Dairy Production under Climatic Risks: Perception, Perceived Impacts and Adaptations in Punjab, Pakistan
Abstract
:1. Introduction
2. Material and Research Methods
2.1. Study Area
2.2. Sampling Procedure and Data Collection Methods
2.3. Data Analysis
2.3.1. Climatic Risk Perception
2.3.2. Empirical Model
3. Estimated Results
3.1. Dairy Farmer’s Socio-Economic and Farm Characteristics
3.2. Dairy Farmers’ Perceptions about Climatic Risks and Variability
3.3. Perceived Impacts of Climatic Risks on Dairy Production System
3.4. Estimates of Ordered Probit Model
3.5. Risk Coping Adaptation Strategies
4. Discussion
4.1. Perceived Climatic Risks and Variability
4.2. Perception of Climatic Risks on Dairy Production System
4.3. Impact on Milk Production
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Determination of Marginal Effects
References
- US Environmental Protection Agency. Climate Change: Basic Information. In Clim. Chang. Div. Available online: https://www3.epa.gov/climatechange/basics/ (accessed on 23 June 2019).
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Porter, J.R.; Xie, L.; Challinor, A.J.; Cochrane, K.; Howden, S.M.; Iqbal, M.M.; Lobell, D.B.; Travasso, M.I. Food security and food production systems. In Climate Change 2014: Impacts, Adaptation, and Vulnerability; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Food and Agriculture Organization of the United Nations. The Impacts of Disasters on Agriculture and Food Security. Available online: http://www.fao.org/resilience/ (accessed on 20 May 2019).
- Thornton, P.K. Livestock production: Recent trends, future prospects. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2853–2867. [Google Scholar] [CrossRef] [PubMed]
- Polley, H.W.; Briske, D.D.; Morgan, J.A.; Wolter, K.; Bailey, D.W.; Brown, J.R. Climate change and North American rangelands: Trends, projections, and implications. Rangel. Ecol. Manag. 2013, 66, 493–511. [Google Scholar] [CrossRef]
- Rojas-Downing, M.M.; Nejadhashemi, A.P.; Harrigan, T.; Woznicki, S.A. Climate change and livestock: Impacts, adaptation, and mitigation. Clim. Risk Manag. 2017, 16, 145–163. [Google Scholar] [CrossRef]
- Escarcha, J.F.; Lassa, J.A.; Palacpac, E.P.; Zander, K.K. Understanding climate change impacts on water buffalo production through farmers’ perceptions. Clim. Risk Manag. 2018, 20, 50–63. [Google Scholar] [CrossRef]
- Rahut, D.B.; Ali, A. Impact of climate-change risk-coping strategies on livestock productivity and household welfare: Empirical evidence from Pakistan. Heliyon 2018, 4, e00797. [Google Scholar] [CrossRef]
- Bohmanova, J.; Misztal, I.; Cole, J. Temperature-humidity indices as indicators of milk production losses due to heat stress. J. Dairy Sci. 2007, 90, 1947–1956. [Google Scholar] [CrossRef]
- Hammami, H.; Bormann, J.; M’hamdi, N.; Montaldo, H.H.; Gengler, N. Evaluation of heat stress effects on production traits and somatic cell score of Holsteins in a temperate environment. J. Dairy Sci. 2013, 96, 1844–1855. [Google Scholar] [CrossRef] [Green Version]
- Hansen, P.J. Effects of heat stress on mammalian reproduction. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 3341–3350. [Google Scholar] [CrossRef]
- Sanker, C.; Lambertz, C.; Gauly, M. Climatic effects in Central Europe on the frequency of medical treatments of dairy cows. Animal 2013, 7, 316–321. [Google Scholar] [CrossRef] [Green Version]
