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Abstract: Named Entity Recognition (NER) in the healthcare domain involves identifying and
categorizing disease, drugs, and symptoms for biosurveillance, extracting their related properties
and activities, and identifying adverse drug events appearing in texts. These tasks are important
challenges in healthcare. Analyzing user messages in social media networks such as Twitter can
provide opportunities to detect and manage public health events. Twitter provides a broad range
of short messages that contain interesting information for information extraction. In this paper, we
present a Health-Related Named Entity Recognition (HNER) task using healthcare-domain ontology
that can recognize health-related entities from large numbers of user messages from Twitter. For this
task, we employ a deep learning architecture which is based on a recurrent neural network (RNN)
with little feature engineering. To achieve our goal, we collected a large number of Twitter messages
containing health-related information, and detected biomedical entities from the Unified Medical
Language System (UMLS). A bidirectional long short-term memory (BiLSTM) model learned rich
context information, and a convolutional neural network (CNN) was used to produce character-level
features. The conditional random field (CRF) model predicted a sequence of labels that corresponded
to a sequence of inputs, and the Viterbi algorithm was used to detect health-related entities from
Twitter messages. We provide comprehensive results giving valuable insights for identifying medical
entities in Twitter for various applications. The BiLSTM-CRF model achieved a precision of 93.99%,
recall of 73.31%, and F1-score of 81.77% for disease or syndrome HNER; a precision of 90.83%, recall
of 81.98%, and F1-score of 87.52% for sign or symptom HNER; and a precision of 94.85%, recall of
73.47%, and F1-score of 84.51% for pharmacologic substance named entities. The ontology-based
manual annotation results show that it is possible to perform high-quality annotation despite the
complexity of medical terminology and the lack of context in tweets.

Keywords: named entity recognition; healthcare; deep learning; recurrent neural network; word
embedding; ontology; unified medical language system; conditional random field; Twitter

1. Introduction

An overwhelming amount of health-related knowledge has been recorded in social media sites such
as Twitter, with the number of tweets posted each year increasing exponentially [1–3]. Twitter is the most
comprehensive social media site collecting and providing public health information: 500 million tweets
are sent each day—5000 every second. Although a large amount of information is thought to be reliable
for monitoring and analyzing health-related information, the lack of methodological transparency
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for data extraction, processing, and analysis has led to inaccurate predictions in detecting disease
outbreaks, adverse drug events, etc. As a result, health-related text mining and information extraction
are active challenges for the development of useful public health applications for researchers [4–6].
One essential part of developing such an information extraction system is the NER process, which
defines the boundaries between common words in terminology in a particular text, and assigns the
terminology to specific categories based on domain knowledge [7–9].

NER, also known as entity extraction, classifies named entities that are present in a text into
pre-defined categories like “location”, “time”, “person”, “organization”, “money”, “percent”, and
“date”, etc. [10]. An example is as follows: (ORG U.N.) official (PER Ekeus) heads for (LOC Baghdad) [11].
This sentence contains three named entities: Ekeus is a person, the U.N. is an organization, and Baghdad
is a location.

In the traditional NER method based on machine learning, part-of-speech (POS) information is
considered as a key feature of entity recognition [10–13]. In 2016, Lample et al. [7] presented a neural
architecture based on long short-term memory (LSTM) that uses no language-specific resources and
hand-engineered features. They compared the LSTM and conditional random fields (LSTM-CRF)
model and stack LSTM (S-LSTM) model with various NER tasks. The state-of-the-art NER systems for
English produce near-human performance with an F1 score of over 90%. For example, the best system
entering Seventh Message Understanding Conference (MUC-7) in [14] scored 93.39% for the F-measure,
while human annotators scored 97.60% and 96.95%. However, the performances in the healthcare,
biomedical, chemical, and clinical domains are not as good as the performances in the English domain.
They are restricted by problems such as the number of new terms being created on a regular basis, the
lack of standardization of technical terms between authors, and by the fact that technical terms (for
example, disease, drugs, and symptoms) often have multiple names [15]. Consequently, state-of-the-art
NER software (e.g., Stanford NER) is less effective on Twitter NER tasks [9].

Public health research requires the knowledge of disease, drugs, and symptoms. Researchers
focus on exploring population health, well-being, disability, and the determining factors for these
statuses, be they biological, behavioral, social, or environmental. Moreover, researchers develop and
assess interventions aiming to improve population health, prevent disease, compensate for disabilities,
and provide innovations in terms of the organization of health, social, and medical services [16]. The
Internet has revolutionized efficient health-related communication and epidemic intelligence [17].
People are increasingly using the Internet and social media channels. In the modern world of social
media dominance, microblogs like Twitter are probably the best source of up-to-date information.
Twitter provides a huge amount of microblogs, including health information that are completely public
and pullable.

The purpose of the research reported in this paper was to predict health-related named entities
such as diseases, symptoms, and pharmacologic substances from noisy Twitter messages that are
essential for discovering public health information and developing real-time prediction systems with
respect to disease outbreak prediction and drug interactions. To achieve this goal, we employed a deep
learning approach obtaining the pre-trained word embedding which can be used successfully for any
text mining tasks. We collected a large number of Twitter data, and then cleaned and preprocessed
them to produce an experimental dataset. We automatically annotated the dataset using the UMLS
Metathesaurus [18] with three types of entities (diseases, symptoms, and pharmacologic substance).
Our deep learning architecture follows the window approach in [19]. The method we put forward has
a number of desirable advantages:

1. We achieved a precision of 93.99%, recall of 73.31%, and F1-score of 81.77% for disease or syndrome
HNER; a precision of 90.83%, recall of 81.98%, and F1-score of 87.52% for sign or symptom HNER;
and a precision of 94.85%, recall of 73.47%, and F1-score of 84.51% for pharmacologic substance
named entities using the BiLSTM-CRF model.

