

  ijerph-16-03955




ijerph-16-03955







Int. J. Environ. Res. Public Health 2019, 16(20), 3955; doi:10.3390/ijerph16203955




Article



Recognizing Human Daily Activity Using Social Media Sensors and Deep Learning



Junfang Gong 1[image: Orcid], Runjia Li 2, Hong Yao 2, Xiaojun Kang 2 and Shengwen Li 1,*[image: Orcid]





1



School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China






2



School of Computer Science, China University of Geosciences, Wuhan 430074, China









*



Correspondence: swli@cug.edu.cn; Tel.: +86-189-7128-2155







Received: 2 August 2019 / Accepted: 15 October 2019 / Published: 17 October 2019



Abstract

:

The human daily activity category represents individual lifestyle and pattern, such as sports and shopping, which reflect personal habits, lifestyle, and preferences and are of great value for human health and many other application fields. Currently, compared to questionnaires, social media as a sensor provides low-cost and easy-to-access data sources, providing new opportunities for obtaining human daily activity category data. However, there are still some challenges to accurately recognizing posts because existing studies ignore contextual information or word order in posts and remain unsatisfactory for capturing the activity semantics of words. To address this problem, we propose a general model for recognizing the human activity category based on deep learning. This model not only describes how to extract a sequence of higher-level word phrase representations in posts based on the deep learning sequence model but also how to integrate temporal information and external knowledge to capture the activity semantics in posts. Considering that no benchmark dataset is available in such studies, we built a dataset that was used for training and evaluating the model. The experimental results show that the proposed model significantly improves the accuracy of recognizing the human activity category compared with traditional classification methods.
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1. Introduction


The knowledge about which activities and why people perform them at a certain time can be very valuable for identifying healthy lifestyles [1] and can be used in a wide range of applications. For example, doctors could better build the connection between patients’ habits and lifestyles and their health problems based on people’s daily activity patterns. However, collecting trajectory labeled activity categories by questionnaire or by wearable devices is financially costly and may violate personal privacy.



In this paper, we aim to automatically extract high-level logical activity [2] (e.g., sports, shopping, and entertainment) trajectories through a convenient, low-cost source, where most research studies rely on visual (e.g., cameras) and wearable devices to identify low-level physical activities (e.g., standing, walking, and sitting) [3,4] instead of high-level logical activities. For many applications, such as understanding the human lifestyle and healthy, high-level logical activity categories are more informative. There are currently few related studies, and new methods and data sources both need to be developed to achieve this goal.



Currently, people are considered sensors, producing signals on events they are directly involved in or where they are present [5]. People enjoy sharing with their friends what they are currently doing, anytime and anywhere, on social media platforms [6]. Unprecedented quantities of user-generated data on human activity have been collected through smartphones on social media; these data contain texts and time that reflect extensive knowledge about human activity. Due to their widespread rich information attached to social media posts, these social media data can be of great value in human activity recognition. However, the posts on social media are represented as short texts that are very uncertain. Previous researches employed traditional classification methods [7,8,9], which ignore the contextual information or word order in posts and remain unsatisfactory for capturing the activity semantics of the words; there are still some challenges to accurately recognizing human daily actives in social media.



Considering this problem, we propose a general model for recognizing the human activity category based on a deep learning sequence model. To the best of our knowledge, our proposal is the first to recognize activity from social media based on deep learning [10] theory and is the first to fuse text semantics, external knowledge and temporal information to complete this task. In summary, the contributions of this paper are listed as follows:




	(1)

	
We propose a general model for human activity classification based on a deep learning sequence model and a series of solutions to capture the activity semantic by embedding, encoding and fusing text semantics, external knowledge and temporal information for machine learning. The model provides methods on how to extract a sequence of higher-level word phrase representations in posts, as well as how to integrate temporal information and external knowledge in posts.




	(2)

	
We build an activity-text dataset that contains activity labels, post texts, and release time called Yelp-20k. The dataset contains 14 categories of activities and 28,150 labeled posts; the dataset utilized in this paper can be downloaded via GitHub. The dataset can be taken as a benchmark dataset to facilitate works on human activity recognition.




