Integrating Landscape Metrics and Hydrologic Modeling to Assess the Impact of Natural Disturbances on Ecohydrological Processes in the Chenyulan Watershed, Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Description
2.3. Image Processing
2.3.1. Selection of Ground-Truth Points
2.3.2. Nearest Feature Line Embedding
2.4. Landscape Metrics
2.5. SWAT Model
2.5.1. Model Description
2.5.2. Land Cover Update Module
2.5.3. Model Calibration and Validation
3. Results
3.1. Classification Results
3.2. Landscape Metrics Analysis
3.2.1. Landscape Level
3.2.2. Class Level
3.3. Swat Results
3.3.1. Model Calibration and Validation
3.3.2. Swat Simulation Results
4. Discussion
4.1. Impact of Land Cover Change on Ecohydrological Processes
4.2. Relationship between Landscape Metrics and Watershed Responses
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Fohrer, N.; Haverkamp, S.; Eckhardt, K.; Frede, H.G. Hydrologic response to land use changes on the catchment scale. Phys. Chem. Earth (B) 2001, 26, 577–582. [Google Scholar] [CrossRef]
- Pikounis, M.; Varanou, E.; Baltas, E.; Dassaklis, A.; Mimikou, M. Application of the SWAT model in the Pinious River Basin under different land-use scenarios. Environ. Sci. Technol. 2003, 5, 71–79. [Google Scholar]
- Ghaffari, G.; Keesstra, S.; Ghodousi, J.; Ahmadi, H. SWAT-simulated hydrological impact of land-use change in the Zanjanrood Basin, northwest Iran. Hydrol. Processes 2010, 24, 892–903. [Google Scholar] [CrossRef]
- Du, J.; Rui, H.; Zuo, T.; Li, Q.; Zheng, D.; Chen, A.; Xu, Y.; Xu, C.Y. Hydrological simulation by SWAT model with fixed and varied parameterization approaches under land use change. Water Resources Manag. 2013, 27, 2823–2838. [Google Scholar] [CrossRef]
- Wagner, P.D.; Kumar, S.; Schneider, K. An assessment of land use change impacts on the water resources of the Mula and Mutha Rivers catchment upstream of Pune, India. Hydrol. Earth Syst. Sci. 2013, 17, 2233–2246. [Google Scholar] [CrossRef] [Green Version]
- Zope, P.E.; Eldho, T.I.; Jothiparkash, V. Hydrological impacts of land use—Land cover change and detention basins on urban flood hazard: A case study of Poisar River basin, Mumbai India. Nat. Hazards 2017, 87, 1267–1283. [Google Scholar] [CrossRef]
- Shi, Z.H.; Ai, L.; Li, X.; Huang, X.D.; Wu, G.L.; Liao, W. Partial least-squares regression for linking land-cover patterns to soil erosion and sediment yield in watersheds. J. Hydrol. 2013, 498, 165–176. [Google Scholar] [CrossRef]
- McGarigal, K.; Marks, B.J. FRAGSTATS: A Spatial Pattern Analysis Program for Quantifying Landscape Structure; GTR PNW-351; USDA Forest Service: Washington, DC, USA, 1995.
- McGarigal, K.; Cushman, S.A.; Neel, M.C.; Ene, E. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst, MA, USA. 2002. Available online: http://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 15 November 2018).
