Study on the Remediation of Cd Pollution by the Biomineralization of Urease-Producing Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Screening Strains
2.2. Identification Based on Molecular Characterization
2.3. Enzyme Activities
2.4. Cd Precipitation Experiments
2.5. SEM and EDS Analyses of the Precipitates
2.6. XRD and FTIR Analyses
2.7. Cd-Contaminated Soil Remediation
2.8. Sequential Extraction of Cd
3. Results and Discussion
3.1. Screening and Identification of Bacteria
3.2. Enzyme Activities
3.3. Cd Precipitation Experiments
3.4. XRD Analysis
3.5. SEM and EDS Analyses
3.6. FTIR Spectroscopy
3.7. Cd Analysis after Bioremediation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, Y.; Yang, Y.; Li, C.; Ni, X.; Ma, W.; Wei, H. Assessing Soil Metal Levels in an Industrial Environment of Northwestern China and the Phytoremediation Potential of Its Native Plants. Sustainability 2018, 10, 2686. [Google Scholar] [CrossRef]
- Kwapulinski, J.; Paukszto, A.; Paprotny, Ł.; Musielinska, R.; Kowol, J.; Nogaj, E.; Rochel, R. Bioavailability of Lead, Cadmium, and Nickel in Tatra Mountain National Park Soil. Pol. J. Environ. Stud. 2012, 21, 407–413. [Google Scholar]
- Jean, L.; Bordas, F.; Bollinger, J.C. Chromium and nickel mobilization from a contaminated soil using chelants. Environ. Pollut. 2007, 147, 729–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basta, N.; Gradwohl, R. Estimation of Cd, Pb, and Zn bioavailability in smelter-contaminated soils by a sequential extraction procedure. J. Soil. Contam. 2000, 9, 149–164. [Google Scholar] [CrossRef]
- Qin, L.; Xie, D.; Zhu, W.; Shi, M.; Xiong, Q. The characteristics of riparian heavy metal pollution in Tumen River. J. Arid Land Resour. Environ. 2015, 29, 120–125. [Google Scholar]
- Achal, V.; Pan, X.; Fu, Q.; Zhang, D. Biomineralization based remediation of As(III) contaminated soil by Sporosarcina ginsengisoli. J. Hazard. Mater. 2012, 201, 178–184. [Google Scholar] [CrossRef]
- Ike, M.; Miyazaki, T.; Yamamoto, N.; Sei, K.; Soda, S. Removal of arsenic from groundwater by arsenite-oxidizing bacteria. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2008, 58, 1095–1100. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Li, W.; Zhan, L.; Huang, M.; Zhang, Q.; Achal, V. The large-scale process of microbial carbonate precipitation for nickel remediation from an industrial soil. Environ. Pollut. 2016, 219, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.M.; Ali, M.L.; Islam, M.S.; Rahman, M.Z. Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh. Environ. Nanotechnol. Monit. Manag. 2016, 5, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Yao, J.; Yuan, Z.; Wang, T.; Zhang, Y.; Wang, F. Bioremediation of Cd by strain GZ-22 isolated from mine soil based on biosorption and microbially induced carbonate precipitation. Environ. Sci. Pollut. Res. 2017, 24, 372–380. [Google Scholar] [CrossRef]
- Li, M.; Cheng, X.; Guo, H. Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. Int. Biodeterior. Biodegrad. 2013, 76, 81–85. [Google Scholar] [CrossRef]
- Paassen, L.A.V. Biogrout, Ground Improvement by Microbial Induced Carbonate Precipitation; TU: Delft, The Netherlands, 2009. [Google Scholar]
- Kang, C.H.; So, J.S. Heavy metal and antibiotic resistance of ureolytic bacteria and their immobilization of heavy metals. Ecol. Eng. 2016, 97, 304–312. [Google Scholar] [CrossRef]