2. The architecture uses little hand-engineered features using POS tagging. Therefore, it has a great
capability for improving state-of-the-art performances.
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3. We presented a large number of tweets on the HNER task using domain-specific UMLS ontology,
including three health-related entity types (diseases, symptoms, and pharmacologic substance).

4. The health-related domain (including disease, syndrome, sign, symptom, and pharmacologic
substance) was particularly well applied because the BiLSTM-CRF could extract health-related
entities and identify the relationship between them from Twitter messages.

The remainder of the paper is organized as follows: Section 2 introduces the theoretical foundation
of this paper and related works. Section 3 focuses on the detailed description of the experimental
dataset, health-related named entity recognition tasks, and how the deep learning model is trained. In
Section 4, the experimental analysis and the related results are provided. Finally, Section 5 provides a
discussion about the experimental analysis and address our conclusion.

2. Background

2.1. Research Framework

In this paper, we present an HNER task using healthcare-domain ontology. Figure 1 shows the
overflow of HNER task. For the input of the HNER task, we created a healthcare Twitter corpus which
was collected from Twitter with the search term “healthcare” between 12 July 2018 and 12 July 2019.
Firstly, we used the basic preprocessing techniques such as text cleaning including removing hashtags
and Uniform Resource Locators (URLs), removing punctuation, and eliminating multiple white spaces
and text normalization. We used text filtering to avoid a large number of false positives. Only tweets
with the three named entities (“disease”, “symptom”, and “pharmacologic substance”) were kept and
tweets with common non-medical words such as “fit”, “water”, “others”, “may”, and “said” etc., were
removed. Then we used tokenization for the word-level sequence. Secondly, we produced word-level
and character-level features. For word-level features, we used pre-trained word embeddings and POS
tagging methods, and the CNN was used to produce character-level features.
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Additionally, for getting knowledge of healthcare domain ontology, we used UMLS tagging to
create a label for a sequence of inputs. Finally, we integrated all the features and the combinations of the
features for experiments. We split the experimental dataset into training and testing sets. LSTM-CRF
and BiLSTM-CRF models were trained on the training set and evaluated on the testing set. In the scope
of the HNER task, the trained models could recognize medical entities from Twitter data. For example,
given the sequence of input tweet “Last week, President Donald Trump declared the opioid crisis a
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national public health emergency”, NER systems would only recognize the person (Donald Trump)
and fail other health-related entities. For solving this, BiLSTM-CRF model can recognize the medical
entity (opioid crisis) that is required in public health research.

2.2. Related Work

Information extraction is the process of extracting useful information such as the relationship
between entities from unstructured or raw data [20]. This process of extraction of structure from noisy
sources like microblogs (e.g., Twitter) is indeed challenging [21]. For instance, tweets are typically
short. The number of characters in a particular tweet is restricted to 140 characters, and the contextual
information is limited. Recently, various deep learning architectures have been applied to fields
like computer vision, automatic speech recognition, natural language processing, and music/audio
signal recognition, where they have been shown to produce state-of-the-art results on various tasks.
In Natural Language Processing (NLP) tasks including tasks such as NER [10], POS tagging [22],
Semantic Role Labeling [23], Dependency Parsing [24], Sentiment analysis [25], and Web Search,
etc., this is particularly true [20,26]. In BioNLP [27–29] tasks, deep learning techniques have been
studied successfully [30,31]. These advances in deep learning have inspired novel approaches for
a better understanding of healthcare. Deep learning models have been demonstrated to provide
a significant improvement in predictive modelling when resuming the properties and activities of
disease, symptoms, and drug discovery [32–34].

Over the last few years, a number of deep learning architectures have been proposed in the
biomedical and chemical NER field. There is a lack of deep learning methods for health-related NER
tasks from social media sites like Twitter. Mainly the approaches cover the CNN [35–37], the recurrent
neural network (RNN) [32,38,39], and the combination of the two architectures (CNN-RNN [40]).
Nowadays, NER approaches struggle with generalization problems in specific fields. Convolutional
neural network models generally capture local features that are hard to solve. That is why the combined
CNN-RNN [40] model has been proposed for generalization. Recently, LSTM, a particular case of the
RNN model, has been successfully developed in NLP and biomedical text mining tasks. LSTM with
CRF [32,38] models have achieved the improved results in the biomedical named entity recognition
task. Very recently, an advanced deep neural network type called BiLSTM has increasingly been
employed in studies of biomedical NER, yielding state-of-the-art performance at the time of their
publication [32,38,41–43]. Moreover, the attention-based BiLSTM-CRF model is proposed as well to
capture similar entity attention at the document level [44]. One of the well-known deep learning-related
methods is word embeddings.

Word embedding [45] is a function to map words to high-dimensional vectors. At present, a
neural network is one of the most-used learning techniques for generating word embedding [46]. Word
embedding helps to understand how different words are related based on the context. In healthcare,
mapping of biomedical entities into a representation space is used to find a relationship between
named entities in text corpora [47]. Since any deep architecture is based on word embedding, the use
of word embedding in an unsupervised fashion on a large collection of text has become a key “secret
sauce” for the success of many NLP systems using deep learning in recent years. The word embedding
computed using neural networks explicitly capture many linguistic regularities and syntactic patterns.