	(3)

	
We present the proposed model and its variants to classify human activity with accuracies of 81.29, 81.99, 82.93 and 82.42%. While all four models perform similarly well for human activity recognition, combining text semantics and temporal information is more robust.









The rest of the paper is organized as follows. In Section 2, we discuss the state-of-the-art literature on mining human activities from social media data. We then present the proposed model in Section 3. In Section 4, we report on the experiment and the analysis of the results in detail. Finally, we conclude the paper in Section 5.




2. Related Work


Referring to human activity recognition, many works aim to identify low-level physical activities (e.g., standing, walking, and sitting). Human physical activity recognition is a promising research field due to its applications in healthcare, athletics, lifestyle monitoring, and computer-human interaction. Usually, it can be implemented from three categories of data, such as video, wearable motion sensor data, and multi-sensors data [11,12,13]. Researchers use traditional classification methods such as SVM (Support Vector Machine) and TF-IDF (Term Frequency–Inverse Document Frequency) models to identify human physical activities and develop a syntactic approach that treats activities as sequential text and uses a grammar syntax such as stochastic context-free grammar to identify physical activity categories [7,8,9,14,15,16]. Recently, deep learning has been adopted by combining spatiotemporal dynamic texture descriptors [11].



In contrast to physical activity, human activity recognition in this paper aims to classify high-level logical activities (e.g., eating, shopping, and entertainment). For high-level logical activities recognition, there are different works in the literature using different types of data. These related studies can be summarized in 3 categories.



The first category of works focuses on activity category prediction. Weerkamp proposed an approach to predict the popular activities that will occur in a future time window, such as tonight, tomorrow, and next week, by using a future time window and keywords related to activities [17]. Their input data and objectives are different than this paper, and methods in those studies cannot be used directly for the task of identifying activities.



The second category is human activity recognition using location information in both continuing and noncontinuous types of trajectories. (1) For continuous trajectories, these studies usually use constrained random fields, support vector machines, or Bayesian to identify travel modes with spatiotemporal features of trajectory data [18,19,20,21]. An algorithm was developed for automatically annotating raw trajectories with the activities performed by analyzing users’ stop points to infer the POI (Point of Interest) that the user has visited [22]. These studies mainly use the space-time position information in the trajectory data for discrimination, and the description information when the trajectory is generated is missing. The category of activity identified is relatively simple. In mixed-use plots such as shopping centers and office buildings, the recognition accuracy is not high. (2) Noncontinuous trajectories, such as mobile phone trajectories, and social media are used to classify human activities [23,24]. Beber designed a matching method to infer activities based on the similarity between the trajectory and the POI category profiles, but only a few records can be treated as continuous trajectories [25]. Hasan classified different activity categories based on the category of visited locations [26]. Description-based approaches represent human activities by describing subevents of the activities and their temporal, spatial, and logical structures, reconstructing individual mobility history from a metropolitan-scale smart card transaction dataset [15,18]. Although these approaches can recognize different categories of human activities, they all need detailed description information and abundant temporal, spatial, and logical information for every activity. However, most of the posts on social media do not have location attributes marked because of the limitation of users’ devices and for privacy reasons.



The third category of related works infers the user activity category from crowdsourced texts. Human activities can be expressed not only by images and videos but also by texts. Zhu, Blanke [2] built a multilabel SVM classifier using tweets manually annotated with activities by a crowd workers’ experiment. They constructed an activity recognition model to classify the dataset into 10 activity classes, with accuracies of 76%. This work is most closely related to ours. However, such logical activity recognition from short text posts based on traditional text classification is difficult because it cannot capture the word contextual information and word semantics.




3. Model


A post could be a text document, blog post, tweet, etc. For example, from the post “the pizza is very delicious”, we have a high probability of determining that the person who made this post is eating. Through social media platforms that record such data, we can obtain rich information for activity recognition without any additional instrumentation. Therefore, as long as we establish the connection between posts and activities and then classify these posts, we know what kinds of activities people are performing. Thus, by mapping activities to posts, activity classification is similar to a text classification task. In this paper, our objective is to design a model to improve the accuracy of extracting human activity for posts on social media.



Inspired by a deep learning sequence model that has had considerable success in many natural language tasks, including text classification and voice recognition, we will use deep learning to automatically deduce the classification of an activity and recognize an activity from social media texts and time together.