- O’Neill, R.V.; Hunsaker, C.T.; Jones, K.B.; Riitters, K.H.; Wickham, J.D.; Schwartz, P.M.; Goodman, I.A.; Jackson, B.L.; Baillargeon, W.S. Monitoring environmental quality at the landscape scale. BioScience 1997, 47, 513–519. [Google Scholar] [CrossRef]
- Frohn, R.C.; Hao, Y. Landscape metric performance in analyzing two decades of deforestation in the amazon basin of rondonia, Brazil. Remote Sens. Environ. 2006, 100, 237–251. [Google Scholar] [CrossRef]
- Turner, M.G. Landscape ecology: What is the state of the science? Annu. Rev. Ecol. Evol. Syst. 2005, 36, 319–344. [Google Scholar] [CrossRef]
- Uuemaa, E.; Roosaare, J.; Mander, U. Scale dependence of landscape metrics and their indicatory value for nutrient and organic matter losses from catchments. Ecol. Indic. 2005, 5, 350–369. [Google Scholar] [CrossRef]
- Uuemaa, E.; Roosaare, J.; Mander, U. Landscape metrics as indicators of river water quality at catchment scale. Nord. Hydrol. 2007, 38, 125–138. [Google Scholar] [CrossRef]
- Uuemaa, E.; Mander, L.; Marja, R. Trends in the use of landscape spatial metrics as landscape indicators: A review. Ecol. Indic. 2013, 28, 100–106. [Google Scholar] [CrossRef]
- Boongaling, C.G.; Faustino-Eslava, D.V.; Lansigan, F.P. Modeling land use change impacts on hydrology and the use of landscape metrics as tools for watershed management: The case of an ungauged catchment in the Philippines. Land Use Policy 2018, 72, 116–128. [Google Scholar] [CrossRef]
- Wickham, J.D.; Riitters, K.H.; O’Neill, R.V.; Reckhow, K.H.; Wade, T.G.; Jones, K.B. Land cover as a framework for assessing risk of water pollution. J. Am. Water Resour. Assoc. 2000, 36, 1417–1422. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large-area hydrologic modeling and assessment: Part I. Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Anand, J.; Gosain, A.K.; Khosa, R.; Srinivasan, R. Regional scale hydrologic modeling for prediction of water balance, analysis of trends in streamflow and variations in streamflow: The case study of the Ganga River basin. J. Hydrol. Reg. Stud. 2018, 16, 32–53. [Google Scholar] [CrossRef]
- Ndulue, E.L.; Ezenne, G.I.; Mbajiorgu, C.C.; Ogwo, V. Hydrological modeling of upper Ebonyi watershed using the SWAT model. Int. J. Hydrol. Sci. Technol. 2018, 8, 120–133. [Google Scholar] [CrossRef]
- Oeurng, C.; Cochrane, T.A.; Arias, M.E.; Shrestha, B.; Piman, T. Assessment of changes in riverine nitrate in the Sesan, Srepok and Sekong tributaries of the lower Mekong River basin. J. Hydrol. Reg. Stud. 2016, 8, 95–111. [Google Scholar] [CrossRef]
- Liu, R.; Wang, Q.; Xu, F.; Men, C.; Guo, L. Impacts of manure application on SWAT model outputs in the Xiangxi River watershed. J. Hydrol. 2017, 555, 479–488. [Google Scholar] [CrossRef]
- Ahiablame, L.; Sinha, T.; Paul, M.; Ji, J.H.; Rajib, A. Streamflow response to potential land use and climate changes in the James River watershed, Upper Midwest United States. J. Hydrol. Reg. Stud. 2017, 14, 150–166. [Google Scholar] [CrossRef]
- Guzha, A.C.; Rufino, M.C.; Okoth, S.; Jacobs, S.; Nóbrega, R.L.B. Impacts of land use and land cover change on surface runoff, discharge and low flows: Evidence from East Africa. J. Hydrol. Reg. Stud. 2017, 15, 49–67. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, R.; Men, C.; Guo, L. Application of genetic algorithm to land use optimization for non-point source pollution control based on CLUE-S and SWAT. J. Hydrol. 2018, 560, 86–96. [Google Scholar] [CrossRef]