Even though a number of methods for health-related NER from twitter messages for public health
and HNER tasks have been presented, deep learning techniques have been insufficiently studied. There
are some successful works applying NER analysis to Twitter [9,13,48]. A few works are concentrated
on health-related entities including disease, drugs, and symptoms [49] and applied neural network
architectures [50]. Ontology-based deep learning techniques also successfully applied to extract disease
names from Twitter messages [51]. The recent works have mostly used a small number of a dataset. In
this paper, we leveraged a large number of tweets and applied the BiLSTM-CRF model to the HNER
task by taking advantage of deep learning on large training observations. Therefore, to encourage
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researchers to use deep learning for healthcare text mining, we designed a useful a large annotated
dataset and prediction approach.

To best of our knowledge, the HNER task was most recently introduced by Jimeno-Yepes et al. [49],
and they presented Micromed dataset. Later, Jimeno-Yepes and MacKinlay [50] applied LSTM-CRF
model to the Micromed dataset. In this paper, we present a dataset that is larger than the Micromed,
employing various RNN techniques and providing comprehensive results.

3. Materials and Methods

3.1. Dataset

We have obtained a large number of health-related twitter data through Twitter API [52] using
the search term “healthcare” between 12 July 2018 and 12 July 2019. The dataset contains 1,403,393
health-related tweets.

For the HNER task, we only considered the three types of entities such as diseases, symptoms,
and pharmacologic substances to match the particular entities we target for annotation. These types
of entities are also annotated in Micromed dataset [49]. Table 1 shows the detail of each entity type.
We found 189,517 tweets for “disease or syndrome”, containing 382,629 medical terms (7.25% of total
words) and 9536 unique terms (3.74% of total unique words). There were 77,466 tweets found for “sign
or symptom”, containing 99,367 medical terms (4.33% of total words) and 2043 unique terms (4.56% of
total unique words). A total of 409,268 tweets were found for “pharmacologic substance”, containing
848,871 medical terms (7.51% of total words) and 8148 unique terms (1.80% of total unique words).
Examples of tweets and corresponding medical terms are as shown below:

Table 1. Medical entity types.

Type ID Entity Type Total Tweets Total Entities Unique Entities

T047 Disease or syndrome 189,517 382,629 (7.25%) 9536 (3.74%)

T184 Sign or symptom 77,466 99,367 (4.33%) 2043 (1.56%)

T121 Pharmacologic substance 409,268 848,871 (7.51%) 8148 (1.80%)

Example 1: “Cannabis (T121) Strains (T121) to beat stress (T184) after recommendations from
Marijuana (T121) doctors in Los Angeles”.

Example 2: “Join VLAB on February 26th to learn more about the breakthroughs in diabetes
(T047) like the artificial pancreas (T047)”.

Example 3: “Nightmare (T184), narcolepsy (T184) and sudden (T184) weakness (T184) turn
Mary’s life upside down after swine flu (T047) vaccination”.

In the preprocessing step, we removed all URLs (starting with “http” and “https”), hashtags
(starting with “#”), non-English characters, and punctuation. Then we converted all characters to
lower case. Finally, we only selected the tweets containing at least five words. Not all tweets contained
health-related entities. We filtered out tweets using a list of medical terms in UMLS. We only kept the
tweets if it contained at least one entity from the medical entity types, and the others were removed.

Finally, we filtered 676,251 tweets with a total of 1,330,867 medical terms and 19,727 unique medical
terms for our experiment. The tweets in the experimental dataset contain at least one health-related
entity. The health-related entities in each entity type and frequency are shown in Table 2. To avoid a
large number of false positives, we removed the following non-medical terms from each entity type:

- T047: condition, best, recruitment, disease, may, said, founder, increasing, west, evaluable, etc.
- T184: fit, weight, finding, catch, imbalance, medicine, others, walking, spots, mass, etc.
- T121: water, various, program, drugs, stop, tomorrow, orange, support, solution, speed, etc.
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Table 2. Example of unique terms. Top most frequent terms per entity type.

No Disease or Syndrome Sign or Symptom Pharmacologic Substance

1 diabetes 42,493 pain 7355 pharmaceutical 42,688

2 malnutrition 6541 amotivation 7036 digitalis 27,882

3 Alzheimer’s 4402 depression 3387 cannabis 17,782

4 obesity 3667 illness 2614 radiopharmaceutical 12,691

5 flu 2593 out toe 2303 therex 9112

6 coinfection 2556 anxiety 2142 marijuana 8979

7 pregnancy 1889 strain 1510 providine 6190

8 devic 1683 in toe 1506 pediatric 5701

9 blight 1549 tired 1120 nonprescription 5571

10 asthma 1517 ill 1007 californium 5385

We joined the relevant Metathesaurus table (“MRCONSO.RRF” and “MRSTY.RRF”) to determine
health-related named entities. We normalized all terms in tweets using the Jaccard similarity measure
(>0.7):

- T047: diabet to diabeta (0.80), alzheime to alzheimer (0.86), obesit to obesity (0.80), etc.
- T184: strains to strain (0.80), grimaced to grimace (0.83), illnesss to illness (0.83), etc.
- T121: marijuan to marijuana (0.86), pharmaceutica to pharmaceutical (0.71), etc.

After all, preprocessing and filtering, we split the experimental dataset into training, testing, and
validation subsets. Table 3 shows the distribution of tweets and the corresponding number of tweets,
number of terms, and unique terms for each entity type.

Table 3. Distribution of experimental datasets.

