Multidrug-Resistant Escherichia coli, Klebsiella pneumoniae and Staphylococcus spp. in Houseflies and Blowflies from Farms and Their Environmental Settings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Flies
2.2. Bacterial Isolation and Antimicrobial Susceptibility Testing
2.3. Extraction of Nucleic Acids from Flies and Bacterial Isolates
2.4. Universal Bacterial qPCR
2.5. Whole Genome Sequencing
2.6. Statistical Analysis
3. Results
3.1. Sampling
3.2. Prevalence of Antimicrobial Resistance Isolates
3.3. Identification of ESBL-Producing E. Coli and K. Pneumoniae
3.4. Relative Abundance of Bacteria and Antimicrobial-Resistant Bacteria in Houseflies and Blowflies
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hoelzer, K.; Wong, N.; Thomas, J.; Talkington, K.; Jungman, E.; Coukell, A. Antimicrobial drug use in food-producing animals and associated human health risks: What, and how strong, is the evidence? BMC Vet. Res. 2017, 13, 211. [Google Scholar]
- Wallinga, D.; Burch, D.G. Does adding routine antibiotics to animal feed pose a serious risk to human health? BMJ 2013, 347, f4214. [Google Scholar] [PubMed]
- Spellberg, B.; Blaser, M.; Guidos, R.J.; Boucher, H.W.; Bradley, J.S.; Eisenstein, B.I.; Gerding, D.; Lynfield, R.; Reller, L.B.; Rex, J.; et al. Combating antimicrobial resistance: Policy recommendations to save lives. Clin. Infect. Dis. 2011, 52, S397–S428. [Google Scholar] [PubMed]
- Courtice, R.; Sniatynski, M.; Rubin, J.E. Antimicrobial resistance and beta-lactamase production of Escherichia coli causing canine urinary tract infections: Passive surveillance of laboratory isolates in Saskatoon, Canada, 2014. Can. Vet. J. 2016, 57, 1166–1168. [Google Scholar] [PubMed]
- Murphy, C.; Reid-Smith, R.J.; Prescott, J.F.; Bonnett, B.N.; Poppe, C.; Boerlin, P.; Weese, J.S.; Janecko, N.; McEwen, S.A. Occurrence of antimicrobial resistant bacteria in healthy dogs and cats presented to private veterinary hospitals in southern Ontario: A preliminary study. Can. Vet. J. 2009, 50, 1047–1053. [Google Scholar] [PubMed]
- Davis, J.A.; Jackson, C.R.; Fedorka-Cray, P.J.; Barrett, J.B.; Brousse, J.H.; Gustafson, J.; Kucher, M. Carriage of methicillin-resistant staphylococci by healthy companion animals in the US. Lett. Appl. Microbiol. 2014, 59, 1–8. [Google Scholar] [PubMed]
- AVMA Task Force for Antimicrobial Stewardship in Companion Animal Practice. Antimicrobial stewardship in companion animal practice. J. Am. Vet. Med. Assoc. 2015, 246, 287–288. [Google Scholar]
- Tacconelli, E.; Sifakis, F.; Harbarth, S.; Schrijver, R.; van Mourik, M.; Voss, A.; Sharland, M.; Rajendran, N.B.; Rodríguez-Baño, J.; EPI-Net COMBACTE-MAGNET Group. Surveillance for control of antimicrobial resistance. Lancet Infect. Dis. 2018, 18, e99–e106. [Google Scholar] [PubMed] [Green Version]
- Mather, A.E.; Reeve, R.; Mellor, D.J.; Matthews, L.; Reid-Smith, R.J.; Dutil, L.; Haydon, D.T.; Reid, S.W. Detection of rare antimicrobial resistance profiles by active and passive surveillance approaches. PLoS ONE 2016, 11, e0158515. [Google Scholar] [CrossRef]
- Karp, B.E.; Tate, H.; Plumblee, J.R.; Dessai, U.; Whichard, J.M.; Thacker, E.L.; Hale, K.R.; Wilson, W.; Friedman, C.R.; Griffin, P.M.; et al. National Antimicrobial Resistance Monitoring System: Two decades of advancing public health through integrated surveillance of antimicrobial resistance. Foodborne Pathog. Dis. 2017, 14, 545–557. [Google Scholar]
