (HJ 633-2012)”
issued by the Ministry of Environmental Protection. It considers a variety of pollutants including
PM2.5, PM10, NO2, SO2, CO, O3. However, as with all environmental quality evaluations, there are
ambiguities in air quality evaluation due to the vagueness of evaluation factors, criteria and objects,
etc., which makes it difficult to justify the use of sharp boundaries in classification schemes, so the
air quality index method has some limitations, for example, a slight increase or decrease of pollutant
data near a boundary value will change the evaluation level. Such fuzziness has led many researchers
to seek advanced evaluation methods [17], for instance, fuzzy mathematics. Fuzzy mathematics is
proved to be a useful tool for air quality evaluation [18,19], and many air quality indicators based on
fuzziness [20–23] are proposed.

Individual prediction or evaluation is not enough to help us cope with air pollution, so an
integrated and complete system is expected to play a greater value. Some early-warning systems
including prediction and evaluation have been gradually proposed. The problem of air pollution in
China has attracted increasing attention, but there are relatively few in-depth and targeted studies in
air quality early warning based on artificial intelligence. Consideration of pollutants which affect air
quality should be as comprehensive as possible, but some studies only focus on single pollutant, mainly
PM. Although the selection of experimental sites is of importance, some scholars don’t give sufficient
reasons such as purpose and significance for their choices. The selection of algorithms and pollutant
concentration limits in air quality evaluation also remain to be discussed. Therefore, developing an
accurate and robust air quality early-warning system has become an urgent need of society. It is
hoped to provide not only air quality information comprehensively and objectively, but also necessary
preventive measures for citizens to avoid hazards, and even help relevant departments to better control
air pollution and minimize negative impacts.

Based on the above analyses, this paper proposes a novel air quality early-warning system
composed of prediction and evaluation. The prediction part took advantage of advanced improved
complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) and combined
whale optimization algorithm (WOA) with extreme learning machine (ELM). The three methods have
been proved to be effective in air pollutant forecasting [24–26]. Fuzzy comprehensive evaluation (FCE)
based on fuzzy mathematics was conducted subsequently.

Generally speaking, the contributions of this paper are as follows:

• A complete air quality early-warning system was established and achieved good results in the
Jing-Jin-Ji region where air pollution problems are of great concern.

• A novel hybrid prediction model ICEEMDAN-WOA-ELM was proposed for the main air pollutants
in Beijing, Tianjin and Shijiazhuang. ICEEMDAN and WOA are confirmed to greatly improve the
prediction ability of ELM through comparison.

• The predictive results can be transformed into corresponding air quality levels by fuzzy
comprehensive evaluation, which means citizens without professional knowledge of atmospheric
science can easily understand the current air quality and get scientific advices to avoid air pollution.

• The air quality early-warning system is feasible and practical in air pollution treatment, which can
not only protect the public from air pollution but also offer services for government decision-making
on environmental protection.

The rest of this paper is organized as follows: Section 2 briefly introduces the methodologies
adopted in this paper. Empirical research is given in Section 3, along with the description of experiment
sites, data, evaluation criteria and so forth. Section 4 gives the conclusions.
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2. Methodology

2.1. The Proposed Air Quality Early-Warning System

In this section, the air quality early-warning system whose core is the hybrid
ICEEMDAN-WOA-ELM-FCE model is introduced in detail. The flow diagram consisted of four steps,
presented in Figure 1.

• Step 1: Pollutant concentration data are usually chaotic time series, requiring denoising technology
to eliminate the influences of outliers and improve the prediction accuracy. ICEEMDAN is used to
process the original data into several IMFs from high frequency to low frequency, which contain
different characteristics of the original data.

• Step 2: The ELM optimized by WOA is applied to build a predictor for each IMF. The WOA
algorithm is used to obtain the best parameters of ELM to establish a forecasting model which is
not only fast but also accurate. All the predictive results of IMFs are synthesized and the final
predictive result is obtained. The optimized ELM model is used to forecast the concentrations of
six major air pollutants in Beijing, Tianjin and Shijiazhuang, which will be the key information for
the evaluation model.

• Step 3: Fuzzy comprehensive evaluation can convert the predictive results into air quality levels
scientifically and objectively, providing crucial information for further research and analysis.

• Step 4: The air quality information can be applied to guide people’s daily lives. Different colors are
assigned to different levels, so air quality information can be easily understood. In addition, brief
but practical guidance corresponding to levels can be offered to the public against air pollution.
Scientific and precise results also serve the government decision-making on environmental
protection. Generally, the proposed air quality early-warning system will play a key role in future
air pollution prevention.
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In this section, all individual methods belonging to the air quality early-warning system are
described in detail, including ICEEMDAN, WOA, ELM and FCE.

2.2. Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN)

The empirical mode decomposition (EMD) [27] is a widely used method to analyze non-linear
and non-stationary data. Compared with the traditional decomposition algorithm, Fourier transform
or wavelet transform which are more applicable to stationary and linear data, EMD is adaptive and
highly efficient. Original data can be expressed as a sum of intrinsic mode functions (IMFs) and a
final monotonic trend by EMD, but oscillations may be produced with different scales in one mode
or with same scale in different modes which called “mode mixing”. The ensemble empirical mode
decomposition (EEMD) [28] is proposed to address this problem by adding Gaussian white noise to the
original signal, but the added noise can’t be completely neutralized and different noisy copies of the
signal may produce different number of modes. The complete ensemble empirical mode decomposition
with adaptive noise (CEEMDAN) [29] provides accurate reconstruction of the original signal, better
spectral separation of the mode and computational efficiency, achieving huge improvements on
EEMD. Furtherly, the ICEEMDAN [30] improves some aspects of CEEMDAN involving residual noise,
“spurious mode” and so forth, becoming the latest decomposition method of EMD family. In this study,
considering the non-stationary and non-linear characteristics of pollutant concentration, ICEEEMDAN
was used as a data preprocessing method to better dig out the rules behind the pollutant data and
serve the prediction later. The main steps of ICCEMDAN are summarized as follows:

(1) Calculate local means of I realizations x(i) = x + β0E1
(
w(i)

)
by EMD to get the first residue

r1 = 〈M
(
x(i)

)
〉, where w(i)(i = 1, . . . , I) is a realization of white Gaussian noise with zero mean unit

variance, Ek(.) is the operator that produces the kth mode obtained by EMD and M(.) is the operator
that generates the local mean of the applied signal.

(2) Calculate the first mode ď1 = x− r1 at the first stage (k = 1).
(3) Calculate the second residue as the average of local means of the realizations r1 + β1E2

(
w(i)

)
and define the second mode: d̃2 = r1 − r2 = r1 − 〈M

(
r1 + β1E2

(
w(i)

))
〉.

(4) For k = 3, . . .K calculate the kth residue rk = 〈M
(
rk−1 + βk−1Ek

(
w(i)

))
〉.

(5) Calculate the kth mode d̃k = rk+1 − rk.
(6) Return to step 4 for next k.

2.3. Whale Optimization Algorithm (WOA)

Inspired by the bubble-net hunting strategy which corresponds to the social behavior of humpback
whales, a nature-inspired meta-heuristic optimization algorithm called WOA [31] was proposed in
2016. Tested with 29 mathematical benchmark functions and six structural engineering problems in
exploration, exploitation, local optima avoidance and convergence behavior, WOA was proved to
be highly competitive compared to the state-of-art meta-heuristic algorithms as well as conventional
methods. The mathematical model of WOA is illustrated as follows [31].

