Effect of Vigorous Physical Activity on Executive Control in Middle-School Students
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instrumentation
2.3. Procedures
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pessoa, L. How do emotion and motivation adirect executive control. Trends Cogn. Sci. 2009, 13, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Clair-Thompson, H.L.S.; Gathercole, S.E. Executive functions and achievements in school: Shifting, updating, inhibition and working memory. Q. J. Exp. Psychol. 2006, 59, 745–759. [Google Scholar] [CrossRef] [PubMed]
- Hillman, C.H.; Buck, S.M.; Themanson, J.R.; Pontifex, M.B.; Castelli, D.M. Aerobic fitness and cognitive development: Event-related brain potential and task performance indices of executive control in preadolescent children. Dev. Pyschol. 2009, 45, 114–129. [Google Scholar] [CrossRef] [PubMed]
- Tomporowski, P.D. Effects of acute bouts of exercise on cognition. Acta Psychol. 2003, 112, 297–324. [Google Scholar] [CrossRef]
- Tomporowski, P.D. Cognitive and behavioral responses to acute exercise in youth: A Review. Pediatric Exerc. Sci. 2003, 15, 348–359. [Google Scholar] [CrossRef]
- Grissom, J.B. Physical fitness and academic achievement. J. Exerc. Physiol. 2005, 8, 11–25. [Google Scholar]
- Welk, G.J.; Jackson, A.W.; Morrow, J.R., Jr.; Haskell, W.H.; Meredith, M.D.; Cooper, K.H. The association of health-related fitness with indicators of academic performance in Texas schools. Res. Q. Exerc. Sport 2010, 81 (Suppl. 3), S16–S23. [Google Scholar] [CrossRef]
- Travlos, A.K. High intensity physical education classes and cognitive performance in eighth grade students: An applied study. USEP 2010, 8, 302–311. [Google Scholar] [CrossRef]
- Won, J.; Wu, S.; Ji, H.; Carson Smith, J.; Park, L. Executive function and the P300 after treadmill exercise and futsal in college soccer players. Sports 2017, 5, 73. [Google Scholar] [CrossRef]
- Chen, A.-G.; Zhu, L.-N.; Xiong, X.; Li, Y. Acute aerobic exercise alters executive control network in preadolescent children. J. Sports Psychol. 2017, 26, 132–137. [Google Scholar]
- Hillman, C.H.; Pontifex, M.B.; Castelli, D.M.; Khan, N.A.; Raine, L.B.; Scudder, M.R.; Drollette, E.S.; Moore, R.D.; Wu, C.-T.; Kamijo, K. Effects of the FITKids randomized controlled trial on executive control and brain function. Pediatrics 2014, 134, e1063–e1071. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.A.; Hillman, C.H. The relation of childhood physical activity and aerobic fitness to brain function and cognition: A review. Pediatric Exerc. Sci. 2014, 26, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.L.; Tomorowski, P.D.; Boyle, C.A.; Waller, J.L.; Miller, P.H.; Naglieri, J.A.; Gregorski, M. Effects of aerobic exercise on overweight children’s cognitive functioning: A randomized controlled trial. Res. Q. Exerc. Sport 2007, 78, 510–519. [Google Scholar] [CrossRef] [PubMed]
- Castelli, D.M.; Hillman, C.H.; Hirsch, J.; Hirsch, A.; Drollettte, E. FIT Kids: Time in target heart rate zone and cognitive performance. Prev. Med. 2011, 52, S55–S59. [Google Scholar] [CrossRef]
- Harverson, A.T.; Hannon, J.C.; Brusseau, T.A.; Podlog, L.; Papadopoulos, C.; Durrant, L.H.; Hall, M.S.; Kang, K. Acute effects of 30 min resistance and aerobic exercise on cognition in a high school sample. Res. Q. Exerc. Sport 2016, 87, 214–220. [Google Scholar] [CrossRef]
- Rabin, L.A.; Barr, W.; Burton, L. Assessment practices of clinical neuropsychologists in the United States and Canada: A survey of INS, NAN, and APA Division 40 members. Arch. Clin. Neuropsychol. 2005, 20, 33–65. [Google Scholar] [CrossRef] [Green Version]
- Groff, M.G.; Hubble, L.M. A factor analytic investigation of the Trail Making Test. Clin. Neuropsychol. 1981, 3, 11–13. [Google Scholar]
- Larrabee, G.J.; Curtiss, G. Construct validity of various verbal and visual memory tests. J. Clin. Exp. Neuropsychol. 1995, 17, 536–547. [Google Scholar] [CrossRef]
- Gaudino, E.A.; Geisler, M.W.; Squires, N.K. Construct validity in the Trail Making Test: What makes part B harder? J. Clin. Exp. Neuropsychol. 1995, 17, 529–535. [Google Scholar] [CrossRef]
- Arbuthnott, K.; Frank, J. Trail making test, part B as a measure of executive control: Validation using a set-switching paradigm. J. Clin. Exp. Neuropsychol. 2000, 22, 518–528. [Google Scholar] [CrossRef]
- Sánchez-Cubillo, I.; Periáñez, J.A.; Adrover-Roig, D.; Rodríguez-Sánchez, J.M.; Ríos-Lago, M.; Tirapu, J.; Barceló, F. Construct validity of the Trail Making Test: Role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. J. Int. Neuropsychol. Soc. 2009, 15, 438–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strauss, E.; Sherman, E.M.S.; Spreen, O. A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary, 3rd ed.; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Reitan, R.M.; Wolfson, D. The Halstead-Retain Neuropsychological Test. Battery: Theory and Clinical Interpretation, 2nd ed.; Neuropsychology Press: Tuscon, AZ, USA, 1993. [Google Scholar]
- Dikmen, S.S.; Heaton, R.K.; Grant, I.; Tempkin, N.R. Test–retest reliability and practice effects of Expanded Halstead–Reitan Neuropsychological Test Battery. J. Int. Neuropsychol. Soc. 1999, 5, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control. Target. Heart Rate and Estimated Maximum Heart Rate; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2011. Available online: http://www.cdc.gov/physicalactivity/everyone/measuring/heartrate.html (accessed on 15 September 2011).