- De Jong, A.; Simjee, S.; Garch, F.E.; Moyaert, H.; Rose, M.; Youala, M.; Dry, M.; Group, E.S. Antimicrobial susceptibility of enterococci recovered from healthy cattle, pigs and chickens in nine EU countries (EASSA Study) to critically important antibiotics. Vet. Microbiol. 2018, 216, 168–175. [Google Scholar] [PubMed]
- Johnson, A.P. Surveillance of antibiotic resistance. Philos. Trans. R Soc. Lond B Biol. Sci. 2015, 370, 20140080. [Google Scholar] [PubMed]
- Zurek, L.; Ghosh, A. Insects represent a link between food animal farms and the urban environment for antibiotic resistance traits. Appl. Environ. Microbiol. 2014, 80, 3562–3567. [Google Scholar] [PubMed]
- Xu, Y.; Tao, S.; Hinkle, N.; Harrison, M.; Chen, J. Salmonella, including antibiotic resistant Salmonella, from flies captured from cattle farms in Georgia, U.S.A. Sci. Total Environ. 2018, 616–617, 90–96. [Google Scholar] [PubMed]
- Resh, V.H.; Carde, R. Encyclopedia of Insects, 2nd ed; Academic Press: Waltham, MA, USA, 2009. [Google Scholar]
- Clinical and Laboratory Standard Institute (CLSI). Document VET01-A4. In Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacterial Isolated from Animals; Approved Standard-Fourth Edition; Wayne: Harrisburg, PA, USA, 2013. [Google Scholar]
- Chen, Q.; Gauger, P.C.; Stafne, M.R.; Thomas, J.T.; Madson, D.M.; Huang, H.; Zheng, Y.; Li, G.; Zhang, J. Pathogenesis comparison between the United States porcine epidemic diarrhoea virus prototype and S-INDEL-variant strains in conventional neonatal piglets. J. Gen. Virol. 2016, 97, 1107–1121. [Google Scholar] [PubMed] [Green Version]
- Gupta, S.K.; Padmanabhan, B.R.; Diene, S.M.; Lopez-Rojas, R.; Kempf, M.; Landraud, L.; Rolain, J.M. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob. Agents Chemother. 2014, 58, 212–220. [Google Scholar] [PubMed]
- Onwugamba, F.C.; Fitzgerald, J.R.; Rochon, K.; Guardabassi, L.; Alabi, A.; Kühne, S.; Grobusch, M.P.; Schaumburg, F. The role of ‘filth flies’ in the spread of antimicrobial resistance. Travel Med. Infect. Dis. 2018, 22, 8–17. [Google Scholar]
- Graczyk, T.K.; Knight, R.; Gilman, R.H.; Cranfield, M.R. The role of non-biting flies in the epidemiology of human infectious diseases. Microbes Infect. 2001, 3, 231–235. [Google Scholar] [PubMed]
- Ahmad, A.; Ghosh, A.; Schal, C.; Zurek, L. Insects in confined swine operations carry a large antibiotic resistant and potentially virulent enterococcal community. BMC Microbiol. 2011, 11, 23. [Google Scholar] [CrossRef]
- Schaumburg, F.; Onwugamba, F.C.; Akulenko, R.; Peters, G.; Mellmann, A.; Köck, R.; Becker, K. A geospatial analysis of flies and the spread of antimicrobial resistant bacteria. Int. J. Med. Microbiol. 2016, 306, 566–571. [Google Scholar]
- Fukuda, A.; Usui, M.; Okubo, T.; Tamura, Y. Horizontal transfer of plasmid-mediated cephalosporin resistance genes in the intestine of houseflies (Musca domestica). Microb. Drug. Resist. 2016, 22, 336–341. [Google Scholar] [PubMed]
- Nayduch, D.; Cho, H.; Joyner, C. Staphylococcus aureus in the house fly: Temporospatial fate of bacteria and expression of the antimicrobial peptide defensin. J. Med. Entomol. 2013, 50, 171–178. [Google Scholar] [PubMed]