- Arias, D.; Cisternas, L.A.; Rivas, M. Biomineralization of calcium and magnesium crystals from seawater by halotolerant bacteria isolated from Atacama Salar (Chile). Desalination 2017, 405, 1–9. [Google Scholar] [CrossRef]
- Sangeeta, C.; Pinaki, S. Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste. J. Hazard. Mater. 2011, 186, 336–343. [Google Scholar]
- Mitchell, A.C.; Ferris, F.G. The coprecipitation of Sr into calcite precipitates induced by bacterial ureolysis in artificial groundwater: Temperature and kinetic dependence. Geochim. Cosmochim. Acta 2005, 69, 4199–4210. [Google Scholar] [CrossRef]
- Yamamura, S.; Ike, M.; Fujita, M. Dissimilatory arsenate reduction by a facultative anaerobe, Bacillus sp. strain SF-1. J. Biosci. Bioeng. 2003, 96, 454–460. [Google Scholar] [CrossRef]
- Kang, C.H.; Kwon, Y.J.; So, J.S. Bioremediation of heavy metals by using bacterial mixtures. Ecol. Eng. 2016, 89, 64–69. [Google Scholar] [CrossRef]
- Kang, C.H.; Han, S.H.; Soo Ji, O.H.; Shin, Y.J.; Kim, Y.; Jaeseong, S.O. Bioremediation of Cd by Microbially Induced Calcite Precipitation. Appl. Biochem. Biotechnol. 2014, 172, 1929–1937. [Google Scholar] [CrossRef]
- Annu; Garg, A.; Urmila. Level of Cd in different types of soil of Rohtak district and its bioremediation. J. Environ. Chem. Eng. 2016, 4, 3797–3802. [Google Scholar] [CrossRef]
- Kang, C.H.; Oh, S.J.; Shin, Y.J.; Han, S.H.; Nam, I.H.; So, J.S. Bioremediation of lead by ureolytic bacteria isolated from soil at abandoned metal mines in South Korea. Ecol. Eng. 2015, 74, 402–407. [Google Scholar] [CrossRef]
- Muthusamy, G.; Kui-Jae, L.; Min, C.; Jae Su, K.; Seralathan, K.K.; Byung-Taek, O. Significance of autochthonous Bacillus sp. KK1 on biomineralization of lead in mine tailings. Chemosphere 2013, 90, 2267–2272. [Google Scholar]
- Kannan, S.K.; Mahadevan, S.; Krishnamoorthy, R. Characterization of a mercury-reducing Bacillus cereus strain isolated from the Pulicat Lake sediments, south east coast of India. Arch. Microbiol. 2006, 185, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Achal, V.; Pan, X. Characterization of urease and carbonic anhydrase producing bacteria and their role in calcite precipitation. Curr. Microbiol. 2011, 62, 894–902. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.Q.; Ji, P.; Lai, G.; Chi, C.; Liu, Z.; Wu, X. Diverse microbial community from the coalbeds of the Ordos Basin, China. Int. J. Coal. Geol. 2012, 90, 21–33. [Google Scholar] [CrossRef]
- Whiffin, V.S. Microbial CaCO3 Precipitation for the Production of Biocement. Ph.D. Thesis, Murdoch University, Murdoch, Australia, 2004. [Google Scholar]
- Whiffin, V.S.; Paassen, L.A.V.; Harkes, M.P. Microbial Carbonate Precipitation as a Soil Improvement Technique. Geomicrobiol. J. 2007, 24, 417–423. [Google Scholar] [CrossRef]
- Chao, Y.; Zhang, T. Optimization of fixation methods for observation of bacterial cell morphology and surface ultrastructures by atomic force microscopy. Appl. Microbiol. Biot. 2011, 92, 381–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, R.; Lu, X.; Lu, J.; Li, J.; Hu, H. Tolerance and Biosorption of Heavy Metals by Cupriavidus metallidurans strain XXKD-1 Isolated from a Subsurface Laneway in the Qixiashan Pb-Zn Sulfide Minery in Eastern China. Geomicrobiol. J. 2012, 29, 274–286. [Google Scholar] [CrossRef]
- Diels, L.; Roy, S.V.; Taghavi, S.; Houdt, R.V. From industrial sites to environmental applications with Cupriavidus metallidurans. Anton. Leeuw. Int. J. Gen. 2009, 96, 247–258. [Google Scholar] [CrossRef]