2.3.1. Encircling Prey

Humpback whales can identify and encircle the location of their prey. After defining the best
search agent, other search agents will try to move to the best location. This behavior is expressed by
the following mathematical formulas:

→

D = |
→

C·
→

X∗(t) −
→

X(t)| (1)

→

X(t + 1) =
→

X∗(t) −
→

A·
→

D (2)
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where t is the current iteration,
→

X∗ is the best position,
→

X denotes the position vector, · is an element-by

element multiplication, and
→

A and
→

C are coefficient vectors which can be calculated by the following
equations:

→

A = 2
→
a ·
→
r −

→
a (3)

→

C = 2·
→
r (4)

where
→
r is a random vector between 0 and 1, and

→
a is linearly reduced from 2 to 0 in the iteration process.

2.3.2. Bubble-Net Attacking Method (Exploitation Phase)

Humpback whales usually attack their prey using the bubble-net strategy and two approaches
are designed:

(1) Shrinking encircling mechanism.

This behavior is realized by reducing the value of
→
a in Equation (3). Setting random

→

A values in
[−1,1], the new position can be obtained between the original position and the current position of the
best agent.

(2) Spiral updating position
A spiral equation is established between whales and prey to simulate the helix-shaped movements

of humpback whales:
→

X(t + 1) =
→

D′·ebl
· cos(2πl) +

→

X∗(t) (5)

where
→

D′ = |
→

X∗(t) −
→

X(t)| is the distance between the ith whale and the best position obtained so far,
b is a constant to define the logarithmic spiral, l is a random number between −1 and 1, and · is an
element-by-element multiplication. WOA assumes that there is a 50% probability of choosing shrinking
encircling mechanism or the spiral model to update the position of whales in the optimization process.
The algorithm is defined as follows:

→

X(t + 1) =


→

X∗(t) −
→

A·
→

D i f p < 0.5
→

D′·ebl
· cos(2πl) +

→

X∗(t) i f p ≥ 0.5
(6)

where p is a random number between 0 and 1.

2.3.3. Search for Prey (Exploration Phase)

Humpback whales can randomly search for prey according to the position of each other. In the
exploration phase, we can update the location of a search agent based on a randomly selected search
agent, rather than the best search agent found so far. This mechanism emphasizes exploration, allowing
the WOA algorithm to perform a global search. This mathematical model is expressed as follows:

→

D = |
→

C·
→

Xrand −
→

X| (7)

→

X(t + 1) =
→

Xrand −
→

A·
→

D (8)

where
→

Xrand is a random location vector selected from the current population.
The WOA algorithm (Algorithm 1) starts with a set of random solutions. In each iteration,

the search agent updates its location based on the randomly selected search agent or the best solution

obtained so far. A random search agent is selected when |
→

A| > 1, and the best solution is selected when

|

→

A| < 1. According to p value, WOA can switch between spiral and circular movement. The WOA
algorithm is terminated when it satisfies the termination criterion. The pseudo code of the WOA
algorithm is represented as follows:
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Algorithm 1 WOA

Input: Maximum number of iterations IterMax, Fitness function Fi, Current iteration number t,
A random number l between −1 and 1, A constant number b.

1: Initialize the whales population Xi(i = 1, 2, 3, . . . , n)
2: for each search agent do
3: Calculate the fitness function Fi
4: end for
5: X∗ = the best search agent
6: while t < IterMax do
7: for each search agent do
8: Update a, A, C, l and p
9: if p < 0.5 then
10: if |A| < 1 then
11: Update the position of search agent using Eq(2);
12: elseIf |A| ≥ 1
13: Select a random search agent Xrand;
14: Update position of search agent using Eq(8);
15: end if
16: elseIf p > 0.5
17: Update the position with spiral Eq(5);
18: end if
19: end for
20: Check if any search agent goes beyond the search space and amend it;
21: for each search agent do
22: Calculate the fitness function Fi
23: end for
24: Update X∗ if there is a better solution;
25: t = t + 1
26: end while
27: return X∗

2.4. Extreme Learning Machine (ELM)

ELM [32] is a simple and extremely fast learning algorithm of single-hidden layer feedforward
neural networks (SLFN). ELM randomly assign input weights and hidden layer biases (thresholds)
without adjustment in the training process, which leads to thousands of times faster than traditional
feedforward network learning algorithms and better generalization performance in most artificial and
real benchmark problems. The structure of single-hidden layer feedforward neural network is shown
in Figure 2.
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For N independent samples (xi, ti), xi = [xi1, xi2, . . . , xin]
T
∈ Rn and ti = [ti1, ti2, . . . tim]

T
∈ Rm.

SLFN can be expressed as [32]:

L∑
i=1

βig
(
wi·x j + bi

)
= o j, j = 1, 2, . . . , N (9)

where wi = [wi1, wi2, . . . , win]
T is the weight vector between the input layer neurons and the ith

hidden layer neuron, bi is the threshold of the ith hidden layer neuron, g(x) is the activation function,
and βi = [βi1, βi2, . . . , βim]

T is the weight vector between the ith hidden layer neuron and the output
layer neurons. Formula (9) can be expressed as:

Hβ = T (10)

where H is the output matrix of the hidden layer, β is the weight vector between the hidden layer
neurons and the output layer neurons, T is the expected output of network, represented as follows [32]:

H =


g(w1·x1 + b1) · · · g(wL·x1 + bL)

... · · ·
...

g(w1·xN + b1) · · · g(wL·xN + bL)


N×L

(11)

The number of required hidden layer neurons L ≤ N when activation function g is infinitely
differentiable. Its solution is:

β̂ = H+T (12)

where H+ is the Moore-Penrose generalized inverse of H.
ELM can generate w and b randomly before training and calculate β only by determining L and

g(x). Generally, the ELM algorithm has the following steps:
(1) Determine the number of neurons L in the hidden layer, and randomly set the connection

weight w between the input layer and the hidden layer and the threshold b of hidden layer neurons.
(2) An infinitely differentiable function g(x) is selected as the activation function of the hidden

layer neurons, and then the output matrix H of the hidden layer is calculated.
(3) Calculate the weight of the output layer: β̂ = H+T.

2.5. Fuzzy Comprehensive Evaluation (FCE)

Environmental quality is a huge and ambiguous system with a large number of uncertain factors.
Fuzzy mathematics [18] can effectively solve the influences of ambiguity of evaluation boundary and
monitoring error on evaluation. Using membership function to represent air quality level can eliminate
subjective and artificial factors in classification, objectively reflecting regional air quality. The concrete
steps of fuzzy comprehensive evaluation are as follows:

(1) Establish the factor set
A factor set is a set of elements that affect the evaluation object, usually represented by

U = {u1, u2, . . . , um}. It is well known that different pollutants can cause different hazards to human
health, so these parameters should be treated separately. Therefore, six main pollutants are selected as
air quality parameters in this project:

U = {u1, u2, . . . , u6} = {PM2.5, PM10, NO2, SO2, CO, O3} (13)

(2) Set up the evaluation set
Because this research is carried out in China, air pollutant concentration limits from “Technical

Regulation on Air Quality Index (on trial) (HJ 633-2012)” of China have a reference value. On account of
the lack of values of O3 (8 h) beyond the fifth level, we have a decision that the evaluation set comprises
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five levels: V = {v1, v2, . . . v5} = {I, II, III, IV, V} and the corresponding air quality categories are
“Excellent, Good, Moderate, Poor, Hazardous”. The air quality levels and corresponding concentration
limits of different pollutants are given in Table 1.

Table 1. The air quality level and corresponding concentration limit (units: µg/m3, CO (mg/m3)).