The proposed model is derived from a long short-term memory network (LSTM) [27], and we name it ALSTM (activity LSTM). Its architecture is shown in Figure 1 and consists of four main components: word embedding, dictionary knowledge encoding, temporal information encoding, and a long short-term memory network.



In the following subsections, we explain how to recognize human activities from social media with a deep learning sequence model and how to integrate external knowledge and temporal information to improve precogitation accuracy.



We denote a post of  T  words as    {   w   ( t )    | t = 1 , … , T  }  ,   and a corresponding activity category as target  y .



3.1. Post Word Embedding


Both the word meaning and its context should help us to capture a more precise word characteristic related to human activity. In our model, we use the word embedding model to capture the word meaning of the word and its context in the word sequence.



Word embedding is a model that represents words in sparse spaces as low-dimensional and high-density distributed representations. Compared to traditional representations, such as one-hot representation, which leads to the curse of dimensionality, word embedding is suitable for the neural network input because it embeds rich syntactic and semantic information of the words [28,29]. Therefore, the word embedding model is used to represent the words in posts for the ALSTM input in the paper.



To generate a word embedding vector for each word in posts, the skip-gram model is selected. The skip-gram model is a popular model for building word embedding and is considered state-of-the-art in many NLP tasks [30]. It trains the embeddings of words    w 1  ,      w 2  ,   … ,    w t    in text sequences by maximizing the average log probability:


    1 T    ∑   t = 1  T    ∑   − c ≤ j ≤ c , j ≠ 0   log p  (   w  t + j   |  w t   )     p  (   w b  |  w a   )  =   exp  (     (    v ′    w b     )   T   v   w a     )      ∑   k = 1    | V |    exp  (     (    v ′    w k     )   T   v   w a     )      



(1)




where    | V |    is the vocabulary from all of the post text,     v ′  w    and    v w    are two word embedding vectors of word  w . Here,    v w    is the input vector, and     v ′  w    is the output vector.




3.2. Dictionary Knowledge Encoding


Generally, posts may contain different keywords that should contribute more than ordinary words for recognizing human activities in social media posts because those keywords have richer activity semantics. The keyword collection is labeled manually into a different category and is called a dictionary. The dictionary can be introduced as external knowledge.



In this paper, we use the TF-IDF model [31] to extract keywords from training data and to generate a vector for each post. The TF-IDF model reflects how important a word is to a single post in the whole corpus. It is often used as a weighting factor. The importance of a word increases proportionally with the appearing frequency in a post but decreases inversely with the appearing frequency in the whole corpus.



The TF-IDF model includes two parts, term frequency and inverse document frequency. The term frequency refers to the number of times that a given word appears in the post. Its mathematical expression can be defined as follows:


  T  F w  =   # w   a p p e a r s   i n   a   r e v i e w   # w o r d   i n   a   r e v i e w    



(2)







However, the large TF value of a word cannot represent a post directly because some common words that appear in many posts will have a large TF value. The main idea of inverse document frequency is that if fewer posts that contain word  w , the larger the IDF value it has. It can further indicate that word  w  has a good post differentiation ability. The IDF value can be represented as follows:


  IDF = log  (    # p o s t s   i n   w h o l e   c o r p u s   # p o s t   c o n t a i n i n g   w o r d   w + 1    )   



(3)







The reason that the denominator adds 1 is to avoid the denominator being 0. A word that has a high word frequency in a particular post and a low post frequency in the entire corpus can produce a high weight TF-IDF value. Thus, the TF-IDF model can filter out common words and keep important words. The reserved words can express the feature of posts very well. It can be defined as follows:


  TFIDF = TF × IDF  



(4)







We then use the TF-IDF model to calculate the TF-IDF weight value for each word in the posts and select some high-ranking words in different categories as keywords to construct a dictionary. The number of keywords is determined by the user.