Subset Type ID Total Tweets Total Terms Unique Terms

Training
T047 125,275 215,326 7766

T184 47,554 56,105 1665

T121 287,341 477,408 6559

Validation
T047 53,096 71,686 5141

T184 17,436 18,660 1061

T121 125,012 159,099 4073

Testing
T047 67,137 95,558 5797

T184 22,874 24,846 1195

T121 158,064 212,257 4685

3.2. Dataset Annotation Tool

For dataset annotation, we used QuickUMLS tool [53] to extract biomedical concepts from medical
text. We use downloaded the latest version of UMLS (umls-2019AA-metathesaurus) and set the
parameters as shown in Table 4.
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Table 4. Dataset annotation.

Parameters Value

quickumls_fp UMLS data files (umls-2019AA-metathesaurus)

overlapping_criteria “score”

threshold 0.7

similarity_name “jaccard”

window 5

accepted_semtypes “T047”, “T184”, “T121”

3.3. Health-Related Named Entity Recognition

In this section, we provide the problem definition in HNER, the details of BiLSTM-CRF model
architecture and the process of the training. We apply the Pytorch library [54] to implement our model.
Our main goal is to predict medical terms in given sentences or tweets. The overview of BiLSTM-CRF
model is shown in Figure 2. BiLSTM-CRF model consists of four layers including the embedding,
BiLSTM, CRF, and Viterbi layers. The embedding layer consists of the three sub representations such as
word embedding features (yellow), character features (red), and additional word features (green). The
medical and non-medical pre-trained word embeddings are used and compared for producing word
embedding. CNN is used for producing character embedding, and POS tagging is used for producing
additional word features. BiLSTM learns the contextual information from the concatenated word and
character representations, and generates the word-level contextual representations that indicate the
confidence score “CS” for each word. The CRF layer calculates tagging scores for each word input
based on the contextual information. Finally, the Viterbi algorithm is used to find the tag sequence that
maximizes the tagging scores. We explain the details of the presented model in the next sections and
how it applies to the HNER task.
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3.3.1. Problem Definition

We consider named entity recognition as a combination of two problems: segmentation and
sequence labelling, given
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- an ordered set of N character sequences X = (X1, X2, . . . , XN), where Xi =
(
ci

1, ci
2, . . . , ci

n

)
is a

character sequence;
- an ordered set of N annotations Y = (Y1, Y2, . . . , YN), where Yi is a sequence Yi =

(
yi

1, yi
2, . . . , yi

n

)
and yi

j is a tuple of two boolean labels (si
j, ei

j) showing whether the corresponding character is the
beginning of a chemical entity and/or part of one, respectively.

Our task is to create a predictor P : X→ Ŷ , where Ŷ is a set of inferred annotations similar to Y.
We also use a tokenizer: X→ X̃ , where X̃ is an ordered sequence of character subsequences (tokens),
thus slightly redefining the objective function to target per-token annotations. Provided that the
tokenizer is fine enough to avoid tokens with overlapping annotations, this redefined problem is
equivalent to the original one.

3.3.2. Feature Representation

In the first phase of the prediction model, named as embedding, we represent each token by word
embedding (1), character embedding (2), and POS tagging (3).

Word Embedding (word): We used both non-biomedical and biomedical pre-trained word
embedding and analyzed the effect of word embedding for the HNER task. In this paper, we used
non-medical word embedding with GloVe [55] and Word2Vec [56]. We also used medical word
embedding as found in Pyyssalo et al. [57], Chiu et al. [47], Chen et al. [58], and Aueb et al. [59]. Our
experimental results show the comparison of these word embedding on the healthcare NER task from
Twitter. The details are explained in Appendix A and the statistics of word embedding are described
in Tables A1 and A2.

Character Embedding (char): Character-level word embedding is useful, especially when rich
rare words and out-of-vocabulary words are exploited and word embedding is poorly trained. It is
common in the biomedical and chemical domain. Word-level approaches fall short when applied to
Twitter data, where many infrequent or misspelled words occur within very short documents. We
considered character-level word embedding in this paper. The details are explained in Appendix B
and. Also, Table A3 shows the character set used in this paper and Figure A1 shows the CNN for
extracting character-level features.

Additional word feature (POS): Most state-of-the-art NER systems [39,60] use additional features
such as POS tagging [61] as a form of external knowledge. We also used POS tagging as an additional
word feature in this paper. POS tags are useful for building parse trees, which are used in building NERs
and extracting relations between words. Table 5 shows an example of how POS features are applied.

Table 5. Additional POS features. IN: preposition or subordinating conjunction; PRP: presonal pronoun;
RB: adverb; VBP: verb, non-third person singular present; JJ: adjective; NN: noun, singular or mass.

Tweet if you ever feel unwell fart your way into wellness health

POS IN PRP RB VBP JJ RB PRP NN IN JJ NN

3.3.3. Feature Learning

After concatenating the different feature representations, we employed the BiLSTM layer to learn
sequential structure of words in tweets. LSTM and BiLSTM have commonly used RNN techniques in
NLP tasks. In comparison with a single-direction LSTM, a BiLSTM can use the information from both
sides to learn the input features. The details are explained in Appendix C and Figure A2 shows the
LSTM memory cell in detail.

3.3.4. Prediction

After learning the input features, the famous CRF layer is employed. BiLSTM-CRF is the
combination between BiLSTM and CRF, a string algorithm for sequence labelling tasks which is very
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effective. In a BiLSTM model, the tagging decision at the output layer is made independently using
a softmax activation function. That means the final tagging decision of a token does not depend
on the tagging decision of others. Therefore, adding a CRF layer into a BiLSTM model equips the
model with the ability to learn the best sequence of tags that maximizes the log probability of the
output tag sequence. BiLSTM-CRF is very successful for NER tasks. They produce the state-of-the-art
results on several NER benchmark data sets without using any features. The details are explained in
Appendices D and E.