Level Category PM2.5 PM10 NO2 NO2 NO2 O3

I Excellent 35 50 40 50 2 100
II Good 75 150 80 150 4 160
III Moderate 115 250 180 475 14 215
IV Poor 150 350 280 800 24 265
V Hazardous 250 420 565 1600 36 800

(1) Establish fuzzy matrix
The fuzzy matrix can be expressed by the matrix R, where Ri j is the membership degree of factor

ui aiming at the comment v j:

R =
(
ri j

)
m×n

=


r11 r12

r21 r22

· · · r1n
· · · r2n

· · · · · ·

rm1 ri2

· · · · · ·

· · · rmn

 (14)

The membership function can calculate the membership degree of pollutant concentration to
the evaluation grade. There are many membership functions such as halved trapezoidal distribution
function, Gauss membership function, triangular membership function, etc. In this study, the halved
trapezoidal distribution function [33] which has often been used in air quality evaluation is selected
and details are presented as follows:

ri j =

(
1
ui( j+1) − xi)/

(
ui( j+1) − ui j

)
0

xi ≤ ui j
ui j < xi ≤ ui( j+1)
xi > ui( j+1)

j = 1

ri j =


(
xi − ui( j−1)

)
/
(
ui j − ui( j−1)

)(
ui( j+1) − xi

)
/
(
ui( j+1) − ui j

)
0

ui( j−1) ≤ xi ≤ ui j

ui j < xi ≤ ui( j+1)
xi > ui( j+1)

j = 2, 3, 4

ri j =


0(
xi − ui( j−1)

)
/
(
ui j − ui( j−1)

)
1

xi ≤ ui( j−1)
ui( j−1) < xi ≤ ui j

xi > ui j

j = 5

(15)

(2) Determine the factor weights
The weight of a factor is an index to measure the relative degree of a pollutant impact on air

quality. The multi-scale weighting method is commonly used in the fuzzy evaluation of environment
quality, therefore the weight of pollution factor can be obtained by Equation (16):

wi = [uk
i /(

1
n

n∑
j=1

vi j)]/
m∑

i=1

[uk
i /(

1
n

n∑
j=1

vi j)] (16)

(3) Evaluation result
By synthesizing the weight vector and the fuzzy matrix with the appropriate operator, the final

result of the fuzzy comprehensive evaluation can be obtained. The Zadeh operator M(∧,∨) is commonly
used as a solution, therefore it is adopted here:
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B = W ⊕R = (w1, w2, . . .wm) (∧,∨)


r11 r12

r21 r22

· · · r1n
· · · r2n

· · · · · ·

rm1 rm2

· · · · · ·

· · · rmn

 (17)

According to the principle of maximum membership degree, the maximum value of B is the result
of fuzzy comprehensive evaluation of air quality.

3. Experimental Results and Analysis

In this section, in order to evaluate the performance of proposed air quality early-warning system,
three datasets from three cities (Beijing, Tianjin, Shijiazhuang) in China were used in case studies
(the simple map of the study areas is displayed in Figure 3. The main reasons for the choice are:
(1) Jing-Jin-Ji region is a Beijing-centered world-class urban agglomeration which has a developed
economy and important strategic position. It covers 13 cities, 110 million people and 218,000 km2 of
land area, so air pollution is really of concern here. (2) In this region, the heavy industrial structure,
dense population and limited environmental capacity have led to frequent haze events which cause
serious troubles to people’s normal life and social development. At the moment, how to balance
economic development and environmental protection is urgent and it is hoped our system will be
beneficial for air pollution control. (3) Influenced by meteorological conditions, pollutant emissions
and transport, secondary transformation of particulate matter, synthetical effect of nature and human,
the air pollution is extremely complex and prominent here. This problem not only seriously endangers
human health and economic development, but also has impacts on climate and environment change.
Therefore, relevant research conducted in this region is representative and referential for air pollution
control of other metropolis in the world.
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3.1. Dataset Description

Datasets used in this study were from the Ministry of Ecology Environment of China including
daily concentration of six main air pollutants in three cities from 1 September 2016 to 30 September
2018. For missing data, the nearby mean was used as the missing data. The sample size of one pollutant
in one city was 760, which were divided into training set (699) from 1 September 2016 to 31 July 2018
and testing set (61) from 1 August 2018 to 30 September 2018. The characteristics of the whole samples
including maximum (Max), minimum (Min), mean (Mean) and standard deviation (Std.) are shown in
Table 2.

Table 2. The statistical properties of air pollutant concentration.

City Pollutant Concentration ((µg/m3), CO (mg/m3))

Indicator PM2.5 PM10 NO2 SO2 CO O3

Beijing

Max 454 840 155 84 8 311
Min 5 7 7 2 0.2 3

Mean 61.2 89.8 45.5 7.2 1.0 98.4
Std. 57.5 72.8 22.2 7.2 0.8 63.3

Tianjin

Max 290 931 132 89 9 282
Min 8 11 14 2 0.3 3

Mean 62.3 97.3 48.6 15.3 1.3 105.6
Std. 47.8 68.3 21.6 11.5 0.8 61.5

Shijiazhuang

Max 621 870 183 153 10 297
Min 12 22 13 5 0.3 6

Mean 91.5 160.8 53.1 31.4 1.5 106.1
Std. 82.0 118.0 24.2 24.1 1.1 68.2

3.2. Evaluation Criteria

To evaluate the performance of the proposed system in forecast, a set of four criteria [34] are
applied: Mean absolute error (MAE), Root mean square error (RMSE), Mean absolute percentage error
(MAPE) and Theil’s inequality coefficient (TIC). MAE reflects the difference between the predicted
and actual value. RMSE reflects the extent of the difference between the predicted and actual values.
MAPE is an index to measure the forecasting accuracy of a model in statistics. TIC is an indicator used
to measure the predictive capability of a model. For all criteria, the smaller the value is, the better
predictive performance the model has.

• Mean absolute error (MAE):

MAE =
1
N

N∑
i=1

|F̂i − Fi| (18)

• Root mean square error (RMSE):

RMSE =

√√√
1
N

N∑
i=1

(
F̂i − Fi

)2
(19)

• Mean absolute percentage error (MAPE):

MAPE =
1
N

N∑
I=1

|
F̂i − Fi

Fi
| (20)
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• Theil’s inequality coefficient (TIC):

TIC =

√
1
N

∑N
i=1

(
F̂i − Fi

)2√
1
N

∑N
i=1 F̂i

2
+

√
1
N

∑N
i=1 Fi2

(21)

where N is the number of data, F̂i and Fi are the predicted and actual value at time i, respectively.

3.3. Diebold-Mariano (D-M) Test

The Diebold-Mariano test [35] is a hypothesis test that is employed to evaluate the significance
of the performance of proposed model compared with other models. The hypothesis test is defined
as follows:

H0 : E
[
l
(
ε1

n+t

)]
= E

[
l
(
ε2

n+t

)]
(22)

H1 : E
[
l
(
ε1

n+t

)]
, E

[
l
(
ε2

n+t

)]
(23)

where l is the loss function, ε1
n+t and ε2

n+t are the forecast errors of two forecasting models. Each forecast
accuracy is evaluated by an appropriate loss function, and the commonly used loss function is the
MAE (Equation (18)) function [36]. For given significance level, the null hypothesis indicates that there
is no significant difference between proposed model and comparison model in predictive performance.

The statistical function of the DM test is as follows:

DM =

∑T
t=1

(
l
(
ε1

n+t

)
− l

(
ε2

n+t

))
/T√

s2/T
s2 (24)

where s2 is the estimate of variance of Di = l
(
ε1

n+t

)
− l

(
ε2

n+t

)
. The null hypothesis is that the two

prediction models have the same predictive accuracy. The DM statistic converges to the standard
normal distribution N(0, 1), and the null hypothesis will be rejected if |DM| > Zα/2. Zα/2 denotes the
critical z-value of the standard normal distribution, and α is the significance level.