- Francesconi, W.; Srinivasan, R.; Pérez-Miñana, E.; Willcock, S.P.; Quintero, M. Using the Soil and Water Assessment Tool (SWAT) to model ecosystem services: A systematic review. J. Hydrol. 2016, 535, 625–636. [Google Scholar] [CrossRef]
- Sil, A.; Rodrigues, A.P.; Carvalho-Santos, C.; Nunes, J.P.; Honrado, J.; Alonso, J.; Marta-Pedroso, C.; Azevedo, J.C. Trade-offs and synergies between provisioning and regulating ecosystem services in a mountain area in Portugal affected by landscape change. Mt. Res. Dev. 2016, 36, 452–464. [Google Scholar] [CrossRef]
- Chen, L.; Wei, G.; Shen, Z. Incorporating water quality responses into the framework of best management practices optimization. J. Hydrol. 2016, 541, 1363–1374. [Google Scholar] [CrossRef]
- Park, J.Y.; Ale, S.; Teague, W.R. Simulated water quality effects of alternate grazing management practices at the ranch and watershed scales. Ecol. Model. 2017, 300, 1–13. [Google Scholar] [CrossRef]
- Kalantari, Z.; Lyon, S.W.; Folkeson, L.; French, H.K.; Stolte, J.; Jansson, P.E.; Sanssner, M. Quantifying the hydrological impact of simulated changes in land use on peak discharge in a small catchment. Sci. Total Environ. 2014, 466–467, 741–754. [Google Scholar] [CrossRef]
- Marhaento, H.; Booij, M.B.; Rientjes, T.H.M.; Hoekstra, A.Y. Simulation of land use change impacts on hydrological processes in a tropical catchment. In Proceedings of the 19th EGU General Assembly, EGU2017, Vienna, Austria, 23–28 April 2017. [Google Scholar]
- Chiang, L.C.; Lin, Y.P.; Huang, T.; Schmeller, D.S.; Verburg, P.H.; Liu, Y.L.; Ding, T.S. Simulation of ecosystem service responses to multiple disturbances from an earthquake and several typhoons. Landsc. Urban Plan. 2014, 122, 41–55. [Google Scholar] [CrossRef]
- McGarigal, K. FRAGSTATS Help. p. v4.2. 2014. Available online: http://refhub.elsevier.com/S0048-9697(16)31293-1/rf0150 (accessed on 15 November 2018).
- Saxton, K.; Willey, P. The SPAW Model for agricultural field and pond hydrologic simulation. Watershed Models 2005, 400–435. [Google Scholar] [CrossRef]
- Chang, Y.L.; Liu, J.N.; Han, C.C.; Chen, Y.N. Hyperspectral image classification using nearest feature line embedding approach. IEEE Trans. Geosci. Remote Sens. 2014, 52, 278–287. [Google Scholar] [CrossRef]
- Amiri, B.J.; Nakane, K. Modeling the linkage between river water quality and landscape metrics in the Chugoku District of Japan. Water Resour. Manag. 2009, 23, 931–956. [Google Scholar] [CrossRef]
- Lee, S.W.; Hwang, S.J.; Lee, S.B.; Hwang, H.S.; Sung, H.C. Landscape ecological approach to relationships of land use patterns in watersheds to water quality characteristics. Landsc. Urban Plan. 2009, 92, 80–89. [Google Scholar] [CrossRef]
- Ouyang, W.; Skidmore, A.K.; Hao, F.; Wang, T. Soil erosion dynamics response to landscape pattern. Sci. Total Environ. 2010, 408, 1358–1366. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Song, C.S.; Cao, L.; Zhu, F.; Meng, X.; Wu, J. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [Google Scholar] [CrossRef]
- Wu, W.; Zhao, S.; Zhu, C.; Jiang, J. A comparative study of urban expansion in Beijing, Tianjin and Shijiazhuang over the past three decades. Landsc. Urban Plan. 2015, 134, 93–106. [Google Scholar] [CrossRef]
- USDA Soil Conservation Service. National Engineering Handbook Section 4 Hydrology, Chapters 4–10; USDA Soil Conservation Service: Washington, DC, USA, 1972.
- Williams, J.R. Sediment—Yield Prediction with Universal Equation Using Runoff Energy Factor. Proceedings of the Sediment-Yield Workshop; USDA Sedimentation Laboratory: Oxford, UK, 1975.