- Vitali, A.; Segnalini, M.; Bertocchi, L.; Bernabucci, U.; Nardone, A.; Lacetera, N. Seasonal pattern of mortality and relationships between mortality and temperature-humidity index in dairy cows. J. Dairy Sci. 2009, 92, 3781–3790. [Google Scholar] [CrossRef] [Green Version]
- Houghton, J.T.; Ding, Y.; Griggs, D.J.; Noguer, M.; van der Linden, P.J.; Dai, X.; Maskell, K.; Johnson, C. Climate Change 2001: The Scientific Basis; The Press Syndicate of the University of Cambridge: Cambridge, UK, 2001. [Google Scholar]
- Herbut, P.; Angrecka, S.; Walczak, J. Environmental parameters to assessing of heat stress in dairy cattle—A review. Int. J. Biometeorol. 2018, 62, 2089–2097. [Google Scholar] [CrossRef] [PubMed]
- Rust, J.; Rust, T. Climate change and livestock production: A review with emphasis on Africa. South Afr. J. Anim. Sci. 2013, 43, 255–267. [Google Scholar] [CrossRef]
- Maurya, R. Alternate Dairy Management Practices in Draught Prone Areas of Bundelkhand Region of Uttar Pradesh. Master’s Thesis, IVRI, Izatnagar, India, 2010. [Google Scholar]
- Ministry of Finance Revenue and Economic Affairs. Islamabad. Pakistan Economic Survey. Available online: www.finance.gov.pk›survey_1617 (accessed on 13 July 2019).
- Gorst, A.; Dehlavi, A.; Groom, B. Crop productivity and adaptation to climate change in Pakistan. Environ. Dev. Econ. 2018, 23, 679–701. [Google Scholar] [CrossRef] [Green Version]
- Kreft, S.; Eckstein, D.; Melchior, I. Global Climate risk Index 2017: Who Suffers Most from Extreme Weather Events? Weather-Related Loss Events in 2015 and 1996 to 2015; Germanwatch Nord-Süd Initiative eV: Bonn, Germany, 2016. [Google Scholar]
- Government of Pakistan. Economic Survey of Pakistan 2018–19; Economic Advisor’s Wing, Finance Division, Government of Pakistan: Islamabad, Pakistan, 2018. Available online: http://www.finance.gov.pk/survey_1819 (accessed on 17 June 2019).
- Board, L.A.D.D. Dairy Production. Available online: www.lddb.org.pk (accessed on 15 July 2019).
- Naqvi, S.; Sejian, V. Global climate change: Role of livestock. Asian J. Agric. Sci. 2011, 3, 19–25. [Google Scholar]
- York, L.; Heffernan, C.; Rymer, C.; Panda, N. A deterministic evaluation of heat stress mitigation and feed cost under climate change within the smallholder dairy sector. Animal 2017, 11, 900–909. [Google Scholar] [CrossRef]
- Fahad, S.; Wang, J. Farmers’ risk perception, vulnerability, and adaptation to climate change in rural Pakistan. Land Use Policy 2018, 79, 301–309. [Google Scholar] [CrossRef]
- Weber, E.U. What shapes perceptions of climate change? Wiley Interdiscip. Rev. Clim. Chang. 2010, 1, 332–342. [Google Scholar] [CrossRef]
- Bohensky, E.; Kirono, D.; Butler, J.; Rochester, W.; Habibi, P.; Handayani, T.; Yanuartati, Y. Climate knowledge cultures: Stakeholder perspectives on change and adaptation in Nusa Tenggara Barat, Indonesia. Clim. Risk Manag. 2016, 12, 17–31. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.P.L.; Seddaiu, G.; Virdis, S.G.P.; Tidore, C.; Pasqui, M.; Roggero, P.P. Perceiving to learn or learning to perceive? Understanding farmers’ perceptions and adaptation to climate uncertainties. Agric. Syst. 2016, 143, 205–216. [Google Scholar] [CrossRef]