The next step is to transform posts into a weight vector based on the dictionary. The transformation process can be defined as follows:


   ϖ r  =  δ  1 ≤ i ≤ m    (  d i c  ( i )   )   



(5)




where  r  is a post, and   d i c   is the dictionary that we mentioned above.  δ  is the transform function that counts the number of words in the post that appear in different categories of the dictionary, and  m  is the number of activity categories. After transforming the post by equation (2), we can obtain an   m  -dimensional weight vector    ϖ r    of the corresponding post; each element of the vector is the number of words that appear in that category. It should be noted that the size of the dimension of    ϖ r    is not the same as the size of the dimension of the word embedding vector.




3.3. Temporal Information Encoding


Temporal information such as date and week has abundant activity semantics for activity recognition because human activity has a very close relationship to its occurrence time. With the help of temporal information, we can better determine and infer what activities a user produced at a given time.



Therefore, we consider time to be another important feature of a post for classifying the activity category. Some activities only occur during a specific time. We treat temporal information as additional knowledge and integrate it with the post text by embedding temporal information.



We define the date when the post was published as    d r   . According to the data, we can infer the activity that occurs by the day of the week. It can be represented as follows:


   χ r  = μ  (   d r   )   



(6)




where  r  is a post and function  μ  can transform date to the day of the week. After processing by the transform function  μ , a day of the week is represented as a one-hot vector    χ r   .




3.4. Long Short-Term Memory Networks


Long short-term memory [27] neural networks are a kind of network architecture. They have a strong capability to process sequential data such as text and have been demonstrated as capable of achieving remarkable performance in sequence data classifying, processing and making predictions [32,33].



In this paper, the posts on social media can be treated as sequence data, and we use the LSTM model to process and classify human activities. The probabilities of the human activity categories are calculated in the model and are considered as the weights when predicting the activity category by each post from social media. The post contains multi-dimensional rich information that need to be reduced to a single attribute item, here it is human activity category.



When we process information at the current moment, the LSTM architecture can preserve and utilize useful information in previous posts but discard useless information. As shown in Figure 1, the vectors generated in the above 3 subsections are combined into a vector by the f function. Here, the f function can be defined as:


   e t  = f  (   v t  ,  χ r  ,  ϖ r   )  =  [   v t  ;  χ r  ;  ϖ r   ]   



(7)




where the semicolons represent row vector concatenation.



At step  t , the input is the discrete word    w t   , and the corresponding word embedding is    e t   . The LSTM cell is a repeated unit for each time step as in a standard RNN. We obtain a post target vector    h t    after training with the LSTM parts. At each time step, the output of the unit is controlled by a set of gates as a function of the old hidden state    h  t − 1     and the input at the current time step    e t   , the forget gate    f t   , the input gate    i t   , and the output gate    o t   . The transition functions of three gates are defined as follows:


   i t  = σ  (   W i  ⋅  [   h  t − 1   ,  e t   ]  +  b i   )   



(8)






   f t  = σ  (   W f  ⋅  [   h  t − 1   ,  e t   ]  +  b f   )   



(9)






   o t  = σ  (   W o  ⋅  [   h  t − 1   ,  e t   ]  +  b o   )   



(10)







Here,    W i  ,  W f    a n d    W o    are parameter matrixes for training, σ is the logistic sigmoid function that has an output in [0,1]. As well, the current memory cell    c t    and hidden state    h t    can be calculate by:


   q t  = tanh  (   W q  ⋅  [   h  t − 1   ,  e t   ]  +  b q   )   



(11)






   c t  =  f t  ⊙  c  t − 1   +  i t  ⊙  q t   



(12)






   h t  =  o t  ⊙ tanh  (   c t   )   



(13)







Here,    q t    denotes new information in current cell,    W q    is parameter matrix for training, tanh denotes the hyperbolic tangent function that has an output in [−1, 1], and ⊙ denotes the elementwise multiplication.



To understand the mechanism behind the architecture, we can view    f t    as the function that controls to what extent the information from the old memory cell is going to be thrown away,    i t    controls how much new information is going to be stored in the current memory cell, and    o t    controls what to output based on the memory cell    c t   .



For recognizing the human activity category in a post, we regard the output of the hidden state at the last time step of the LSTM cell as the document representation. We connect this target vector to a fully connected layer to classify the activities. We use the Softmax [34] function to calculate the prediction probability    p i    of a post in each activity category and finally determine which kind of activity it belongs to according to the maximum probability    p  m a x    .