3.4. Network Training

In this section, we provide the detail process of our neural network training. We apply the Pytorch
library to implement the LSTM-CRF and BiLSTM-CRF models.

We train our network architecture with the back-propagation algorithm [62] to update the
parameters for each training example using the work of Adam [63] with Nesterov momentum [64]. In
each epoch, we divide all the training data into batches, then process one batch at a time. The batch size
decides the number of sentences. In each batch, we firstly get the output scores from the BiLSTM for all
labels. Then we put the output scores into CRF layer, and we can get the gradient of outputs and the
state transition matrix. From this, we can backpropagate the error from output to input, which contains
the backward propagation for bi-directional states of LSTM. Finally, we update all the parameters.

Dropout [65] can mitigate the overfitting problem. We apply dropout on the weight vectors directly
to mask the final embedding layer before the combinational embedding feed into the bi-directional
LSTM. We fix the dropout rate at 0.5 as usual and achieve good performance on our model. We also
use the early stopping strategy with patience 20 to avoid overfitting the early stopping monitored
weighted F1-scores on validation sets.

3.5. Hyparameter Settings

Our hyper-parameters are shown in Table 6. We used three-layer convolution and set the output
of the convolution layer to 50 for extracting character features from each word. We also used two-layer
LSTM and set the state size of LSTM to 250. For stopping condition, we used an early stopping strategy,
and maximum iteration has been set at 100. The batch size is 100, the dropout layer is 0.5, and the
initial learning rate is 0.001.

Table 6. The parameters for our experiments.

Hyper-Parameter Values

Convolution width 3
CNN output size 50
LSTM state size 250

LSTM layers 2
Learning rate 0.001

Epochs 100
Dropout 0.5

Batch size 100

The experimental hardware platform was the Intel Xeon E3 (32G memory, GTX 1080 Ti). The
experimental software platform was the Ubuntu 17.10 operating system and the development
environment was the Python 3.5 programming language. The Pytorch library and the Scikit-learn library
of Python were used to build the healthcare NER recognition model and comparative experiments.

3.6. Evaluation Metrics

For evaluating our model, an exact matching criterion was used to examine three different result
types. False-negative (FN) and false-positives (FP) are incorrect negative and positive predictions,
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respectively. True-positive (TP) results corresponded to correct positive predictions, which are actual
correct predictions. The evaluation is based on the performance measures precision (P), recall (R), and
F-score (F). Recall denotes the percentage of correctly labelled positive results overall positive cases
and is calculated as:

P = TP/(TP + FP) (1)

R = TP/(TP + FN) (2)

F = (2× P×R)/(P + R) (3)

4. Results and Discussion

In this paper, we employed the BiLSTM-CRF model with different combinations of word features
(word embedding, character embedding, and POS tagging) for the divided dataset. The BilSTM-CRF
model is compared with LSTM-CRF model presented by Jimeno-Yepes and MacKinlay [50] for the
most similar task. To best of our knowledge, there are no other published works which use Twitter data
for the health-related NER task. They used LSTM-CRF model with a pre-trained word-embedding and
outperformed CRF model on the Micromed dataset. We present a dataset similar to Micromed, but
our dataset is larger. Larger datasets support deep learning methods to improve the complexity of
the problem and of the learning algorithm. The comparative performance evaluation result is shown
in Table 7. The disease or syndrome HNER performance of BiLSTM-CRF (word + char + POS) has
a precision of 93.99%, recall of 73.31%, and F1 of 81.77% when evaluating on the presented dataset.
BiLSTM-CRF (word + char) has a precision of 94.53%, and LSTM-CRF (word + char + POS) has
an F1 of 82.08%. The sign or symptom HNER performance of BiLSTM-CRF (word + char + POS)
has a precision of 90.83%, recall of 81.98%, and F1 of 87.52%. The pharmacologic substance HNER
performance of BiLSTM-CRF (word + char + POS) has a precision of 94.85%, recall of 73.47%, and
F1 of 84.51%. BiLSTM-CRF (word + char) has a precision of 94.93%. Experimental results on the
presented dataset show that BiLSTM-CRF (word + char + POS) could yield excellent performance
for the HNER task. Surprisingly, the precision of BiLSTM-CRF without the POS tagging model for
disease or syndrome is 0.54% higher, and for pharmacologic substance it is 0.08% higher than that of
the BiLSTM-CRF with the POS tagging model when evaluating the presented dataset. Also, the F1 of
LSTM-CRF with the all-features model for disease or syndrome is 0.31% higher than the BiLSTM-CRF
with the-features model.

Table 7. The predictive performance for different models on the testing set.

Model
Disease or Syndrome Sign or Symptom Pharmacologic Substance

P R F P R F P R F

LSTM-CRF (word) 91.30 68.44 78.29 86.18 76.85 82.32 91.39 68.57 79.63
LSTM-CRF (char) 90.86 67.78 77.63 85.15 75.89 82.11 90.88 67.53 79.12
LSTM-CRF (POS) 90.05 67.15 77.02 84.14 75.61 81.08 90.07 67.07 78.61

LSTM-CRF (word + char) 92.75 70.24 81.60 88.12 78.76 85.03 93.55 71.11 82.06
LSTM-CRF (word + POS) 92.42 68.82 79.44 86.74 77.91 84.06 92.65 70.53 82.01
LSTM-CRF (char + POS) 92.07 68.68 78.43 86.52 77.21 82.88 92.39 69.44 80.48