- Mergeay, M.; Houba, C.; Gerits, J. Extrachromosomal inheritance controlling resistance tocadmium, cobalt, copper and zinc ions: Evidence from curing a Pseudomonas. Arch. Int. Physiol. Biochim. 1978, 86, 440–442. [Google Scholar]
- Muynck, W.D.; Belie, N.D.; Verstraete, W. Microbial carbonate precipitation in construction materials: A review. Ecol. Eng. 2010, 36, 118–136. [Google Scholar] [CrossRef]
- Anne, S.; Rozenbaum, O.; Andreazza, P.; Rouet, J.L. Evidence of a bacterial carbonate coating on plaster samples subjected to the Calcite Bioconcept biomineralization technique. Constr. Build. Mater. 2010, 24, 1036–1042. [Google Scholar] [CrossRef] [Green Version]
- Prah, J.; Maček, J.; Dražič, G. Precipitation of calcium carbonate from a calcium acetate and ammonium carbamate batch system. J. Cryst. Growth 2011, 324, 229–234. [Google Scholar] [CrossRef]
- Walker, W.J.; Mcnutt, R.P.; Maslanka, C.K. The potential contribution of urban runoff to surface sediments of the Passaic River: Sources and chemical characteristics. Chemosphere 1999, 38, 363–377. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, G.; Zheng, X.; Ren, J. Screening of Heavy Metal Tolerant Microbes in Sludge and Removal Capability of Lead. J. Residuals Sci. Technol. 2015, 12, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Aejung, C.; Wang, S.K.; Minhee, L. Biosorption of cadmium, copper, and lead ions from aqueous solutions by Ralstonia sp. and Bacillus sp. isolated from diesel and heavy metal contaminated soil. Geosci. J. 2009, 13, 331–341. [Google Scholar]
- Castanier, S.; Métayer-Levrel, G.L.; Perthuisot, J.P. Ca-carbonates precipitation and limestone genesis—The microbiogeologist point of view. Sediment. Geol. 1999, 126, 9–23. [Google Scholar] [CrossRef]
- Hammes, F.; Seka, A.; De, K.S.; Verstraete, W. A novel approach to calcium removal from calcium-rich industrial wastewater. Water Res. 2003, 37, 699–704. [Google Scholar] [CrossRef]
- Cheng, L.; Qian, C.; Wang, R.; Wang, J. Bioremediation process of Cd2+ removal from soil by bacteria a biomineralization. J. Chin. Ceram. Soc. 2008, 36, 215–221. [Google Scholar]
- Chen, Z.; Pan, X.; Chen, H.; Guan, X.; Lin, Z. Biomineralization of Pb(II) into Pb-hydroxyapatite induced by Bacillus cereus 12-2 isolated from Lead-Zinc mine tailings. J. Hazard. Mater. 2015, 301, 531–537. [Google Scholar] [CrossRef]
- Benzerara, K.; Miot, J.; Morin, G.; Ona-Nguema, G.; Skouri-Panet, F.; Férard, C. Significance, mechanisms and environmental implications of microbial biomineralization. CR Géosci. 2011, 343, 160–167. [Google Scholar] [CrossRef]
- Phillips, A.J.; Gerlach, R.; Lauchnor, E.; Mitchell, A.C.; Cunningham, A.B.; Spangler, L. Engineered applications of ureolytic biomineralization: A review. Biofouling 2013, 29, 715–733. [Google Scholar] [CrossRef] [PubMed]
- Frankel, R.B. Biologically Induced Mineralization by Bacteria. Rev. Miner. Geochem. 2013, 54, 95–114. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Jroundi, F.; Schiro, M.; Ruiz-Agudo, E.; González-Muñoz, M.T. Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: Implications for stone conservation. Appl. Environ. Microbiol. 2012, 78, 4017–4029. [Google Scholar] [CrossRef] [PubMed]
- Teng, H.; Hu, Q.; Lian, B.; Ji, J.; Chen, J. Carbonate biomineralization induced by soil bacterium Bacillus megaterium. Geochim. Cosmochim. Acta 2006, 70, 5522–5535. [Google Scholar] [CrossRef]