After the activation function, the model takes categorical cross-entropy [35] as a loss function. Its mathematical expression can be derived as follows:


  L  (   h   ( r )    ,  y   ( r )     )  =   ∑   j = 1  k  1  {   y   ( r )    = j  }  log  (     y j   ( r )     ^   )   



(14)




where    h   ( r )      is the    h t    vector of post r,    y   ( r )      is the activity category that post r really linked, and      y j   ( r )     ^    is the predicted activity category for post r; 1{condition} is an indicator such that 1{condition is true} = 1; otherwise, 1{condition is false} = 0.





4. Experiments


In this section, we first describe the built dataset and the experimental parameter settings and evaluate our ALSTM model with traditional classification methods, such as SVM and TF-IDF.



4.1. Data


To evaluate the performance of the proposed method, we first built a benchmark dataset from Yelp (www.Yelp.com). Yelp is an online community whose members spontaneously publish posts containing specific public and commercial locations. As of August 2009, “Yelpers” authored over 7 million posts about their personal experiences with restaurants, shopping, beauty, arts, entertainment, and events [36]. Yelp posts are associated with a specific location and are therefore less ambiguous for manually recognizing human activity. Therefore, we choose Yelp as our data source and manually label every post into different human activity categories. Note that the built dataset does not contain position information and is used to infer the human activity category mainly by post text and post time because most posts on social media do not reference geolocation. Example of user posts and business information are illustrated in Table 1 and Table 2.



To build a dataset for training and testing, posts from collected Yelp data were labeled into 14 categories by considering the post text, post time and referenced businesses information. Random sampling was performed according to the rule of about 2000 posts per category, finally a dataset with 28,150 posts was built. It should be noted that only 863 posts of “listening” are selected because there are no enough posts in this category.



The 14 activity categories, including eating food, beauty and spa, entertainment, and travel, are listed in Table 3. A record in our dataset is described as a quadruple (uid, text, time, label), where uid is the userid, text is what a user posts to social media, label is what activity the user performs. This dataset provides temporal and textural information together to help researchers study human activity with social media. In this paper, the dataset is named Yelp-2k because there are approximately 2000 samples in most categories.



As shown in Table 3, the distribution of samples in each category is relatively balanced, except that the number of samples in the listening category is small due to the limitation of source data.



We should also note that the number of samples in the dataset did not differ significantly during the days of the week, which means that it is impossible to conduct user activity categories based only on the day of the week of the posts.



To construct a dictionary, we then use the TF-IDF model to calculate the TF-IDF weight value for all words in the posts and manually select the top 2735 words as keywords. The number distribution of the selected keywords over the categories is listed in Table 4.




4.2. Experiment Settings


We use a random sampling method to extract 70% of the records from Yelp-2k built in the last section for training and the remaining 30% of the records for the test.



To transform a discrete word input into a continuous vector, we use the word2vec model to build the word embedding matrix. The dimension size of the word embedding vector is set to 100.



We also set the dimension size of the LSTM hidden layer to 128, 256, 512 and training 500 epochs. The Adam method is adopted as the optimizer. The dropout parameter is set to 0.5 in the network, and the learning rate is set to 0.001.



Finally, we implemented the network model with TFLearn [37] neural network framework.




4.3. Results


By combining the components in Figure 1, four variants of ALSTM can be derived: ALSTM-BASIC is the model composed of the post words embedding component and the LSTM component. ALSTM-DE is the model that includes the post words embedding component, dictionary embedding component and the LSTM component. ALSTM-TE is the model composed of the post words embedding component, temporal information embedding component and the LSTM component. ALSTM-DE-TE is the model composed of all the components in Figure 1.



4.3.1. Overall Accuracy


We evaluate the four ALSTM variants and compare them to traditional classification methods, such as SVM and TF-IDF. The accuracy for each activity category on Yelp-20k is calculated and listed in Table 5.



As shown in Table 5, the proposed 4 ALSTM models achieved significant improvements in the task of recognizing human activities compared to traditional methods such as SVM and TF-IDF. All four ALSTM models achieved the best accuracies in some categories.