LSTM-CRF (word + char + POS) 93.85 71.27 82.08 88.59 79.44 85.38 93.97 71.37 82.22
BiLSTM-CRF (word) 93.01 69.60 79.35 87.29 77.86 83.52 93.08 70.07 81.31
BiLSTM-CRF (char) 92.08 69.07 79.21 86.58 76.90 83.14 92.06 69.10 80.42
BiLSTM-CRF (POS) 91.69 68.71 78.26 85.35 76.64 82.39 91.51 68.26 79.99

BiLSTM-CRF (word + char) 94.53 72.52 81.72 89.15 80.21 86.22 94.93 72.27 83.06
BiLSTM-CRF (word + POS) 93.54 70.51 81.07 89.00 79.39 85.22 94.13 71.06 83.05
BiLSTM-CRF (char + POS) 93.24 69.69 79.89 87.72 78.33 84.15 93.42 68.87 82.45

BiLSTM-CRF (word + char + POS) 93.99 73.31 81.77 90.83 81.98 87.52 94.85 73.47 84.51

Note: The best results are highlighted in bold. word: word embedding; char: character embedding.

For these experiments, we used “Pyysalo Wiki + PM + PMC” word embeddings that achieve
higher results than other pre-trained word embeddings (see Table 8). As compared to the Micromed
dataset and the presented dataset, the LSTM + CRF (word) model applied to both datasets. The
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model on the presented dataset improved the performance significantly. LSTM+CRF (word) model
performed better results than LSTM + CRF (char) and LSTM + CRF (POS) models. We can see that
word embedding is most effective feature for HNER task compared with character embedding and
POS tagging. The models with different combinations of features improve the result. The best results
are shown with BiLSTM-CRF (word + char + POS), using the combination of all feature types. The
Twitter dataset is highly noisy and many out-of-vocabulary words are contained. Because of that,
character embedding helps to learn more those words and other rare words. As we mentioned above,
most of the state-of-the-art results used POS tagging. Also, our experimental result proves that POS
tagging is efficient in various NER tasks. Generally, the BiLSTM + CRF model outperforms the LSTM +

CRF model in all the experiments.

Table 8. Impact of different word embeddings of BiLSTM-CRF (word + char + POS) model. Wiki:
Wikipedia; GW: gigaword; CC: common crawl; PM: pubmed; PMC: pubmed central; win: windows;
dim: dimension; MIMIC: Medical Information Mart for Intensive Care.

Word Embedding Disease or Syndrome Sign or Symptom Pharmacologic Substance

P R F P R F P R F

Glove Wiki + GW [55] 89.87 68.11 77.10 86.72 77.06 82.87 90.11 68.93 80.32
Glove CC-42 [55] 89.35 67.42 76.77 85.64 76.63 82.40 89.80 68.41 79.59
Glove CC-840 [55] 89.64 67.71 76.76 86.57 76.66 82.58 89.90 68.85 80.27
Glove Twitter [55] 90.94 69.40 78.33 88.09 78.55 83.98 91.13 70.31 81.41

Word2Vec [56] 89.16 67.38 76.40 85.07 76.46 82.22 89.65 67.67 78.68
Pyysalo PM [57] 91.00 69.60 79.23 88.38 79.74 85.45 91.23 70.33 82.80

Pyysalo PMC [57] 91.71 69.64 80.19 88.76 80.21 85.93 91.33 70.86 83.04
Pyysalo PM + PMC [57] 93.55 72.19 80.89 89.95 80.55 86.04 92.89 71.00 84.81

Pyysalo Wiki + PM + PMC [57] 93.99 73.31 81.77 90.83 81.98 87.52 94.85 73.47 84.51
Chiu win-2 [47] 92.94 70.58 80.59 89.62 81.04 86.22 92.33 71.74 82.75
Chiu win-30 [47] 93.26 70.67 80.77 89.81 81.15 86.65 92.53 72.17 82.89

Chen PM + MIMIC III [58] 94.68 71.88 82.13 90.47 81.17 84.51 92.97 73.10 83.37
Aueb dim-200 [59] 91.79 70.10 78.65 88.09 80.69 84.25 94.40 72.76 82.29
Aueb dim-400 [59] 92.56 70.51 78.91 88.41 80.80 84.41 94.67 73.01 82.68

Note: The best results are highlighted in bold.

As shown in Table 7, pre-trained word embedding is the most significant feature and can be used
efficiently for down-stream tasks such as NER and HNER tasks. We achieved the best result with
BiLSTM-CRF (word + char + POS) model. We studied the contribution of medical and non-medical
word embeddings to BiLSTM-CRF (word +char + POS) model performance by removing each of
them in turn from the model and then evaluating the model on the presented dataset. In this regard,
we evaluate the model with character embedding and POS tagging. Table 8 shows the predictive
performance for the model with different word embeddings on the testing set. Generally, the models
with non-medical pre-trained word embeddings achieve a higher result than medical pre-trained word
embeddings. The experimental results show that medical word embeddings help the model to boost
its performance for disease or syndrome, sign or symptom, and pharmacologic substance HNER tasks.
We ranked the word embeddings by the performance as follows: (1) “Pyysalo Wiki + PM + PMC”
achieved the highest result in 6/9 experiments, (2) “Chen PM + MIMIC III” achieved the highest result
in 2/9 experiments, and (3) “Pyysalo PM + PMC” achieved the highest result in 1/9 experiments. Those
three word embeddings are even more powerful than the rest of the embeddings together in the disease
or syndrome, sign or symptom, and pharmacologic substance HNER with BiLSTM-CRF (word + char
+ POS) model.