3.4. Case Studies

In this paper, case studies were carried out to measure the performance of forecasting model.
Single model and hybrid model including ARIMA [37], GRNN [38], ELM [26], GA-ELM, WOA-ELM
and EEMD-WOA-ELM were used as benchmarks to assess the proposed hybrid model. The experiment
was first conducted in Beijing to verify the predictive performance of the model in details, and then
experiments in Tianjin and Shijiazhuang were used to prove universality. If the proposed model
outperforms other models in all case studies, we can certainly draw the conclusion that the proposed
model has not only high accuracy but also universal applicability in different environments. Meanwhile,
the model was assessed by the statistical test based on DM test. Furthermore, the trial-and-error
method was used to determine the best experimental parameters which are listed in Table 3.

Table 3. Experimental parameters.

Parameter PM2.5 PM10 NO2 SO2 CO O3

Input variable 4 4 8 3 8 3
Number of search agents 10 10 10 10 10 10

MaxIter of WOA 200 200 200 200 200 200
MaxIter of ICEEMDAN 1000 1000 1000 1000 1000 1000

MaxIter: maximum iteration; WOA: Whale Optimization Algorithm; ICEEMDAN: Improved Complete Ensemble
Empirical Mode Decomposition with Adaptive Noise.
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3.4.1. Case Study One: Beijing

The daily concentrations of six air pollutants from 1 September 2016 to 31 September 2018 in Beijing
were employed to verify the forecasting performance of the proposed hybrid model. Daily pollutant
concentrations of two months from 1 August 2018 to 31 September 2018 were predicted and compared
with actual data. Figure 4 shows the predictive results and Figure 5 shows the daily relative errors
(relative error = (predicted value − actual value)/actual value). In addition, four performance indicators
are calculated and given in Table 4. At the same time, Table 4 also shows the predictive effectiveness
of ARIMA, GRNN, ELM, GA-ELM, WOA-ELM, EEMD-WOA-ELM and ICCEMDAN-WOA-ELM
as comparison, and the bold values represent the best values for each criterion. It is evident that
ICEEMDAN-WOA-ELM model has the most excellent performance among all models. Its predictive
results are very closer to actual values than other models. Influenced by many factors, though
relative errors of PM2.5 and PM10 are larger than that of other pollutants for the highly nonlinear and
non-stationary characteristics, the proposed model is more satisfactory.Int. J. Environ. Res. Public Health 2019, 16, x 13 of 24 
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Table 4. Predictive effectiveness (Beijing).

Pollutant Criterion ARIMA GRNN ELM GA-ELM WOA-ELM EEMD-WOA
-ELM

ICEEMDAN-
WOA-ELM

PM2.5

MAE 14.6003 19.5838 19.1736 17.0523 16.1554 11.2074 5.9228
RMSE 18.5605 23.7382 23.3620 21.7668 21.1993 15.0801 7.7563
MAPE 89.4611 155.6999 143.0254 125.3109 116.7680 60.3403 28.8783

TIC 0.2445 0.2772 0.2694 0.2562 0.2531 0.2019 0.1038

PM10

MAE 17.0591 25.0788 20.8773 19.3449 18.0783 11.7358 6.8349
RMSE 21.4795 29.0880 26.4483 25.2979 23.6904 14.4054 8.6609
MAPE 47.6182 83.1894 67.8279 63.4524 57.3004 30.2585 16.8055

TIC 0.2011 0.2364 0.2169 0.2107 0.2032 0.1375 0.0830

NO2

MAE 0.7594 1.4453 1.3793 1.0707 0.7643 0.4734 0.2982
RMSE 0.9677 1.5697 1.5207 1.3447 1.0222 0.5826 0.3717
MAPE 27.7888 60.4805 56.8319 39.4689 28.0332 16.1434 9.9484

TIC 0.1580 0.2164 0.2098 0.1998 0.1617 0.1006 0.0631

SO2

MAE 6.6864 11.8116 9.9558 7.6664 7.3561 5.6606 3.2131
RMSE 8.6302 13.4116 11.3911 9.5799 8.9238 7.8410 4.1274
MAPE 22.1293 46.2987 38.7423 28.5756 27.1341 18.4094 10.7605

TIC 0.1362 0.1818 0.1596 0.1405 0.1315 0.1203 0.0632

CO

MAE 0.1856 0.2648 0.2465 0.2105 0.1952 0.0972 0.0740
RMSE 0.2390 0.2990 0.2916 0.2476 0.2404 0.1167 0.0915
MAPE 30.894 50.8398 50.3263 37.5665 34.6805 15.3490 10.3210

TIC 0.1499 0.1770 0.1742 0.1509 0.1474 0.0737 0.0586

O3

MAE 0.1856 0.2648 0.2465 0.2105 0.1952 0.0972 0.0740
RMSE 0.2390 0.2990 0.2916 0.2476 0.2404 0.1167 0.0915
MAPE 30.894 50.8398 50.3263 37.5665 34.6805 15.3490 10.3210

TIC 0.1499 0.1770 0.1742 0.1509 0.1474 0.0737 0.0586

ARIMA: Autoregressive Integrated Moving Average; GRNN: Generalized Regression Neural Network; ELM:
Extreme Learning Machine; GA: Genetic Algorithm; WOA: Whale Optimization Algorithm; EEMD: Ensemble
Empirical Mode Decomposition; ICEEMDAN: improved complete ensemble empirical mode decomposition with
adaptive noise; MAE: Mean absolute error; RMSE: Root mean square error; MAPE: Mean absolute percentage error;
TIC: Theil’s inequality coefficient. Bold values represent the best values for each criterion among all models.

Based on the information in Figure 4, Figure 5 and Table 4, it is clear that the proposed model
obtains the best results for all evaluation indicators. Therefore, we can conclude that the proposed
ICEEMDAN-WOA-ELM model is superior to benchmark models in the prediction of air pollutant
concentrations. More comparative analyses are presented as follows:

(1) As one of time series forecasting models, ARIMA is superior to single artificial intelligence
models in accuracy. The four indexes (MAE, RMSE, MAPE, TIC) of ARIMA are almost better than
those of single artificial intelligence models, which is attributed to the high volatility and irregularity
of air pollutant concentration data. The results show that single artificial intelligence models cannot
meet the requirements of air pollutant prediction which means it is urgent to develop a hybrid model
to improve the predictive performance.

(2) From the comparison between ELM and GA-ELM as well as WOA-ELM, we can conclude
that optimization algorithms can really help neural network model improve performance. The ELM
optimized by GA or WOA provides better predictive results for six air pollutants. For example, in PM2.5

forecast, the MAE, RMSE, MAPE, TIC are 17.0523, 21.7668, 125.3109, 0.2562 and 16.1554, 21.1993,
116.7680, 0.2531 for GA-ELM and WOA-ELM respectively, with moderate improvements compared
with 19.1736, 23.3620, 143.0254, 0.2694 of ELM. From the comparative indicators, we can also see that
WOA has better optimization capability as it can avoid local optima and maintain fast convergence.
Compared with other optimization algorithms, WOA not only is simple, flexible and effective, but also
can achieve a balance between exploration and exploitation.