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Grassland, Soil and Water Research Laboratory, Agricultural Research Service and Blackland Research Center, Texas Agricultural Experiment Station: College Station, TX, USA, 2011. [Google Scholar]
- Abbaspour, K.C. SWAT-CUP: SWAT Calibration and Uncertainty Programs—A User Manual; Eawag: Dübendorf, Switzerland, 2015. [Google Scholar]
- Moriasi, A.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Haemel, R.D.; Veith, T.L. Modeling evaluation guidelines for systematic qualification of accuracy in watershed simulation. Am. Soc. Agric. Biol. Eng. 2007, 50, 885–900. [Google Scholar]
- Shackleton, C.M.; Scholes, R.J. Above ground woody community attributes, biomass and carbon stocks along a rainfall gradient in the savannas of the central lowveld, South Africa. S. Afr. J. Bot. 2011, 77, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Li, X.Y.; Huang, Y.M.; Liu, L.; Zhang, J.H.; Liu, Q.; Jiang, Z.Y. Shrub patch configuration in relation to precipitation and soil properties in Northwest China. Ecohydrology 2017. [Google Scholar] [CrossRef]
- Neel, M.C.; McGarigal, K.; Cushman, S.A. Behavior of class-level landscape metrics across gradients of class aggregation and area. Landsc. Ecol. 2004, 19, 435–455. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Klove, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1494–1508. [Google Scholar] [CrossRef]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. SWAT Input/Output Documentation Version 2012; Texas Water Resources Institute: College Station, TX, USA, 2012. [Google Scholar]
- Jha, M.K. Evaluating Hydrologic Response of an agricultural watershed for watershed analysis. Water 2011, 3, 604–617. [Google Scholar] [CrossRef]
- Yen, H.; Lu, S.; Feng, Q.; Wang, R.; Gao, J.; Brady, D.M.; Sharifi, A.; Ahn, J.; Chen, S.T.; Jeong, J.; et al. Assessment of Optional Sediment Transport Functions via the Complex Watershed Simulation Model SWAT. Water 2017, 9, 76. [Google Scholar] [CrossRef]
- Brönnimann, C.S. Effect of Groundwater on Landslide Triggering. Ph.D. Thesis, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, 2011. [Google Scholar]
- Premchitt, J.; Brand, E.W.; Phillipson, H.B. Landslides caused by rapid groundwater changes. Geol. Soc. Lond. Eng. Geol. Pub. 1986, 3, 87–94. [Google Scholar] [CrossRef]
- He, H.S.; DeZonia, B.E.; Mladenoff, D.J. An aggregation index (AI) to quantify spatial patterns of landscapes. Landsc. Ecol. 2000, 15, 591–601. [Google Scholar] [CrossRef]
- Jaeger, J.A.G. Landscape division, splitting index, and effective mesh size: New measures of landscape fragmentation. Landsc. Ecol. 2000, 15, 115–130. [Google Scholar] [CrossRef]
- Gergel, S.E. Spatial and non-spatial factors: When do they affect landscape indicators of watershed loading? Landsc. Ecol. 2005, 20, 177–189. [Google Scholar] [CrossRef]
- Forman, R.T.T. Land Mosaics: The Ecology of Landscape and Regions; Cambridge University Press: New York, NY, USA, 1995. [Google Scholar]