Among the four ALSTM models, the ALSTM-TE model achieved the highest accuracy in the whole dataset. It should be noted that the number of samples in each category did not differ significantly during the days of the week, as mentioned in Section 4.1, which should be interpreted as the association of user activity categories between post content and time being a potential association, and a deep learning sequence model has exploited this potential association. Perhaps this is the benefit of deep learning.



Compared to ALSTM, the ALSTM-DE model achieved an improvement because the model considers both word embedding and dictionary encoding.



However, the ALSTM-DE-TE model, which combines word embedding vectors, dictionary encoding vectors, and temporal information encoding vectors together as input, achieved a slightly lower average accuracy compared with the ALSTM-TE model. Its accuracy was still higher than that of the ALSTM-DE model. We argue that there is a certain conflict between the information from the dictionary and time. It should be noted that the ALSTM-DE accuracy is more balanced in all categories in which there is higher accuracy in the worse category than ALSTM-TE.



Finally, a nonnegligible result is that the TF-IDF model performed well in certain categories and achieved the best accuracy in the car-related activities category, which is not surprising because here the TF-IDF model is a classification based on manually labeled keywords, and there are some highly differentiated keywords with car-related activity semantics. This result illustrates the importance of artificial knowledge for recognizing human activity from natural language. Of course, we must also realize that the scope of adaptation of this method is still limited.



In a word, the proposed models achieved a great performance for recognizing human daily activity, because that they can successfully capture both words meaning and the contextual information or word order in posts. As well, both external knowledge and temporal information can contribute to the improvement of accuracy and robustness of our task.




4.3.2. Accuracy and Loss Curve


We calculated the accuracy rate and loss when the models were trained. The accuracy rate and loss curve of the four ALSTM variants are shown in Figure 2. As shown in Figure 2a, the accuracy of all the models increased first, reaching a higher accuracy rate and maintaining relative stability after approximately 80 epochs. From Figure 2b, we can see that the loss of all four models decreased quickly in the first 50 epochs and slightly fluctuated in the last training process. Both Figure 2a,b show that the ALSTM-TE performed best with higher accuracy and lower loss value.




4.3.3. Confusion Analysis Between Categories


In the field of machine learning and the specification of statistical classification, a confusion matrix is a specific table layout that allows visualization of the performance of an algorithm or model, typically in supervised learning [38]. Each column of the matrix represents the instances in a predicted class, while each row represents the instances in an actual class. The confusion matrix can be used to determine whether there is some confusion in different categories.



We conduct 4 confusion matrixes of the ALSTM series of models in Figure 3, and then we translate them to 4 heat maps to intuitively compare changes and differences. The sum of each heat map column in Figure 3 represents the samples predicted to be in that category by the model.



In addition, the sum of each heat map row represents the actual number of samples in that category. The abbreviations in 4 figures are “EF”, “BS”, “EA”, “Tr”, “Sh”, “Se”, “Sp”, “TH”, “CA”, “Ni”, “KP”, “EE”, “RA” and “L”, which represent the categories “eating food”, “beauty & spa”, “entertainment activity”, “travel”, “shopping”, “services”, “sports”, “treating & health”, “car-related activities”, “nightlife”, “keep pets”, “engaged in education”, “religious activities” and “listening”.



The above 4 heat maps clearly illustrate the accuracy of each category and the distribution of correct and incorrect samples in each category. We also found that the categories of “eating food” and “nightlife” have the maximum confusion in Figure 3, which means that some people eat food so late and eating is one of the common activities of people who are active overnight. Some activities such as “car-related activities” have less confusion with the “nightlife” category in both 4 heat maps, which means that there is a large difference in how to express “eating food” and “car-related activities” in post texts.



Figure 3 also shows that the ALSTM-DE-TE model performed the best for dealing with category confusion, although its overall accuracy was slightly lower than that of the ALSTM-TE model. We believe that the ALSTM-DE-TE model may perform better in other datasets.




4.3.4. An additional Experiment in Selected Category Samples


Considering that most of the people who made posts on comment websites are closely related to daily activities, some statement of posts was not clear enough. We filtered uncommon activities such as “entertainment activity”, “services”, “car-related activities”, “nightlife”, and “listening” and reserved the remaining 9 activities. Then, we calculated the accuracy for each activity category again. We also conducted comparative experiments with our methods and list the results in Table 6.