- Hammes, F.; Boon, N.; De, V.J.; Verstraete, W.; Siciliano, S.D. Strain-specific ureolytic microbial calcium carbonate precipitation. Appl. Environ. Microbiol. 2003, 69, 4901–4909. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Park, Y.M.; Chun, W.Y.; Kim, W.J.; Ghim, S.Y. Calcite-forming bacteria for compressive strength improvement in mortar. J. Microbiol. Biotechnol. 2010, 20, 782–788. [Google Scholar] [PubMed]
- Dejong, J.T.; Mortensen, B.M.; Martinez, B.C.; Nelson, D.C.; Jonkers, H.M.; Loosdrecht, M.C.M.V. Bio-mediated soil improvement. Ecol. Eng. 2010, 36, 197–210. [Google Scholar] [CrossRef]
- Al-Thawadi, S.M. Consolidation of Sand Particles by Aggregates of Calcite Nanoparticles Synthesized by Ureolytic Bacteria under non-Sterile Conditions. J. Chem. Sci. Technol. 2013, 2, 141–146. [Google Scholar]
- Beech, I.; Hanjagsit, L.; Kalaji, M.; Neal, A.L.; Zinkevich, V. Chemical and structural characterization of exopolymers produced by Pseudomonas sp. NCIMB 2021 in continuous culture. Microbiology 1999, 145, 1491–1497. [Google Scholar] [CrossRef]
- Fein, J.B.; Martin, A.M.; Wightman, P.G. Metal adsorption onto bacterial surfaces: Development of a predictive approach. Geochim. Cosmochim. Acta 2001, 65, 4267–4273. [Google Scholar] [CrossRef]
- Yang, S.L.; Wei, S. Study on Precipitation Process of Spherical Calcium Carbonate Controlled by Polyaspartic Acid. J. Synth. Cryst. 2013, 42, 1475–1480. [Google Scholar]
- Burns, J.L.; Ginn, B.R.; Bates, D.J.; Dublin, S.N.; Taylor, J.V.; Apkarian, R.P.; Amaro-Garcia, S.; Neal, A.L.; Dichristina, T.J. Outer membrane-associated serine protease involved in adhesion of Shewanella oneidensis to Fe(III) oxides. Environ. Sci. Technol. 2010, 44, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.H.; Elzinga, E.J.; Brechbuehl, Y.; Voegelin, A.; Kretzschmar, R. Impacts of Shewanella putrefaciens strain CN-32 cells and extracellular polymeric substances on the sorption of As(V) and As(III) on Fe(III)-(hydr)oxides. Environ. Sci. Technol. 2011, 45, 2804–2810. [Google Scholar] [CrossRef] [PubMed]
- Xian, X. Effect of chemical forms of cadmium, zinc, and lead in polluted soils on their uptake by cabbage plants. Plant Soil 1989, 113, 257–264. [Google Scholar] [CrossRef]
- Zeng, X.; Wu, L.; Li, W.; Zhu, S.; Wei, B.; Tang, J.; Tan, Y. Characterization of Strain Cupriavidus sp. ZSK and Its Biosorption of Heavy Metal Ions. J. Biobased Mater. Bioenergy 2017, 11, 154–158. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Wang, M.; Wang, H.; Tang, D.; Huang, J.; Sun, Y. Study on the Remediation of Cd Pollution by the Biomineralization of Urease-Producing Bacteria. Int. J. Environ. Res. Public Health 2019, 16, 268. https://doi.org/10.3390/ijerph16020268
Zhao X, Wang M, Wang H, Tang D, Huang J, Sun Y. Study on the Remediation of Cd Pollution by the Biomineralization of Urease-Producing Bacteria. International Journal of Environmental Research and Public Health. 2019; 16(2):268. https://doi.org/10.3390/ijerph16020268
Chicago/Turabian StyleZhao, Xingqing, Min Wang, Hui Wang, Ding Tang, Jian Huang, and Yu Sun. 2019. "Study on the Remediation of Cd Pollution by the Biomineralization of Urease-Producing Bacteria" International Journal of Environmental Research and Public Health 16, no. 2: 268. https://doi.org/10.3390/ijerph16020268
APA StyleZhao, X., Wang, M., Wang, H., Tang, D., Huang, J., & Sun, Y. (2019). Study on the Remediation of Cd Pollution by the Biomineralization of Urease-Producing Bacteria. International Journal of Environmental Research and Public Health, 16(2), 268. https://doi.org/10.3390/ijerph16020268