(3) It can be clearly seen that the data preprocessing algorithm has brought a great
improvement to the neural network model. Compared with other models, EEMD-WOA-ELM
and ICEEMDAN-WOA-ELM are so outstanding in prediction, which fully proves the concept



Int. J. Environ. Res. Public Health 2019, 16, 3505 15 of 25

“decomposition and integration” or “divide and conquer” to be effective for establishing a robust
air pollutant prediction model. It is obvious that model with ICEEMDAN performs better than the
counterpart with EEMD in any cases. For instance, four metrics are 14.1866, 17.2348, 13.9759, 0.0665
and 21.1571, 24.5963, 21.8809, 0.0938, respectively, for O3. The results show that the decomposition
method can greatly reduce predictive errors of model, and moreover, ICEEMDAN is superior to other
decomposition methods in data decomposition.

Through the above analyses, MAE, RMSE, MAPE and TIC were used to prove the proposed
ICEEMDAN-WOA-ELM hybrid model is obviously superior to all considered benchmark models for
its higher accuracy and stability. Compared with single model, all models based on “decomposition
and integration” framework have better predictive effectiveness, which shows this framework can
effectively improve the model performance. The proposed forecasting model fits all the data of air
pollutants with high volatility and irregularity, so it is qualified as the prediction part of air quality
early-warning system.

3.4.2. Case Study Two: Tianjin and Shijiazhuang

In order to verify the predictive and universal capabilities of the proposed model, the daily air
pollutant concentration data of Tianjin and Shijiazhuang (from 1 September 2016 to 30 September 2018)
were also used in case studies. The main purpose is to test the generality of model under different
environments. The predictive results are shown in Figures 6–9 and Tables 5 and 6. In Tables 5 and 6,
bold values represent the best values for each criterion among all models. From predictive results,
we can see at a glance that the proposed model has better predictive results and predicted values are
much closer to real values.

These experiments lead to the same conclusion as case study one that the hybrid model
ICEEMDAN-WOA-ELM is superior to all listed benchmark models. For example, for the PM10

forecast in Tianjin and Shijiazhuang, four metric values (MAE, RMSE, MAPE, TIC) of the proposed
hybrid model are 3.9662, 5.3299, 7.8186, 0.0471 and 6.3997, 8.9303, 8.9955, 0.0613, respectively, which
are much lower than that of other models, and the same is true for other pollutants. Overall, different
denoising methods and optimization algorithms lead to the large gaps in predictive performance.
Obviously, the model has great accuracy, stability, applicability and can be well adapted to various
pollutants under different environments.Int. J. Environ. Res. Public Health 2019, 16, x 15 of 24 
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Four typical evaluation indicators (MAE, RMSE, MAPE and TIC) were used to measure the
performance of all models. The hybrid model ICEEMDAN-WOA-ELM performs best for it has
the greatest evaluation criteria. Through these experiments, we can reasonably draw following
conclusions: data preprocessing algorithm and optimization algorithm can significantly improve the
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predictive performance of the model. The proposed model with excellent predictive performance will
be the bedrock of establishing air quality early-warning system. In addition, for their universality,
these methods can be combined with some basic models to meet the needs of other research fields.
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Table 5. Predictive effectiveness (Tianjin). 

Pollutant Criterion ARIMA GRNN ELM 
GA-
ELM 

WOA-
ELM 

EEMD-
WOA-ELM 

ICCEMDAN-
WOA-ELM 

PM2.5 

MAE 11.1395 23.9600 18.3412 15.6653 13.1864 9.4036 3.6645 
RMSE 14.0459 26.7422 21.0818 18.2338 16.4877 12.6058 4.6569 
MAPE 54.9751 136.5288 106.1613 88.4899 72.3501 46.5237 14.3900 

TIC 0.2005 0.2982 0.2546 0.2276 0.2131 0.1743 0.0669 

PM10 

MAE 12.7673 24.9898 20.4742 17.8837 16.3696 7.4594 3.9662 
RMSE 15.9043 28.5802 24.1671 22.3880 20.5478 9.5307 5.3299 
MAPE 30.3552 65.0635 52.6416 45.1890 42.6398 14.6617 7.8186 

TIC 0.1388 0.2106 0.1837 0.1733 0.1624 0.0844 0.0471 

NO2 

MAE 2.1836 2.5998 2.5202 2.3106 2.1731 1.2511 0.6417 
RMSE 2.7434 3.1492 3.0093 2.8300 2.0674 1.6499 0.7914 
MAPE 30.1119 44.1561 42.9450 37.7425 35.5006 18.3743 9.2402 

TIC 0.1736 0.1765 0.1681 0.1625 0.1528 0.0979 0.0478 

SO2 

MAE 6.3905 8.5673 7.8709 7.8024 7.5693 5.0008 3.4196 
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Figure 9. Daily relative error (Shijiazhuang).
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Table 5. Predictive effectiveness (Tianjin).

Pollutant Criterion ARIMA GRNN ELM GA-ELM WOA-ELM EEMD-WOA
-ELM

ICCEMDAN-
WOA-ELM

PM2.5

MAE 11.1395 23.9600 18.3412 15.6653 13.1864 9.4036 3.6645
RMSE 14.0459 26.7422 21.0818 18.2338 16.4877 12.6058 4.6569
MAPE 54.9751 136.5288 106.1613 88.4899 72.3501 46.5237 14.3900

TIC 0.2005 0.2982 0.2546 0.2276 0.2131 0.1743 0.0669

PM10

MAE 12.7673 24.9898 20.4742 17.8837 16.3696 7.4594 3.9662
RMSE 15.9043 28.5802 24.1671 22.3880 20.5478 9.5307 5.3299
MAPE 30.3552 65.0635 52.6416 45.1890 42.6398 14.6617 7.8186

TIC 0.1388 0.2106 0.1837 0.1733 0.1624 0.0844 0.0471

NO2

MAE 2.1836 2.5998 2.5202 2.3106 2.1731 1.2511 0.6417
RMSE 2.7434 3.1492 3.0093 2.8300 2.0674 1.6499 0.7914
MAPE 30.1119 44.1561 42.9450 37.7425 35.5006 18.3743 9.2402

TIC 0.1736 0.1765 0.1681 0.1625 0.1528 0.0979 0.0478

SO2

MAE 6.3905 8.5673 7.8709 7.8024 7.5693 5.0008 3.4196
RMSE 8.6427 10.9683 9.7383 9.8299 9.3928 6.3693 4.3845
MAPE 19.4000 27.1388 25.8628 25.2229 25.2437 15.8650 10.9658

TIC 0.1268 0.1540 0.1340 0.1364 0.1289 0.0894 0.0619

CO

MAE 0.1690 0.2124 0.1862 0.1830 0.1832 0.1071 0.0613
RMSE 0.2127 0.2645 0.2321 0.2287 0.2244 0.1256 0.0834
MAPE 19.5594 27.9640 23.8661 22.6987 22.4912 12.0626 6.4375

TIC 0.1051 0.1235 0.1105 0.1090 0.1078 0.0624 0.0413

O3

MAE 36.9855 45.531 37.6976 36.3093 33.8067 23.4066 16.9133
RMSE 46.9635 56.3589 48.6523 48.3885 43.7632 29.5649 22.2439
MAPE 39.8767 42.4992 39.7669 38.3299 34.7636 21.4147 14.7261

TIC 0.1606 0.1999 0.1688 0.1689 0.1531 0.1029 0.0779

Bold values represent the best values for each criterion among all models.

Table 6. Predictive effectiveness (Shijiazhuang).