- Fahrig, L. Effect of habitat fragmentation on the extinction threshold: A synthesis. Ecol. Appl. 2002, 12, 346–353. [Google Scholar]
- Kennedy, C.M. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 2013, 16, 584–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, J.; Turner, M.G. Importance of landscape heterogeneity in sustaining hydrologic ecosystem services in an agricultural watershed. Ecosphere 2015, 6, 229. [Google Scholar] [CrossRef]
- Yan, B.; Fang, N.F.; Zhang, P.C.; Shi, Z.H. Impacts of land use change on watershed streamflow and sediment yield: An assessment using hydrologic modelling and partial least squares regression. J. Hydrol. 2013, 484, 26–37. [Google Scholar] [CrossRef]
Soil Type | Hydrologic Group | USLE-K | SOL_BD (g/cm3) | SOL_AWC (mm H2O/mm soil) | SOL_K (mm/hr) |
---|---|---|---|---|---|
Darkish colluvial soils | B | 0.36 | 1.54 | 1.54 | 25.91 |
Pale colluvial soil | B | 0.19 | 1.49 | 0.14 | 9.65 |
Lithosol | B | 0.3 | 1.56 | 0.13 | 4.83 |
Alluvial soil | B | 0.4 | 1.61 | 0.17 | 7.87 |
Taiwan clay 1 | B | 0.2 | 1.43 | 0.15 | 2.03 |
Yellow soil | B | 0.29 | 1.52 | 0.15 | 10.92 |
Red soil | B | 0.13 | 1.60 | 0.19 | 21.34 |
Land Cover Type | 2005 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
---|---|---|---|---|---|---|---|
River | 15.42 | 13.76 (13.75) 1 | 16.31 (16.29) | 15.19 (15.20) | 14.96 (14.60) | 15.55 (17.82) | 13.31 (13.39) |
Grassland | 19.77 | 20.21 (17.40) | 19.47 (17.68) | 19.62 (15.43) | 25.67 (17.73) | 20.12 (20.24) | 23.81 (17.23) |
Built-up | 3.42 | 2.60 (2.27) | 2.33 (2.27) | 2.17 (2.17) | 1.98 (1.75) | 2.10 (2.23) | 2.86 (2.50) |
Cultivated land | 63.07 | 56.55 (58.07) | 62.58 (63.84) | 55.31 (57.91) | 56.87 (61.01) | 54.05 (56.05) | 53.27 (56.58) |
Landslide | 12.97 | 8.96 (8.97) | 7.57 (7.57) | 12.70 (13.50) | 13.97 (13.97) | 12.53 (12.87) | 12.24 (12.39) |
Forest | 334.15 | 346.72 (348.20) | 340.54 (331.02) | 343.82 (344.46) | 335.36 (339.66) | 344.47 (339.48) | 343.31 (345.27) |
Year | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
---|---|---|---|---|---|---|
Overall accuracy | 82.22% | 83.74% | 81.00% | 81.81% | 77.80% | 73.70% |
Metrics | PD | AREA_AM | ED | GYRATE_AM | SHAPE_AM | AI | SPLIT |
---|---|---|---|---|---|---|---|
PD | 1 | ||||||
AREA_AM | −0.319 | 1 | |||||
ED | 0.968 ** | −0.283 | 1 | ||||
GYRATE_AM | −0.396 | 0.931 ** | −0.335 | 1 | |||
SHAPE_AM | 0.879 * | −0.036 | 0.930 ** | −0.094 | 1 | ||
AI | −0.969 ** | 0.282 | −1.000 ** | 0.335 | −0.930 ** | 1 | |
SPLIT | 0.321 | −1.000 ** | 0.286 | −0.935 ** | 0.041 | −0.285 | 1 |
Land Cover Type | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
---|---|---|---|---|---|---|
PD | 4.98 | 3.63 | 3.66 | 6.11 | 2.95 | 6.80 |
AREA_AM | 25,331.01 | 24,734.56 | 25,550.06 | 23,471.01 | 25,895.42 | 25,801.08 |
ED | 38.98 | 31.80 | 35.12 | 45.48 | 33.63 | 47.09 |
GYRATE_AM | 6741.61 | 6780.94 | 6984.70 | 6527.08 | 7003.28 | 6970.06 |
SHAPE_AM | 14.43 | 12.59 | 12.93 | 15.94 | 14.21 | 17.79 |