The contribution of word embeddings to recognition of each named entity type is also different.
“Chen PM + MIMIC-III” has more effect in recognition of disease or syndrome named entities than of
the other named entities. “Pyysalo Wiki + PM + PMC” has more effects in the recognition of sign or
symptom and pharmacologic substance named entities than of the other named entity.

We also examined the impact of fine-tuning embeddings in disease or syndrome, sign or symptom,
and pharmacologic substance HNER by comparing the performance of BiLSTM-CRF (word + char
+ POS) model with that of an variant of it, in which “Pyysalo Wiki + PM + PMC” and “Chen PM +
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MIMIC-III” word embeddings are not fine-tuned during the model training as shown in Table 9. The
comparative results of two word embeddings with the model on the presented dataset demonstrate
that fine-tuning embeddings has a certain effect on the performance of BiLSTM-CRF (word + char +

POS) model. The F1 of BiLSTM-CRF with “Pyysalo Wiki + PM + PMC” is improved for disease or
syndrome, sign or symptom, and pharmacologic substance HNER when the model uses fine-tuned
embeddings, i.e., 0.99%, 1.45%, and 1.95%, respectively. The F1 of BiLSTM-CRF with “Chen PM +

MIMIC III” is improved for disease or syndrome, sign or symptom, and pharmacologic substance
HNER when the model uses fine-tuned embeddings, i.e., 0.39%, 1.16%, and 0.92%, respectively.

Table 9. Impact of fine-tuning embeddings of BiLSTM-CRF (word + char + POS) model.

Word Embedding Disease or Syndrome Sign or Symptom Pharmacologic Substance

P R F P R F P R F

Pyysalo Wiki + PM + PMC
Not fine-tuned 92.24 71.84 80.78 88.87 79.87 86.07 93.08 71.41 82.56

Fine-tuned 93.99 73.31 81.77 90.83 81.98 87.52 94.85 73.47 84.51
Chen PM + MIMIC III

Not fine-tuned 91.37 70.21 81.74 88.45 80.87 83.35 92.81 72.68 82.45
Fine-tuned 94.68 71.88 82.13 90.47 81.17 84.51 92.97 73.10 83.37

5. Conclusions

In this paper, we discuss advanced neural networks methods known as BiLSTM-CRF that are able
to achieve the health-related NER task with word embedding, character embedding, and small feature
engineering with POS tagging. The ontology or knowledge base is important for learning about the
medical domain. Our goal is to predict and recognize medical terms in tweets that support public
health systems. We annotated the collected dataset by using UMLS metathesaurus ontology to obtain
knowledge about the specific domain. We considered three entity types: disease or syndrome, sign or
symptom, and pharmacologic substance.

In the scope of HNER task, we presented a dataset collected from Twitter using the search term
“healthcare” between 12 July 2018 and 12 July 2019, obtaining 676,251 tweets, 1,330,867 medical terms,
and 19,727 unique medical terms. The presented dataset is larger than the previously presented dataset
known as Micromed. The size of the dataset significantly improves the performance of the models. To
produce the experimental dataset, we used the preprocessing techniques on the raw text data (tweets)
such text cleaning, normalization, filtering, and removing non-medical terms and tokenization.

Inspired by this kind of work, we employed the BiLSTM-CRF model and compared with LSTM-CRF
model with different combinations of features such as word embedding, character embedding, and
POS tagging. Bidirectional models learn the input features in two ways: one from the beginning to
end, and other from end to beginning, helping the learning of the feature more efficiently. We found
that the BiLSTM-CRF (word + char + POS) model achieves the best result compared with other models
on the HNER task when using “Pyysalo Wiki + PM + PMC” pre-trained word embeddings. The best
model achieves a precision of 93.99%, recall of 73.31%, and F1-score of 81.77% for disease or syndrome
HNER; a precision of 90.83%, recall of 81.98%, and F1-score of 87.52% for sign or symptom HNER; and
a precision of 94.85%, recall of 73.47%, and F1-score of 84.51% for pharmacologic substance named
entities. We also proved that fine-tuning is efficient when working on down-stream NLP tasks such
as HNER.

As we found BiLSTM-CRF with “Pyysalo Wiki + PM + PMC” word embeddings, CNN-based
character embedding and POS tagging is the best model for prediction of disease or syndrome, sign or
symptom, and pharmacologic substance named entities.

In the future, we will extend the HNER task by adding different types of medical entities from
UMLS entity types. We will apply transformer networks like BERT, ELMO, XLNET, etc. on the HNER
tasks that currently dominate in most NLP tasks.
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Appendix A. Word Embedding

Word embedding is mainly learned through context and the learned word vectors can capture
general syntactic and semantic information. Those word vectors have proven to be efficient in capturing
context, semantic similarity, and analogies; due to their smaller dimensionality, they are fast and
efficient in text mining tasks [55,66]. Typically, word embedding is pre-trained by optimizing an
auxiliary objective in a large unlabeled corpus which is used for other downstream tasks. Following
the popularization of word embedding and its ability to represent the semantic relationship between
entities in a distributed space, an effective feature learning function is needed to extract higher-level
features from the word embedding. The statistics of word embedding are described in Tables A1
and A2.

Table A1. Non-biomedical word embedding.

Word Embedding Vocabulary Dimension

Glove Wiki + GW [55] 400K 300

Glove CC-42 [55] 1.9M 300

Glove CC-840 [55] 2.2M 300

Glove Twitter [55] 1.2M 200

Word2Vec [56] 3M 300

Table A2. Biomedical word embedding.