Pollutant Criterion ARIMA GRNN ELM GA-ELM WOA-ELM EEMD-WOA
-LM

ICCEMDAN-
WOA-ELM

PM2.5

MAE 10.4859 21.7164 21.4921 12.7615 12.8217 6.7221 3.6732
RMSE 15.3272 24.7551 24.6503 16.9633 16.8340 8.8484 5.5817
MAPE 30.3538 80.5130 74.7687 41.2516 39.6367 20.4192 9.6500

TIC 0.1944 0.2502 0.2514 0.1952 0.1956 0.1096 0.0708

PM10

MAE 16.0775 32.3695 31.6741 23.5597 22.3872 10.0835 6.3997
RMSE 23.4520 35.6565 35.8119 29.3459 27.5434 13.7531 8.9303
MAPE 25.0404 57.2783 54.0533 39.1774 37.2602 14.7342 8.9955

TIC 0.1601 0.2050 0.2053 0.1772 0.1689 0.0939 0.0613

NO2

MAE 2.5505 4.2360 3.7139 3.6167 2.5586 1.4341 0.8704
RMSE 3.3275 4.7459 4.3104 4.2334 3.3493 1.7469 1.0678
MAPE 20.2175 40.3479 35.7381 34.7040 21.7254 11.6619 6.8435

TIC 0.1263 0.1575 0.1464 0.1445 0.1212 0.0647 0.0402

SO2

MAE 7.0109 8.4042 8.0516 6.9242 6.6580 4.2502 2.9950
RMSE 8.5705 10.1475 9.6071 8.5093 8.3986 5.0193 3.3823
MAPE 21.1643 31.5203 28.5835 24.0445 23.3857 13.7525 9.2431

TIC 0.1170 0.1279 0.1227 0.1111 0.1087 0.0662 0.0448

CO

MAE 0.1537 0.2320 0.1770 0.1716 0.1633 0.0992 0.0469
RMSE 0.2132 0.2621 0.2340 0.2384 0.2231 0.1477 0.0606
MAPE 18.9156 30.0013 23.5163 22.4597 21.4932 13.6973 5.8451

TIC 0.1255 0.1421 0.1289 0.1330 0.1251 0.0836 0.0351

O3

MAE 33.2598 36.6192 34.486 33.1336 32.2717 18.0171 13.3396
RMSE 41.6933 44.6073 42.289 41.2401 40.1199 22.4609 17.9202
MAPE 36.7295 35.1486 36.6671 35.9133 34.2240 18.2649 12.8219

TIC 0.1531 0.1663 0.1570 0.1508 0.1485 0.0842 0.0675

Bold values represent the best values for each criterion among all models.
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3.4.3. Diebold-Mariano Test

In this section, Diebold-Mariano test was used to examine the effectiveness of the proposed hybrid
model. DM test is employed to test under which circumstance an experiment will enable us to reject
null hypothesis at a given significance level. The detailed description of DM test is presented in
Section 3.3. The null hypothesis (Equation (22)) here is that there is no significant difference between
the two models. Table 7 shows the DM test statistic value based on the MAE (Equation (18)) function.
The DM values from all models are greater than the upper limits at the 1% significance level, which
reflects that the proposed hybrid model significantly outperforms other comparison models.

Table 7. Diebold-Mariano test of seven models.

Model DM Value

ARIMA 4.490165 *
GRNN 6.575409 *
ELM 6.162329 *

GA-ELM 5.093331 *
WOA-ELM 4.742791 *

EEMD-WOA-ELM 3.587006 *
ICEEMDAN-WOA-ELM -

* Denotes the 1% significance level.

3.5. Fuzzy Comprehensive Evaluation of Air Quality

In this section, predicted data of September 2018 were used for fuzzy comprehensive evaluation
and further analysis. This work could visualize the predicted results of three cities. Limited by
the length of paper, we had to take only the results of twenty days in September 2018 as examples
which included evaluation results based on predicted and actual value as comparison to get the
accuracy of the model in level forecast. Firstly, according to the methodology of fuzzy comprehensive
evaluation described in Section 2.4, the evaluation set V = {I, II, III, IV, V} was established. Secondly,
the membership degree of each factor to each evaluation level was calculated by the membership
degree formula, and the fuzzy matrix R was established. Thirdly, the weight of pollution factor
value calculated by multi-scale weighting method was an index to measure the relative degree of
environmental hazards which greatly affected the evaluation result. Finally, according to the fuzzy
matrix and weight index, the membership degree of evaluation level and air quality level were
obtained. Evaluation results of Beijing are shown in Table 8. Taking the result of one day (01/09/2018)
as an example, the probability of air quality as “I” is 0.3759, and the probability of “II”, “III”, “IV”
and “V” are 0.3409, 0, 0 and 0 respectively. According to the principle of maximum membership
degree, the comprehensive evaluation level of air quality should be “I” and the corresponding category
is “Excellent”.

The consistency ratio of the two results in Beijing is 27/30 (90%), which not only shows the
high accuracy of the proposed hybrid model in level forecast but also indirectly proves predicted
concentration data are so accurate that they can fully satisfy the need of air quality early warning. Using
the same algorithm, the fuzzy comprehensive evaluation of air quality for Tianjin and Shijiazhuang
were conducted and the results are shown in Tables 9 and 10. Overall, the evaluation results are
basically same in these two cities. The consistency rates in Tianjin and Shijiazhuang are 26/30 (87%)
and 30/30 (100%), respectively.
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Table 8. Air quality evaluation results of Beijing.

Date
Predicted Value Actual Value

I II III IV V Level I II III IV V Level

2018/9/1 0.3759 0.3409 0 0 0 I 0.2879 0.3823 0 0 0 II
2018/9/2 0.3420 0.0630 0 0 0 I 0.3805 0.2167 0 0 0 I
2018/9/3 0.3996 0 0 0 0 I 0.3530 0 0 0 0 I
2018/9/4 0.5586 0.1814 0 0 0 I 0.5055 0 0 0 0 I
2018/9/5 0.5250 0.1205 0 0 0 I 0.4839 0.2333 0 0 0 I
2018/9/6 0.4711 0 0 0 0 I 0.4105 0 0 0 0 I
2018/9/7 0.5059 0 0 0 0 I 0.5125 0 0 0 0 I
2018/9/8 0.4855 0 0 0 0 I 0.4675 0 0 0 0 I
2018/9/9 0.4009 0.4009 0 0 0 I 0.3962 0.3962 0 0 0 I

2018/9/10 0.3367 0.3367 0 0 0 I 0.3067 0.3067 0 0 0 I
2018/9/11 0.3363 0.3363 0 0 0 I 0.3377 0.3377 0 0 0 I
2018/9/12 0.3094 0.3398 0.0035 0 0 II 0.2744 0.3885 0.0727 0 0 II
2018/9/13 0.1892 0.3649 0.2231 0 0 II 0.2123 0.3418 0.1818 0 0 II
2018/9/14 0.2579 0.3874 0.2620 0 0 II 0.2174 0.3750 0.3894 0 0 III
2018/9/15 0.3459 0.1011 0 0 0 I 0.3840 0 0 0 0 I
2018/9/16 0.4600 0 0 0 0 I 0.4532 0 0 0 0 I
2018/9/17 0.3094 0.0540 0 0 0 I 0.3267 0.0250 0 0 0 I
2018/9/18 0.2673 0.2636 0 0 0 I 0.2722 0.2500 0 0 0 I
2018/9/19 0.2867 0.2427 0 0 0 I 0.2755 0.2749 0 0 0 I
2018/9/20 0.3129 0.0907 0 0 0 I 0.2954 0.2954 0 0 0 I
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Table 9. Air quality evaluation results of Tianjin.