- Crouter, S.E.; Albright, C.; Bassett, D.R. Accuracy of polar S410 heart rate monitor to estimate energy cost of exercise. Med. Sci. Sports Exerc. 2004, 36, 1433–1439. [Google Scholar] [CrossRef] [PubMed]
- Bar-Or, T.; Bar-Or, O.; Waters, H.; Hirji, A.; Russell, S. Validity and social acceptability of the Polar Vantage XL for measuring heart rate in preschoolers. Pediatric Exerc. Sci. 1996, 8, 115–121. [Google Scholar] [CrossRef]
- Brown, L.E.; Ferrigno, V. Training for Speed, Agility and Quickness; Human Kinetics: Champaign, IL, USA, 2005. [Google Scholar]
- Stillman, C.M.; Cohen, J.; Lehman, M.E.; Erickson, K.I. Mediators of physical activity on neurocognitive function: A review at multiple levels of analysis. Front. Hum. Neurosci. 2016, 10, 626. [Google Scholar] [CrossRef] [PubMed]
- Winter, B.; Breitenstein, C.; Mooren, F.C.; Voelker, K.; Fobker, M.; Lechtermann, A.; Krueger, K.; Fromme, A.; Korsukewitz, C.; Knecht, S.; et al. High impact running improves learning. Neurobiol. Learn. Mem. 2007, 87, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, S.S.; Fung, D.; Tsai, H.; Chang, Y.K.; Huang, C.J.; Hung, T.M. Differences in working memory as a function of physical activity in children. Neuropsychology 2018, 32, 797–808. [Google Scholar] [CrossRef]
- Berwid, O.G.; Halperin, J.M. Emerging support for a role of exercise in attention-deficit/hyperactivity disorder intervention planning. Curr. Psychiatry Rep. 2012, 14, 543–551. [Google Scholar] [CrossRef]
- Tsukamoto, H.; Takenaka, S.; Suga, T.; Tanaka, D.; Takeuchi, T.; Hamaoka, T.; Isaka, T.; Hashimoto, T. Impact of exercise intensity and duration on postexercise executive function. Med. Sci. Sports Exerc. 2017, 49, 774–784. [Google Scholar] [CrossRef]
- Pontifex, M.B.; Kamijo, K.; Hillman, C.H. The differential association of adiposity and fitness with cognitive control in preadolescent children. Monogr. Soc. Res. Child Dev. 2014, 79, 72–92. [Google Scholar] [CrossRef]
- Khan, N.A.; Raine, L.B.; Donovan, S.M.; Hillman, C.H. The cognitive implications of obesity and nutrition in childhood. Monogr. Soc. Res. Child Dev. 2014, 79, 51–71. [Google Scholar] [CrossRef] [PubMed]
- Huizinga, M.M. Age-related change in executive function: Developmental trends and a latent variable analysis. Neuropsychologia 2006, 44, 2017–2036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Best, J.R.; Miller, P.H.; Jones, L.L. Executive function after age 5: Changes and correlates. Dev. Rev. 2009, 29, 180–200. [Google Scholar] [CrossRef] [PubMed]
- Hillman, C.H.; Castelli, D.M.; Buck, S.M. Aerobic fitness and neurocognitive function in healthy preadolescent children. Med. Sci. Sports Exerc. 2005, 3, 1967–1974. [Google Scholar] [CrossRef]
- Alves, C.R.R.; Gualano, B.; Takao, P.P.; Avakian, P.; Fernandes, R.M.; Morine, D.; Takito, M.Y. Effects of acute physical exercise on executive functions: A comparison between aerobic and strength exercise. J. Sport Exerc. Psychol. 2012, 34, 539–549. [Google Scholar] [CrossRef]
- Tombs, M.; Tyler, K.; Johnson, P.J. The benefits of physical activity for cognitive functioning in a student population. Educ. Health 2013, 31, 91–94. [Google Scholar]
- Norton, K.; Norton, L.; Lewis, N. Effects of short-term physical activity interventions on simple and choice response time. BioMed. Res. Int. 2016, 2016, 5613767. [Google Scholar] [CrossRef]
- Donnelly, J.E.; Hillman, C.H.; Castelli, D.M.; Szabo-Reed, A.N. Physical activity, fitness, cognitive function, and academic achievement in children: A systematic review. Med. Sci. Sports Exerc. 2016, 48, 1197–1222. [Google Scholar] [CrossRef]