Compared with Table 5, Table 6 shows that these models achieved better results when the number of categories of activities decreased because fewer categories have less confusion with others. As we expected, all ALSTM models achieved a significant improvement in taking traditional methods as baselines, and the ALSTM-TE model still had the best performance compared with other methods. The gap between those models deceased according to the data in Table 6.






5. Conclusions


For accurately recognizing human daily activity in social media posts, we proposed a model based on a deep learning sequence model. The proposed model includes a word embedding component, a dictionary knowledge encoding component, a temporal information encoding component, and an LSTM component. Considering that no datasets are available in such studies, we built a social media benchmark dataset with 14 activity categories and 28,150 labeled posts for training and testing. The proposed models achieved state-of-the-art performance with high accuracies for the recognition of human activity since they successfully extracted user activity information in posts from sequences of higher-level representations while preserving the sequence order of words. In the model, both external knowledge and temporal information can contribute to the improvement of accuracy and robustness of the task.



For future work, user attributes can be fused to infer latent semantics of posts to further improve the classification performance. Additionally, we will introduce more knowledge, such as Wikipedia and Freebase data, into models to improve the accuracy of our model. Due to the limitation of the data source, the time in the built dataset is represented as the date, which could be improved by including new data sources, such as Facebook.
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Figure 1. The proposed ALSTM (activity LSTM) model. 
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Figure 2. (a) Accuracy and (b) loss curve. 
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Figure 3. Heat maps of activities for the four models. 
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Table 1. An example of a post on Yelp.






Table 1. An example of a post on Yelp.





	Attribute
	Value
	Description





	Post id
	X7mDliDB3jEiPGPHOmDzyw
	Unique id for every post



	User id
	msQe1u7Z_XuqjGoqhB0J5g
	Unique id for every user



	Business id
	iCQpiavjjPzJ5_3gPD5Ebg
	Unique id for every business



	Star
	2.0
	Star rating for the business



	Date
	2011-02-25
	Time when the post was published



	Post
	The pizza was ok. Not the best I’ve had.
	The post that the user published
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Table 2. An example of business information.






Table 2. An example of business information.





	
Business Information

	
Description






	
Id

	
iCQpiavjjPzJ5_3gPD5Ebg

	
Unique id for every business




	
Name

	
Minhas Micro Brewery

	
The name of the business




	
Address

	
1314 44 Avenue NE

	
The address of the business




	
City

	
Calgary

	
City where the business is located




	
Postal code

	
T2E 6L6

	
The postal code for the business




	
Post count

	
24

	
The number of posts the business received




	
Stars

	
2.0

	
Star rating for the business




	
Categories

	
Pizza, Restaurants, Food

	
The category for the business




	
Hours

	
Monday: 8:30–17:00,

Tuesday: 11:0–21:00,

Wednesday: 11:00–21:00

Thursday: 11:00–21:00

	
Business time for every company
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Table 3. Activity categories and their distribution in time.
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	Category
	All
	Monday
	Tuesday
	Wednesday
	Thursday
	Friday
	Saturday
	Sunday





	Eating food
	2087
	278
	299
	313
	230
	299
	327
	341



	Beauty & spa
	2265
	323
	353
	295
	357
	340
	308
	289



	Entertainment
	2085
	294
	293
	245
	296
	284
	351
	322



	Travel
	2085
	326
	327
	292
	279
	279
	289
	293



	Shopping
	2085
	304
	336
	272
	314
	289
	265
	305



	Services
	2085
	338
	379
	320
	335
	239
	182
	292



	Sports
	2085
	368
	298
	305
	306
	245
	254
	309



	Treating & Health
	2085
	354
	378
	352
	351
	214
	150
	286



	Car-related activities
	2085
	315
	328
	325
	350
	275
	222
	270



	Nightlife
	2085
	317
	290
	286
	253
	293
	320
	326



	Keep pets
	2085
	302
	322
	326
	314
	294
	241
	286



	Engaged in education
	2085
	326
	317
	346
	307
	236
	249
	304



	Religious activities
	2085
	292
	282
	260
	231
	239
	427
	354



	Listening
	863
	142
	146
	140
	127
	88
	103
	117



	total
	28,150
	4279
	4348
	4077
	4050
	3614
	3688
	4094
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Table 4. Keywords and the number of categories in the dictionary.
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	Category
	Number