AI | 80.39 | 84.03 | 82.36 | 77.14 | 83.12 | 76.31 |
SPLIT | 1.79 | 1.83 | 1.77 | 1.92 | 1.74 | 1.75 |
Land Cover | PD | AREA_AM | ED | GYRATE_AM | SHAPE_AM | AI | SPLIT |
---|---|---|---|---|---|---|---|
Grassland | 1.85 | 25.94 | 13.32 | 190.40 | 1.67 | 33.01 | 77,723.66 |
Built-up | 0.37 | 2.39 | 1.81 | 66.75 | 1.10 | 12.88 | 3,900,140.18 |
Cultivated land | 1.26 | 549.57 | 21.20 | 1255.08 | 5.87 | 57.51 | 1264.99 |
Landslide | 0.54 | 26.01 | 5.22 | 223.12 | 1.60 | 49.15 | 81,111.31 |
Forest | 0.44 | 32,791.92 | 31.46 | 8537.20 | 17.79 | 89.41 | 1.81 |
Landscape Metrics | Land Cover | ||||||
---|---|---|---|---|---|---|---|
River | Grassland | Built-up | Cultivated Land | Landslide | Forest | ||
AREA_AM | PD | 0.575 | −0.822 * | −0.417 | −0.779 | 0.370 | −0.705 |
ED | PD | 0.927 ** | 0.993 ** | 0.975 ** | 0.972 ** | 0.935 ** | −0.123 |
ED | AREA_AM | 0.768 | −0.806 | −0.207 | −0.802 | 0.628 | −0.106 |
GYRATE_AM | PD | 0.401 | −0.885 * | −0.598 | −0.771 | 0.462 | −0.559 |
GYRATE_AM | AREA_AM | 0.925 ** | 0.991 ** | 0.888 * | 0.988 ** | 0.989 ** | 0.905 * |
GYRATE_AM | ED | 0.539 | −0.867 * | −0.437 | −0.761 | 0.701 | 0.171 |
SHAPE_AM | PD | 0.694 | −0.923 ** | −0.534 | −0.805 | 0.755 | −0.285 |
SHAPE_AM | AREA_AM | 0.823 * | 0.955 ** | 0.850 * | 0.905 * | 0.808 | 0.137 |
SHAPE_AM | ED | 0.736 | −0.893 * | −0.377 | −0.727 | 0.901 * | 0.970 ** |
SHAPE_AM | GYRATE_AM | 0.739 | 0.984 ** | 0.984 ** | 0.954 ** | 0.880 * | 0.387 |
AI | PD | −0.523 | −0.961 ** | −0.032 | −0.970 ** | −0.385 | 0.047 |
AI | AREA_AM | −0.019 | 0.942 ** | 0.886 * | 0.859 * | 0.616 | 0.165 |
AI | ED | −0.278 | −0.944 ** | 0.180 | −0.991 ** | −0.105 | −0.997 ** |
AI | GYRATE_AM | 0.022 | 0.978 ** | 0.603 | 0.827 * | 0.519 | −0.128 |
AI | SHAPE_AM | −0.568 | 0.989 ** | 0.548 | 0.796 | 0.070 | −0.953 ** |
SPLIT | PD | −0.639 | 0.928 ** | −0.128 | 0.849 * | −0.731 | 0.752 |
SPLIT | AREA_AM | −0.948 ** | −0.765 | −0.846 * | −0.662 | −0.865 * | −0.984 ** |
SPLIT | ED | −0.851 * | 0.929 ** | −0.340 | 0.744 | −0.894 * | 0.207 |
SPLIT | GYRATE_AM | −0.806 | −0.832 * | −0.643 | −0.718 | −0.904 * | −0.853 * |
SPLIT | SHAPE_AM | −0.742 | −0.864 * | −0.643 | −0.853 * | −0.900 * | −0.029 |
SPLIT | AI | −0.051 | −0.901 * | −0.932 ** | −0.793 | −0.324 | −0.270 |
Parameter | Unit | Default Value | Calibrated value | ||
---|---|---|---|---|---|
Min. | Max. | Fitted | |||
CN2 | - | 60 (FRST) | 35 (−41.94%) | 57 (−4.66%) | 37 (−38.68%) |
69 (RNGE) | 39 (−44.10%) | 61 (−12.05%) | 39 (−43.38%) | ||
77 (AGRL) | 43 (−44.10%) | 68 (−12.05%) | 44 (−43.38%) | ||
EPCO | - | 1 | 0.10 | 0.44 | 0.42 |
SURLAG | - | 4 | 6.43 | 18.15 | 11.50 |
ALPHA_BF | 1/days | 0.048 (sub1–3, 5–7, 9–11, 13–15) | 0.18 | 0.53 | 0.34 |
0.048 (sub4, 8, 12, 16, 18, 19) | 0 | 0.43 | 0.23 | ||
CH_K2 | mm/hr | 0 (sub1–3, 5–7, 9–11, 13–15) | 342.85 | 555.75 | 510.51 |
0 (sub4, 8, 12, 16, 18, 19) | 333.03 | 583.73 | 571.82 | ||
0 (sub17, 20–23) | 293.20 | 579.25 | 439.80 | ||