Date
Predicted Value Actual Value

I II III IV V Level I II III IV V Level

2018/9/1 0.3742 0.4024 0 0 0 II 0.3873 0.3000 0 0 0 I
2018/9/2 0.3429 0.2484 0 0 0 I 0.3369 0.2500 0 0 0 I
2018/9/3 0.3899 0.3899 0 0 0 I 0.3286 0.0833 0 0 0 I
2018/9/4 0.4165 0.4944 0 0 0 II 0.4933 0.1167 0 0 0 I
2018/9/5 0.4325 0.4325 0 0 0 I 0.4160 0.4160 0 0 0 I
2018/9/6 0.3855 0.0981 0 0 0 I 0.3448 0.1900 0 0 0 I
2018/9/7 0.4138 0 0 0 0 I 0.4372 0 0 0 0 I
2018/9/8 0.3991 0 0 0 0 I 0.3970 0 0 0 0 I
2018/9/9 0.4137 0.3976 0 0 0 I 0.3833 0.4446 0 0 0 II

2018/9/10 0.2117 0.4074 0 0 0 II 0.2050 0.4109 0.1273 0 0 II
2018/9/11 0.2155 0.4149 0.1949 0 0 II 0.2090 0.4366 0.2727 0 0 II
2018/9/12 0.2329 0.3903 0.2889 0 0 II 0.2423 0.3796 0.1091 0 0 II
2018/9/13 0.2748 0.3510 0.3495 0 0 II 0.2624 0.3427 0.3091 0 0 II
2018/9/14 0.3118 0.3118 0 0 0 I 0.2174 0.3261 0.0727 0 0 II
2018/9/15 0.3053 0.0750 0 0 0 I 0.3111 0.0800 0 0 0 I
2018/9/16 0.2726 0.1214 0 0 0 I 0.3342 0.0750 0 0 0 I
2018/9/17 0.2436 0.2089 0 0 0 I 0.2807 0.2512 0 0 0 I
2018/9/18 0.3321 0.3321 0 0 0 I 0.2924 0.2250 0 0 0 I
2018/9/19 0.3263 0.4014 0 0 0 II 0.1878 0.4159 0 0 0 II
2018/9/20 0.3211 0.2638 0 0 0 I 0.3070 0.2000 0 0 0 I
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Table 10. Air quality evaluation results of Shijiazhuang.

Date
Predicted Value Actual Value

I II III IV V Level I II III IV V Level

2018/9/1 0.3760 0.3359 0 0 0 I 0.4052 0.4000 0 0 0 I
2018/9/2 0.2113 0.4302 0 0 0 II 0.2326 0.4248 0.2000 0 0 II
2018/9/3 0.3602 0.1608 0 0 0 I 0.3749 0.2000 0 0 0 I
2018/9/4 0.3898 0.0818 0 0 0 I 0.4083 0.0500 0 0 0 I
2018/9/5 0.3464 0.0377 0 0 0 I 0.3453 0.1833 0 0 0 I
2018/9/6 0.3377 0.1469 0 0 0 I 0.3175 0.2300 0 0 0 I
2018/9/7 0.3980 0 0 0 0 I 0.4072 0 0 0 0 I
2018/9/8 0.4098 0.2360 0 0 0 I 0.3883 0.2333 0 0 0 I
2018/9/9 0.2982 0.3537 0 0 0 II 0.2500 0.3614 0 0 0 II

2018/9/10 0.2602 0.3283 0 0 0 II 0.2654 0.3243 0.0364 0 0 II
2018/9/11 0.2729 0.3297 0 0 0 II 0.2821 0.3100 0 0 0 II
2018/9/12 0.3150 0.3306 0 0 0 II 0.2610 0.3448 0 0 0 II
2018/9/13 0.2704 0.2704 0 0 0 I 0.2543 0.2400 0 0 0 I
2018/9/14 0.2224 0.3135 0 0 0 II 0.1821 0.3227 0.1750 0 0 II
2018/9/15 0.2477 0.3391 0 0 0 II 0.3245 0.3619 0 0 0 II
2018/9/16 0.2830 0.2830 0 0 0 I 0.2842 0.2842 0 0 0 I
2018/9/17 0.2858 0.2087 0 0 0 I 0.2998 0.2998 0 0 0 I
2018/9/18 0.3047 0.2141 0 0 0 I 0.2622 0.2168 0 0 0 I
2018/9/19 0.3170 0.2195 0 0 0 I 0.3291 0.2131 0 0 0 I
2018/9/20 0.2597 0.2129 0 0 0 I 0.2451 0.2197 0 0 0 I
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Therefore, the evaluation method can effectively link the pollutant concentration prediction with
air quality early warning. Nevertheless, precise predictions of pollutant concentration and air quality
level are not enough, because achievements of scientific research are expected to truly serve the society.
Further work can be performed based on former research which means more intuitive air quality
information can be released and public alarms can be issued. Therefore, an air pollution early-warning
handbook was compiled and details are shown in Table 11. This work can not only guide people’s
daily activities against air pollution but also provide decision-making support for government such
as evaluate whether the air quality of a city meets the criteria or which temporary but mandatory
measures should be taken to address potential air pollution problems.

Table 11. Air pollution early-warning handbook.

Level Category Color Condition Measure

I excellent green satisfactory air quality Outdoor activities are suitable for all people.

II good blue acceptable air quality The very few abnormally sensitive people should reduce
outdoor activities.

III moderate yellow
mild pollution is
unhealthy to sensitive
people

Sensitive people including children, the elderly and
patients with respiratory tract, cardiovascular and
cerebrovascular diseases should reduce outdoor
activities. Public transportation is recommended for
travel.

IV poor red moderate pollution is
unhealthy to all people

Sensitive people should avoid outdoor activities which
also need to be reduced by general people. Prefer public
transportation and reduce construction and traffic dust.

V hazardous purple heavy pollution is
hazardous to all people

Besides above measures, road flushing and cleaning,
suspension of large-scale open-air activities, outdoor
personnel wear masks are all needed.

Tips: six major air pollutants include PM2.5, PM10, NO2, SO2, CO and O3. It is necessary to know
their characteristics:

• PM2.5: namely fine particulate matter, particle size less than or equal to 2.5 µm, it has smaller size,
larger area, stronger activity, easier to attach toxic and harmful substances, longer residence time
and transportation distance in atmosphere which mean more harmful to human health and air
quality than PM10, can enter bronchioles and alveoli causing cardiopulmonary disease and even
lung cancer.

• PM10: namely inhalable particulate matter, particle size less than or equal to 10 µm, can reduce
the atmospheric visibility, enter upper respiratory tract causing respiratory disease.

• NO2: rufous and irritating odor, can promote acid rain and ozone, damage respiratory tract.
• SO2: colorless and irritating odor, can be oxidized into sulfuric acid mist (acid rain) or sulfate

aerosol, cause respiratory diseases and cancer.
• CO: colorless and tasteless, mainly from uncompleted combustion, cause suffocation even death.
• O3: light blue with special odor, major constituent of photochemical smog, damage human mucosa

and respiratory tract.

4. Conclusions

Air pollution is a long-standing problem that plagues the whole world, seriously harming human
health, social development and natural environment. In order to solve this problem, a great deal of
manpower and material resources have been invested, but unfortunately the results are not satisfactory
enough. There is always a way and the rapid development of artificial intelligence in recent years has
brought new hope for air pollution control. This proposed air quality early-warning system is hoped
to play a key role in future for its accuracy and effectiveness. This system mainly consists of two parts:
prediction model and evaluation model.
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In order to establish the prediction model, ELM, which is famous for accuracy and robustness,
was employed. Taking ELM as the core, a hybrid model ICEEMDAN-WOA-ELM was proposed.
Firstly, according to the theory of “decomposition and integration”, the original time series of pollutant
concentration were decomposed into IMFs by decomposition algorithm (ICEEMDAN). Secondly,
the ELM optimized by WOA was used to predict each IMF. Finally, all the predictive results were
combined to get the final predictive result. In this study, six main air pollutants PM2.5, PM10, NO2, SO2,
CO and O3 in Beijing, Tianjin and Shijiazhuang were chosen. This proposed prediction model was
used to predict air pollutant concentrations and compare with the six benchmark models including
ARMA, GRNN, ELM, GA-ELM, WOA-ELM and EEMD-WOA-ELM. The simulation results showed
that the proposed ICEEMDAN-WOA-ELM model was superior to other models and ICEEMDAN
decomposition algorithm along with WOA optimization algorithm played important roles in improving
the prediction accuracy of neural network.