	Eating food
	120



	Beauty & spa
	49



	Entertainment
	85



	Travel
	98



	Shopping
	135



	Services
	99



	Sports
	212



	Treating & Health
	296



	Car-related activities
	306



	Nightlife
	259



	Keep pets
	258



	Engaged in education
	326



	Religious activities
	248



	Listening
	244
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Table 5. Overall accuracy.
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Activity

	
Accuracy




	
SVM

	
TF-IDF

	
ALSTM-BASIC

	
ALSTM-DE

	
ALSTM-TE

	
ALSTM-DE-TE






	
Eating food

	
0.6502

	
0.4281

	
0.8019

	
0.8722

	
0.8738

	
0.8706




	
Beauty & spa

	
0.6384

	
0.1040

	
0.8944

	
0.9200

	
0.9200

	
0.9200




	
Entertainment activity

	
0.5376

	
0.2064

	
0.7888

	
0.7936

	
0.8000

	
0.8384




	
Travel

	
0.5408

	
0.1504

	
0.7904

	
0.8368

	
0.8112

	
0.8352




	
Shopping

	
0.4480

	
0.2304

	
0.7520

	
0.7632

	
0.8016

	
0.7888




	
Services

	
0.4432

	
0.2112

	
0.7440

	
0.7360

	
0.7056

	
0.7296




	
Sports

	
0.4064

	
0.5200

	
0.7536

	
0.7824

	
0.7712

	
0.7440




	
Treating & Health

	
0.5072

	
0.8288

	
0.8912

	
0.8800

	
0.8736

	
0.8496




	
Car-related activities

	
0.4384

	
0.8928

	
0.8176

	
0.8608

	
0.8400

	
0.8256




	
Nightlife

	
0.4544

	
0.6864

	
0.8496

	
0.7792

	
0.8128

	
0.7744




	
Keep pets

	
0.4624

	
0.4960

	
0.8656

	
0.8512

	
0.9040

	
0.8832




	
Engaged in education

	
0.4080

	
0.7808

	
0.8112

	
0.7376

	
0.8288

	
0.8096




	
Religious activities

	
0.5296

	
0.5856

	
0.8368

	
0.8624

	
0.8592

	
0.8736




	
Listening

	
0.3215

	
0.5749

	
0.7629

	
0.7902

	
0.7929

	
0.7766




	
Overall accuracy

	
0.4897

	
0.4753

	
0.8129

	
0.8199

	
0.8293

	
0.8242
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Table 6. Accuracy of the selected 9 category activities.
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Activity

	
Accuracy




	
SVM

	
TFIDF

	
ALSTM-BASIC

	
ALSTM-DE

	
ALSTM-TE

	
ALSTM-DE-TE






	
Eating food

	
0.8067

	
0.6230

	
0.9361

	
0.9281

	
0.9425

	
0.9377




	
Beauty & spa

	
0.6736

	
0.1728

	
0.9248

	
0.9200

	
0.9120

	
0.9472




	
Travel

	
0.6720

	
0.4336

	
0.8992

	
0.9168

	
0.9120

	
0.8880




	
Shopping

	
0.5376

	
0.4224

	
0.8384

	
0.8528

	
0.8544

	
0.8800




	
Sports

	
0.4752

	
0.6288

	
0.8256

	
0.8096

	
0.8432

	
0.8512




	
Treating & Health

	
0.5488

	
0.8864

	
0.9040

	
0.9056

	
0.9328

	
0.8704




	
Keep pets

	
0.4928

	
0.5440

	
0.8928

	
0.9040

	
0.8944

	
0.8896




	
Engaged in education

	
0.4528

	
0.8320

	
0.8288

	
0.8432

	
0.8496

	
0.7792




	
Religious activities

	
0.6160

	
0.6448

	
0.9056

	
0.9152

	
0.9008

	
0.9184




	
Overall accuracy

	
0.5862

	
0.5764

	
0.8839

	
0.8884

	
0.8935

	
0.8846
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