- Miyaki, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wagner, T.D. The unity and diversity of executive functions and their contributions to complex ‘frontal lobe’ tasks: A latent variable analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef]
- Duncan, G.J.; Dowsett, C.J.; Claessens, A.; Magnuson, K.; Huston, A.C. School readiness and later achievement. Dev. Psychol. 2007, 43, 1428–1446. [Google Scholar] [CrossRef]
- Borella, E.; Carretti, B.; Pelgrina, S. The specific role of inhibition in reading comprehension in good and poor comprehenders. J. Learn. Dis. 2010, 43, 541–552. [Google Scholar] [CrossRef] [PubMed]
Name of Exercise | Description |
---|---|
Line Jumps | The participants will jump sideways across and back over a line with both feet together. |
Ladder Run | Running through an agility ladder/set of cones, and then run down the side of the ladder/cones to repeat the process. |
Hurdles | The participant will hurdle over small 6-12-inch hurdles and then run down the side of the hurdles to repeat the process. |
Step Ups | The participant will step up and down on 18-inch-high aerobic steps. |
High Knees | The participant will lift alternate knees high into the air on the spot. |
Shuttle Drills | The participant will sprint to cones and back, 3, 5 and 10 yards away. |
Z Pattern Run | The participant will run through a set of cones arranged in a zig-zag pattern 5 yards away from each other, and then run down the side of the cones to repeat the process. |
Jump Rope | The participant will jump rope on the spot. |
Jumping Jacks | The participants will complete jumping jacks on the spot. |
Sample | Test Type | TMT-A Post SA | TMT-A Post PA | TMT-B Post SA | TMT-B Post PA | ||||
---|---|---|---|---|---|---|---|---|---|
N | Group1 | Group2 | Group1 | Group2 | Group1 | Group2 | Group1 | Group2 | |
Total Sample | 68 | 23.2 (6.4) | 20.8 (3.9) | 20.7 (6.7) | 24.5 (6.6) | 57.5 (18.8) | 48.0 (17.0) | 46.9 (15.5) | 48.7 (10.2) |
Male | 42 | 23.8 (7.0) | 21.1 (4.0) | 20.7 (7.5) | 24.1 (4.3) | 58.3 (21.7) | 50.5 (13.5) | 46.9 (17.4) | 47.5 (9.3) |
Female | 26 | 22.2 (5.4) | 20.3 (3.8) | 20.8 (5.1) | 25.3 (9.0) | 55.2 (12.6) | 44.5 (20.9) | 47.0 (12.0) | 50.5 (11.5) |
Test | Effect | F-Statistic | p-Value | Eta-Squared |
---|---|---|---|---|
TMT-A | Treatment | 1.5 | 0.226 | 0.005 |
Sex | 0.6 | 0.461 | 0.001 | |
Sex × Treatment | 2.1 | 0.155 | 0.006 | |
Order | 0.2 | 0.631 | 0.004 | |
TMT-B | Treatment | 5.1 † | 0.026 | 0.018 |
Sex | 0.5 | 0.501 | 0.002 | |
Sex × Treatment | 1.9 | 0.170 | 0.012 | |
Order | 0.1 | 0.770 | 0.014 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phillips, D.S.; Hannon, J.C.; Gregory, B.B.; Burns, R.D. Effect of Vigorous Physical Activity on Executive Control in Middle-School Students. Int. J. Environ. Res. Public Health 2019, 16, 3949. https://doi.org/10.3390/ijerph16203949
Phillips DS, Hannon JC, Gregory BB, Burns RD. Effect of Vigorous Physical Activity on Executive Control in Middle-School Students. International Journal of Environmental Research and Public Health. 2019; 16(20):3949. https://doi.org/10.3390/ijerph16203949
Chicago/Turabian StylePhillips, David S., James C. Hannon, Bradley B. Gregory, and Ryan D. Burns. 2019. "Effect of Vigorous Physical Activity on Executive Control in Middle-School Students" International Journal of Environmental Research and Public Health 16, no. 20: 3949. https://doi.org/10.3390/ijerph16203949
APA StylePhillips, D. S., Hannon, J. C., Gregory, B. B., & Burns, R. D. (2019). Effect of Vigorous Physical Activity on Executive Control in Middle-School Students. International Journal of Environmental Research and Public Health, 16(20), 3949. https://doi.org/10.3390/ijerph16203949