- Tadesse, D.A.; Zhao, S.; Tong, E.; Ayers, S.; Singh, A.; Bartholomew, M.J.; McDermott, P.F. Antimicrobial drug resistance in Escherichia coli from humans and food animals, United States, 1950–2002. Emerg. Infect. Dis. 2012, 18, 741–749. [Google Scholar] [PubMed]
- Liu, X.; Thungrat, K.; Boothe, D.M. Occurrence of OXA-48 Carbapenemase and Other β-Lactamase Genes in ESBL-Producing Multidrug Resistant Escherichia coli from Dogs and Cats in the United States, 2009–2013. Front. Microbiol. 2016, 7, 1057. [Google Scholar] [CrossRef] [PubMed]
- Bortolaia, V.; Hansen, K.H.; Nielsen, C.A.; Fritsche, T.R.; Guardabassi, L. High diversity of plasmids harbouring blaCMY-2 among clinical Escherichia coli isolates from humans and companion animals in the upper Midwestern USA. J. Antimicrob. Chemother. 2014, 69, 1492–1496. [Google Scholar] [Green Version]
- Blaak, H.; Hamidjaja, R.A.; van Hoek, A.H.; de Heer, L.; de Roda Husman, A.M.; Schets, F.M. Detection of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli on flies at poultry farms. Appl. Environ. Microbiol. 2014, 80, 239–246. [Google Scholar] [PubMed]
Location (n/N) | E. coli | K. pneumoniae | CoNS | S. aureus | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | Resistant | MDR | Total | Resistant | MDR | Total | Resistant | MDR | Total | Resistant | MDR | |
Dairy unit (40/81) | 16 | 12 | 10 | 10 | 2 | 1 | 27 | 18 | 1 | 0 | 0 | 0 |
Kennel (27/58) | 10 | 6 | 3 | 2 | 1 | 1 | 9 | 5 | 0 | 0 | 0 | 0 |
Poultry farm (40/58) | 25 | 6 | 1 | 6 | 1 | 1 | 34 | 18 | 0 | 0 | 0 | 0 |
Beef unit (29/101) | 14 | 1 | 1 | 4 | 0 | 0 | 24 | 3 | 0 | 0 | 0 | 0 |
Trash truck (41/84) | 12 | 4 | 1 | 11 | 0 | 0 | 24 | 2 | 0 | 3 | 2 | 1 |
City area (44/101) | 7 | 1 | 0 | 4 | 0 | 0 | 7 | 0 | 0 | 1 | 1 | 0 |
Location (# of Isolates) | AMP | AMC | CAZ | CPD | AMK | GEN | STR | TET | DOX | CHL | CIP | SMX/TMP | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S | I | R | S | I | R | S | I | R | S | R | S | S | I | R | S | I | R | S | R | S | I | R | S | R | S | I | R | |
Dairy unit (16) | 11 | 5 | 15 | 1 | 16 | 16 | 16 | 16 | 5 | 1 | 10 | 4 | 12 | 6 | 2 | 8 | 7 | 9 | 16 | 1 | ||||||||
Kennel (10) | 6 | 4 | 7 | 3 | 8 | 2 | 8 | 2 | 10 | 10 | 5 | 4 | 1 | 9 | 1 | 9 | 1 | 9 | 1 | 10 | 2 | |||||||
Poultry farm (28) | 26 | 2 | 27 | 1 | 27 | 1 | 27 | 1 | 28 | 24 | 1 | 3 | 24 | 1 | 3 | 25 | 3 | 25 | 1 | 2 | 28 | 28 | 3 | |||||
Beef unit (14) | 13 | 1 | 13 | 1 | 14 | 14 | 14 | 14 | 13 | 1 | 13 | 1 | 13 | 1 | 13 | 1 | 14 | |||||||||||
Trash truck (12) | 9 | 1 | 2 | 12 | 12 | 12 | 12 | 11 | 1 | 8 | 2 | 2 | 11 | 1 | 11 | 1 | 12 | 12 | 1 | |||||||||
City area (7) | 6 | 1 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | ||||||||||||||||
Total (87) | 71 | 1 | 15 | 81 | 2 | 4 | 84 | 1 | 2 | 84 | 3 | 87 | 82 | 1 | 4 | 62 | 9 | 16 | 69 | 18 | 71 | 4 | 12 | 76 | 11 | 87 | 1 | 6 |
Location (# of Isolates) | AMP | AMC | OXA | CAZ | CPD | AMK | GEN | STR | TET | DOX | CHL | CIP | SMX/TMP | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S | R | S | S | S | S | S | S | S | S | R | S | I | R | S | I | R | S | S | I | R | |
Dairy unit (35) | 34 | 1 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 19 | 16 | 20 | 11 | 4 | 26 | 1 | 8 | 35 | 34 | 1 | |
Kennel (9) | 6 | 3 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 7 | 2 | 7 | 2 | 9 | 9 | 8 | 1 | ||||