- Arunrat, N.; Wang, C.; Pumijumnong, N.; Sereenonchai, S.; Cai, W. Farmers’ intention and decision to adapt to climate change: A case study in the Yom and Nan basins, Phichit province of Thailand. J. Clean. Prod. 2017, 143, 672–685. [Google Scholar] [CrossRef]
- Burnham, M.; Ma, Z. Climate change adaptation: Factors influencing Chinese smallholder farmers’ perceived self-efficacy and adaptation intent. Reg. Environ. Chang. 2017, 17, 171–186. [Google Scholar] [CrossRef]
- Sun, Y.; Han, Z. Climate change risk perception in Taiwan: Correlation with individual and societal factors. Int. J. Environ. Res. Public Health 2018, 15, 91. [Google Scholar] [CrossRef] [PubMed]
- Mercado, R.M. People’s risk perceptions and responses to climate change and natural disasters in BASECO compound, Manila, Philippines. Procedia Environ. Sci. 2016, 34, 490–505. [Google Scholar] [CrossRef]
- Mase, A.S.; Gramig, B.M.; Prokopy, L.S. Climate change beliefs, risk perceptions, and adaptation behavior among Midwestern US crop farmers. Clim. Risk Manag. 2017, 15, 8–17. [Google Scholar] [CrossRef]
- Rauf, S.; Bakhsh, K.; Abbas, A.; Hassan, S.; Ali, A.; Kächele, H. How hard they hit? Perception, adaptation and public health implications of heat waves in urban and peri-urban Pakistan. Environ. Sci. Pollut. Res. 2017, 24, 10630–10639. [Google Scholar] [CrossRef] [PubMed]
- Bakhsh, K.; Rauf, S.; Zulfiqar, F. Adaptation strategies for minimizing heat wave induced morbidity and its determinants. Sustain. Cities Soc. 2018, 41, 95–103. [Google Scholar] [CrossRef]
- Nardone, A.; Ronchi, B.; Lacetera, N.; Ranieri, M.S.; Bernabucci, U. Effects of climate changes on animal production and sustainability of livestock systems. Livest. Sci. 2010, 130, 57–69. [Google Scholar] [CrossRef]
- Sautier, M.; Piquet, M.; Duru, M.; Martin-Clouaire, R. Exploring adaptations to climate change with stakeholders: A participatory method to design grassland-based farming systems. J. Environ. Manag. 2017, 193, 541–550. [Google Scholar] [CrossRef]
- Abid, M.; Scheffran, J.; Schneider, U.; Ashfaq, M. Farmers’ perceptions of and adaptation strategies to climate change and their determinants: The case of Punjab province, Pakistan. Earth Syst. Dyn. 2015, 6, 225–243. [Google Scholar] [CrossRef]
- Pasha, H.A.; Growth of the Provincial Economies. Institute for Policy Reforms (IPR). 2015. Available online: http://ipr. org. pk/wp-content/uploads/2016/04/GROWTH-OF-PROVINCIAL-ECONOMICS-.Pdf (accessed on 12 March 2019).
- Ashfaq, M.; Razzaq, A.; Hassan, S. Factors affecting the economic losses due to livestock diseases: A case study of district Faisalabad. Pak. J. Agric. Sci. 2015, 52, 515–520. [Google Scholar]
- Razzaq, A.; Qing, P.; Abid, M.; Anwar, M.; Javed, I. Can the informal groundwater markets improve water use efficiency and equity? Evidence from a semi-arid region of Pakistan. Sci. Total Environ. 2019, 666, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, S. Supply Response of Major Crops in Different Agro-Ecologic, Zones in Punjab. Ph.D. Thesis, University of Agriculture: Faisalabad, Pakistan, 2005. [Google Scholar]
- Punjab Development Statistics (P.D.S). Bureau of Statistic, Government of Punjab. 2017. Available online: http://www.bos.gop.pk/developmentstat (accessed on 28 September 2019).