CH_N2 | - | 0.014 (sub4, 8, 12, 16, 18, 19) | 0.10 | 0.23 | 0.18 |
0.014 (sub17, 20–23) | 0.19 | 0.32 | 0.22 |
Parameter | Unit | Default Value | Calibrated Value | ||
---|---|---|---|---|---|
Min. | Max. | Fitted | |||
PRF | - | 1.0 | 1.01 | 1.82 | 1.49 |
SPCON | - | 0.00001 | 0.008 | 0.016 | 0.013 |
Land cover | Grassland | Built-up | Cultivated Land | Landslide | Forest | Average |
---|---|---|---|---|---|---|
WYLD (mm) | 2381.49 | 2109.56 | 2102.97 | 2548.91 | 2432.68 | 2386.46 |
SYLD (tons/km2) | 50,868.24 | 24,281.99 | 271,683.10 | 1,591,249.74 | 53,825.47 | 125,447.62 |
Water Yield | |||||||
Land Cover | PD | AREA_AM | ED | GYRATE_AM | SHAPE_AM | AI | SPLIT |
Grassland | −0.271 ** | 0.1025 | −0.278 ** | 0.1007 | 0.0054 | 0.2052 | −0.0382 |
Built-up | −0.1534 | 0.0599 | −0.0848 | 0.0302 | −0.0161 | −0.0815 | 0.0613 |
Cultivated land | −0.207 * | −0.1702 | −0.341 ** | −0.270 ** | −0.252 ** | −0.421 ** | 0.375 ** |
Landslide | −0.0030 | 0.0158 | 0.0829 | 0.0558 | 0.1030 | 0.0625 | −0.0625 |
Forest | −0.282 ** | 0.394 ** | −0.350 ** | 0.353 ** | 0.0314 | 0.304 ** | −0.1547 |
Sediment Yield | |||||||
Land Cover | PD | AREA_AM | ED | GYRATE_AM | SHAPE_AM | AI | SPLIT |
Grassland | 0.0240 | 0.0944 | 0.0622 | 0.1102 | 0.0613 | 0.0182 | −0.1205 |
Built-up | −0.0805 | −0.0328 | −0.0836 | −0.0018 | 0.0035 | −0.0468 | −0.0842 |
Cultivated land | −0.228 ** | −0.0849 | −0.377 ** | −0.216 * | −0.223 * | −0.431 ** | 0.327 ** |
Landslide | 0.1777 | 0.1796 | 0.349 ** | 0.281 ** | 0.341 ** | 0.238 * | −0.1639 |
Forest | −0.0156 | −0.0541 | 0.213 * | 0.0442 | 0.257 ** | −0.0851 | −0.0390 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiang, L.-C.; Chuang, Y.-T.; Han, C.-C. Integrating Landscape Metrics and Hydrologic Modeling to Assess the Impact of Natural Disturbances on Ecohydrological Processes in the Chenyulan Watershed, Taiwan. Int. J. Environ. Res. Public Health 2019, 16, 266. https://doi.org/10.3390/ijerph16020266
Chiang L-C, Chuang Y-T, Han C-C. Integrating Landscape Metrics and Hydrologic Modeling to Assess the Impact of Natural Disturbances on Ecohydrological Processes in the Chenyulan Watershed, Taiwan. International Journal of Environmental Research and Public Health. 2019; 16(2):266. https://doi.org/10.3390/ijerph16020266
Chicago/Turabian StyleChiang, Li-Chi, Yi-Ting Chuang, and Chin-Chuan Han. 2019. "Integrating Landscape Metrics and Hydrologic Modeling to Assess the Impact of Natural Disturbances on Ecohydrological Processes in the Chenyulan Watershed, Taiwan" International Journal of Environmental Research and Public Health 16, no. 2: 266. https://doi.org/10.3390/ijerph16020266
APA StyleChiang, L. -C., Chuang, Y. -T., & Han, C. -C. (2019). Integrating Landscape Metrics and Hydrologic Modeling to Assess the Impact of Natural Disturbances on Ecohydrological Processes in the Chenyulan Watershed, Taiwan. International Journal of Environmental Research and Public Health, 16(2), 266. https://doi.org/10.3390/ijerph16020266