Poultry farm (38) | 27 | 11 | 38 | 38 | 38 | 38 | 38 | 38 | 38 | 27 | 11 | 17 | 5 | 5 | 38 | 38 | 38 | 1 | |||
Beef Unit (32) | 31 | 1 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 29 | 3 | 29 | 3 | 32 | 32 | 32 | |||||
Trash truck (30) | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 29 | 1 | 29 | 1 | 30 | 30 | 30 | ||||||
City area (9) | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | ||||||||
Total (153) | 137 | 16 | 153 | 153 | 153 | 153 | 153 | 153 | 153 | 120 | 33 | 22 | 9 | 144 | 1 | 8 | 153 | 167 | 2 | 1 |
Isolate | Location (n) | Resistant Phenotype |
---|---|---|
E.coli | Poultry (1) | AMP-AMC-CPD-GEN-STR-TET-SMX/TMP |
E. coli | Trash truck (1) | AMP-GEN-STR-TET-DOX-SMX/TMP |
E. coli | Kennel (2) | AMP-AMC-CAZ-CPD |
S. aureus | Trash truck (1) | AMP-AMC-CFT |
K. pneumoniae | Kennel (1) | AMP-AMC-CPD-GEN |
E. coli | Dairy (3) | AMP-STR-TET-DOX-CHL |
E. coli | Beef (1) | AMP-TET-DOX-CHL |
CoNS | Dairy (1) | |
E. coli | Dairy (1) | |
E. coli | Kennel (1) | AMP-STR-TET-CHL |
E. coli | Dairy (1) | AMP-STR-TET-DOX |
K. pneumoniae | Dairy (1) | AMP-AMC-TET-DOX |
E. coli | Dairy (4) | STR-TET-CHL |
E. coli | Dairy (1) | STR-TET-DOX-CHL |
Isolates | Location | Resistance Pattern | Antimicrobial Resistance Gene |
---|---|---|---|
E. coli | Dairy | AMP-STR-TET-DOX-CHL | blaAMPH, blaAMPC1, blaAMPC2, FloR, blaMRDA, StrA, StrB, SulII, blaTEM-1D, TetA |
E. coli | Kennel | AMP-GEN-STR-DOX-CHL | blaAMPH, blaAMPC1, blaAMPC2, FloR, blaMRDA, StrA, StrB, SulII, blaTEM-1D, TetA |
E. coli | Kennel | AMP-AMC-CAZ-CPD | blaAMPC2, blaCMY-2, blaMRDA |
K. pneumoniae | Kennel | AMP-AMC-CPD-GEN | Aac3-IIa, blaAMPH, blaCTXM-1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poudel, A.; Hathcock, T.; Butaye, P.; Kang, Y.; Price, S.; Macklin, K.; Walz, P.; Cattley, R.; Kalalah, A.; Adekanmbi, F.; et al. Multidrug-Resistant Escherichia coli, Klebsiella pneumoniae and Staphylococcus spp. in Houseflies and Blowflies from Farms and Their Environmental Settings. Int. J. Environ. Res. Public Health 2019, 16, 3583. https://doi.org/10.3390/ijerph16193583
Poudel A, Hathcock T, Butaye P, Kang Y, Price S, Macklin K, Walz P, Cattley R, Kalalah A, Adekanmbi F, et al. Multidrug-Resistant Escherichia coli, Klebsiella pneumoniae and Staphylococcus spp. in Houseflies and Blowflies from Farms and Their Environmental Settings. International Journal of Environmental Research and Public Health. 2019; 16(19):3583. https://doi.org/10.3390/ijerph16193583
Chicago/Turabian StylePoudel, Anil, Terri Hathcock, Patrick Butaye, Yuan Kang, Stuart Price, Kenneth Macklin, Paul Walz, Russell Cattley, Anwar Kalalah, Folesade Adekanmbi, and et al. 2019. "Multidrug-Resistant Escherichia coli, Klebsiella pneumoniae and Staphylococcus spp. in Houseflies and Blowflies from Farms and Their Environmental Settings" International Journal of Environmental Research and Public Health 16, no. 19: 3583. https://doi.org/10.3390/ijerph16193583
APA StylePoudel, A., Hathcock, T., Butaye, P., Kang, Y., Price, S., Macklin, K., Walz, P., Cattley, R., Kalalah, A., Adekanmbi, F., & Wang, C. (2019). Multidrug-Resistant Escherichia coli, Klebsiella pneumoniae and Staphylococcus spp. in Houseflies and Blowflies from Farms and Their Environmental Settings. International Journal of Environmental Research and Public Health, 16(19), 3583. https://doi.org/10.3390/ijerph16193583