In addition to prediction of air pollutant concentration, air quality evaluation was an indispensable
part of the air early warning system. For the sake of understanding the future state of air, air quality was
evaluated with the above predicted data by fuzzy comprehensive evaluation. The evaluation results
were satisfactory enough compared with the actual status, which means our proposed evaluation
model can meet the requirement of early warning. Furthermore, air pollution early-warning handbook
was compiled to provide the public with intuitive air quality information and reasonable measures.

The combination of air pollutant prediction and air quality evaluation lays a solid foundation
for the establishment and implementation of air quality early-warning system. The proposed system
can offer us accurate air pollutant concentration prediction, correct air quality evaluation, reasonable
countermeasures and scientific decision-making support, which means it will become a sharp weapon
for air pollution control and even smart city construction in future.

Author Contributions: Software, Z.Q. and H.L.; validation, X.M. and H.L.; formal analysis, X.M.; investigation,
X.M.; data curation, X.M. and H.L.; writing—original draft preparation, X.M. and H.L; writing—review and
editing, X.M., H.L., Z.Q., and L.Z.; supervision, L.Z.; project administration, L.Z.; funding acquisition, L.Z.

Funding: This research was funded by the National Natural Science Foundation of China (grant number 91744311).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kan, H.; Li, X.; Jin, L. Air pollution: A global problem needs local fixes. Nature 2019, 570, 437–439.
2. Gardiner, B. Choked: Life and Breath in the Age of Air Pollution; University of Chicago Press: Chicago, IL,

USA, 2019.
3. Zhang, H.; Zhang, W.; Palazoglu, A.; Sun, W. Prediction of ozone levels using a hidden markov model

(HMM) with gamma distribution. Atmos. Environ. 2012, 62, 64–73. [CrossRef]
4. Konovalov, I.B.; Beekmann, M.; Meleux, F.; Dutot, A.; Foret, G. Combining deterministic and statistical

approaches for PM10 forecasting in europe. Atmos. Environ. 2009, 43, 6425–6434. [CrossRef]
5. Maher Elbayoumi, M.; Ramli, N.A.; Yusof, N.F.F.M.; Yahaya, A.S.B.; Al Madhoun, W.; Ul-Saufie, A.Z.

Multivariate methods for indoor PM10 and PM2.5 modelling in naturally ventilated schools buildings.
Atmos. Environ. 2014, 94, 11–21. [CrossRef]

6. Jian, L.; Zhao, Y.; Zhu, Y.-P.; Zhang, M.-B.; Bertolatti, D. An application of ARIMA model to predict submicron
particle concentrations from meteorological factors at a busy roadside in Hangzhou, China. Sci. Total Environ.
2012, 426, 336–345. [CrossRef] [PubMed]

7. Pai, T.-Y.; Ho, C.-L.; Chen, S.-W.; Lo, H.-M.; Sung, P.-J.; Lin, S.-W.; Lai, W.-J.; Tseng, S.-C.; Ciou, S.-P.; Kuo, J.-K.;
et al. Using seven types of GM (1, 1) model to forecast hourly particulate matter concentration in Banciao city
of Taiwan. Water Air Soil Pollut. 2011, 217, 25–33. [CrossRef]

8. Sun, W.; Zhang, H.; Palazoglu, A.; Singh, A.; Zhang, W.; Liu, S. Prediction of 24-hour-average PM2.5

concentrations using a hidden Markov model with different emission distributions in Northern California.
Sci. Total Environ. 2013, 443, 93–103. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.atmosenv.2012.08.008
http://dx.doi.org/10.1016/j.atmosenv.2009.06.039
http://dx.doi.org/10.1016/j.atmosenv.2014.05.007
http://dx.doi.org/10.1016/j.scitotenv.2012.03.025
http://www.ncbi.nlm.nih.gov/pubmed/22522077
http://dx.doi.org/10.1007/s11270-010-0564-0
http://dx.doi.org/10.1016/j.scitotenv.2012.10.070
http://www.ncbi.nlm.nih.gov/pubmed/23178893


Int. J. Environ. Res. Public Health 2019, 16, 3505 24 of 25

9. Byun, D.; Schere, K.L. Review of the governing equations, computational algorithms, and other components
of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl. Mech. Rev. 2006, 59,
51–77. [CrossRef]

10. Liu, S.; Zhu, C.; Tian, H.; Wang, Y.; Zhang, K.; Wu, B.; Liu, X.; Hao, Y.; Liu, W.; Bai, X.; et al. Spatiotemporal
Variations of Ambient Concentrations of Trace Elements in a Highly Polluted Region of China. J. Geophys.
Res. Atmos. 2019, 124, 4186–4202. [CrossRef]

11. Yuan, T.; Chen, S.; Huang, J.; Zhang, X.; Luo, Y.; Ma, X.; Zhang, G. Sensitivity of simulating a dust storm
over Central Asia to different dust schemes using the WRF-Chem model. Atmos. Environ. 2019, 207, 16–29.
[CrossRef]

12. Chen, X.; Yang, W.; Wang, Z.; Li, J.; Hu, M.; An, J.; Wu, Q.; Wang, Z.; Chen, H.; Wei, Y.; et al. Improving new
particle formation simulation by coupling a volatility-basis set (VBS) organic aerosol module in NAQPMS+

APM. Atmos. Environ. 2019, 204, 1–11. [CrossRef]
13. Sánchez, A.S.; Nieto, P.J.G.; Fernández, P.R.; del Coz Díaz, J.J.; Iglesias-Rodríguez, F.J. Application of

an SVM-based regression model to the air quality study at local scale in the Avilés urban area (Spain).
Math. Comput. Model. 2011, 54, 1453–1466. [CrossRef]

14. Metaxiotis, K.; Kagiannas, A.; Askounis, D.; Psarras, J. Artificial intelligence in short term electric load
forecasting: A state-of-the-art survey for the researcher. Energy Convers. Manag. 2003, 44, 1525–1534.
[CrossRef]

15. Paschalidou, A.K.; Karakitsios, S.; Kleanthous, S.; Kassomenos, P.A. Forecasting hourly PM10 concentration
in Cyprus through artificial neural networks and multiple regression models: Implications to local
environmental management. Environ. Sci. Pollut. Res. 2011, 18, 316–327. [CrossRef] [PubMed]

16. Wu, S.; Feng, Q.; Du, Y.; Li, X. Artificial Neural Network Models for Daily PM10 Air Pollution Index Prediction
in the Urban Area of Wuhan, China. Environ. Eng. Sci. 2011, 28, 357–363. [CrossRef]

17. Fisher, B. Fuzzy environmental decision-making: Applications to air pollution. Atmos. Environ. 2003, 37,
1865–1877. [CrossRef]

18. Klir, G.J.; Yuan, B. Fuzzy Sets and Fuzzy Logic: Theory and Applications; Prentice Hall: Upper Saddle River, NJ,
USA, 1995; p. 563.
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