Biomedical

Pyysalo PM [57] 2.3M 200

Pyysalo PMC [57] 2.5M 200

Pyysalo PM + PMC [57] 4M 200

Pyysalo Wiki + PM + PMC [57] 5.4M 200

Chiu win-2 [47] 2.2M 200

Chiu win-30 [47] 2.2M 200

Chen PM + MIMIC III [58] 16.5M 200

Aueb dim-200 [59] 2.6M 200

Aueb dim-400 [59] 2.6M 400

Appendix B. Character Embedding

We randomly initialized a lookup table with values drawn from a uniform distribution with range
(−0.5, 0.5) to output character embedding of 25 dimensions. The character set includes numbers, upper
and lower case English alphabets, some special characters, and the special tokens padding (PAD) and
unknown (UNK), as shown in Table A3. The PAD token is used for the CNN, and the UNK token is
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used for all other characters. The CNN extracts a fixed length of feature vector from character-level
features. The character embedding is computed through lookup tables.

Table A3. Character set.

Numbers 0 1 2 3 4 5 6 7 8 9 10

Lower alphabets a b c d e f g h i j k l m n o p q r s t u v w x y z 26

Uppercase alphabets A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 26

Punctuation . , - _ ( ) [ ] { } ! ? : ; # ‘ \ “ / \ \% $ ‘ & = * + @ ˆ ~ | 32

Then, they are concatenated and passed into CNN. The architecture of character-level feature
extraction using CNN is shown in Figure A1.

The CNN is similar to the one in Chiu et al. [47], except that we use only character embedding as
the input to CNN, without any character type features. For each word, we employ a convolution and a
max-pooling layer to extract a new feature vector from the character embedding. Words are padded
with a number of special PAD characters on both sides depending on the window size of the CNN.
The hyper-parameters of the CNN are the window size and the output vector size.

The advantage of the character-based approaches is their language and domain independence,
since they do not require any language and domain specific parsing. With character embedding, every
single word’s vector can be formed even it is out of the vocabulary (optional). On the other hand, word
embedding can only handle those seen words.
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Appendix C. BiLSTM

Recurrent neural networks (RNNs) [67] are a family of neural networks. RNNs have a
high-dimensional hidden state with non-linear dynamics that encourage them to take advantage of
previous information. Gated RNNs are the most effective sequence models in practical applications,
including LSTM [68]. LSTM can address the vanishing and exploding gradient problems by adding
extra memory cell inherent in RNNs. LSTM networks are the same as RNNs, except that the hidden
layer updates are replaced by purpose-built memory cells. As a result, they may be better at finding
and exploding long-range dependencies in the data.

Given a sentence, the model predicts a label corresponding to each of the input tokens in the
sentence. Firstly, through the embeddings layer, the sentence is represented as a sequence of vectors
X = (x1, . . . , xt, . . . , xn) where n is the length of the sentence. Next, the embeddings are given as
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input to a BiLSTM [69] layer which is composed of LSTM memory cell. Figure A2 illustrates a single
LSTM memory cell. The LSTM memory cell is implemented as the following:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (A1)

ft = σ
(
Wx f xt + Wh f ht−1 + Wc f ct−1 + b f

)
(A2)

ct = ftct−1 + ittan h(Wxcxt + Whcxt−1 + bc) (A3)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo) (A4)

ht = ottanh(ct) (A5)

where W is weight matrix, b is bias, σ is the logistic sigmoid function, and i, f , c, o are the input gate,
forget gate, cell vectors, and output gate, respectively, all of which are the same size as the hidden
vector h.

In the BiLSTM layer, a forward
→

LSTM computes a representation
→

ht of the sequence from left to

right at every word t, and another backward
←

LSTM computes a representation
←

ht of the same sequence
in reverse.

→

ht =
→

LSTM
(
xt,

→

ht−1

)
, t ∈ [1, n] (A6)

←

ht =
←

LSTM
(
xt,

←

ht+1

)
, t ∈ [1, n] (A7)

These two distinct networks use different parameters, and then the representation of a word

ht
concat = [

→

ht;
←

ht] is obtained by concatenating its left and right context representations. Then a tanh
layer on top of the BiLSTM is used to predict confidence scores (CS) for the word with each of the
possible labels as the output score of the network.

CSt = tanh
(
Weht

concat
)

(A8)

CSt = tanh
(
Weht

concat
)

(A9)

where the weight matrix We is the parameter of the model to be learned in training.
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Appendix D. CRF

Finally, instead of tagging decisions independently, the CRF [70] layer is added to decode the best
tag path in all possible tag paths. We consider S to be the matrix of scores output by the network. The
ith column is the vector CSt obtained by Equation (A5). The element Si, j of the matrix is the score of the
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jth tag of the ith word in the sentence. We used a tagging transition matrix T, where Ti, j represents the
score of transition from tag i to tag j in successive words and T0, j as the initial score for starting from
tag j. This transition matrix will be trained as the parameter of the model. The score of the sentence
X along with a sequence of predictions y = (y1, . . . , y, . . . , y) is then given by the sum of transition
scores and network scores:

s(X, y) =
n∑

i=1

(
Syi−1,yi + Si,yi

)
(A10)

Then, a softmax function is used to yield the conditional probability of the path y by normalizing
the above score over all possible tag paths ỹ:

p(y
∣∣∣X) =

es(X, y)∑
ỹs(X, y)

(A11)

Appendix E. Viterbi algorithm

During the training phase, the objective of the model is to maximize the log-probability of the
correct tag sequence. At the inference time, we predict the best tag path that obtains the maximum
score given by:

argmax
ỹ

s(X, y) (A12)

This can be computed using dynamic programming, and the Viterbi algorithm [71] is chosen for
this inference.
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