- McFadden, D. Modeling the Choice of Residential Location; Transportation Research Record: Washington, DC, USA, 1978. [Google Scholar]
- Greene, W.H. Econometric Analysis, 4th ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 2003. [Google Scholar]
- Liddell, T.M.; Kruschke, J.K. Analyzing ordinal data with metric models: What could possibly go wrong? J. Exp. Soc. Psychol. 2018, 79, 328–348. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Erenstein, O. Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Clim. Risk Manag. 2017, 16, 183–194. [Google Scholar] [CrossRef]
- Deressa, T.T.; Hassan, R.M.; Ringler, C.; Alemu, T.; Yesuf, M. Determinants of farmers’ choice of adaptation methods to climate change in the Nile Basin of Ethiopia. Glob. Environ. Chang. 2009, 19, 248–255. [Google Scholar] [CrossRef]
- Bryan, E.; Ringler, C.; Okoba, B.; Roncoli, C.; Silvestri, S.; Herrero, M. Adapting agriculture to climate change in Kenya: Household strategies and determinants. J. Environ. Manag. 2013, 114, 26–35. [Google Scholar] [CrossRef]
- Upadhyay, R.; Ashutosh, R.V.; Singh, S.; Aggarwal, P. Impact of Climate Change on reproductive functions of cattle and buffaloes. In Global Climate Change and Indian Agriculture; Aggarwal, P.K., Ed.; ICAR: New Delhi, India, 2009; pp. 107–110. [Google Scholar]
- StataCorp LP. Stata Multilevel Mixed-Effects Reference Manual; StataCorp LP: College Station, TX, USA, 2013. [Google Scholar]
- Hassan, R.M.; Nhemachena, C. Determinants of African farmers’ strategies for adapting to climate change: Multinomial choice analysis. Afr. J. Agric. Resour. Econ. 2008, 2, 83–104. [Google Scholar]
- Wollni, M.; Lee, D.R.; Thies, J.E. Conservation agriculture, organic marketing, and collective action in the Honduran hillsides. Agric. Econ. 2010, 41, 373–384. [Google Scholar] [CrossRef]
- Ullah, R.; Shivakoti, G.P.; Rehman, M.; Kamran, M.A. Catastrophic risks management at farm: The use of diversification, precautionary savings and agricultural credit. Pak. J. Agric. Sci. 2015, 52, 1139–1147. [Google Scholar]
- Ahmad, D.; Afzal, M.; Rauf, A. Analysis of wheat farmers’ risk perceptions and attitudes: Evidence from Punjab, Pakistan. Nat. Hazards 2019, 95, 845–861. [Google Scholar] [CrossRef]
- Cooper, P.; Dimes, J.; Rao, K.; Shapiro, B.; Shiferaw, B.; Twomlow, S. Coping better with current climatic variability in the rain-fed farming systems of sub-Saharan Africa: An essential first step in adapting to future climate change? Agric. Ecosyst. Environ. 2008, 126, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Chen, M.; Che, X.; Fang, F. Farmers’ Rural-To-Urban Migration, Influencing Factors and Development Framework: A Case Study of Sihe Village of Gansu, China. Int. J. Environ. Res. Public Health 2019, 16, 877. [Google Scholar] [CrossRef] [PubMed]
- Twongyirwe, R.; Mfitumukiza, D.; Barasa, B.; Naggayi, B.R.; Odongo, H.; Nyakato, V.; Mutoni, G. Perceived effects of drought on household food security in South-western Uganda: Coping responses and determinants. Weather Clim. Extrem. 2019, 24, 100201. [Google Scholar] [CrossRef]
- Udmale, P.D.; Ichikawa, Y.; Kiem, A.S.; Panda, S.N. Drought impacts and adaptation strategies for agriculture and rural livelihood in the Maharashtra State of India. Open Agric. J. 2014, 8, 41–47. [Google Scholar] [CrossRef]
- Akhtar, S.; LI, G.-C.; Nazir, A.; Razzaq, A.; Ullah, R.; Faisal, M.; Naseer, M.A.U.R.; Raza, M.H. Maize production under risk: The simultaneous adoption of off-farm income diversification and agricultural credit to manage risk. J. Integr. Agric. 2019, 18, 460–470. [Google Scholar] [CrossRef] [Green Version]
- Batima, P.; Natsagdorj, L.; Gombluudev, P.; Erdenetsetseg, B. Observed climate change in Mongolia. Assess Imp Adapt Clim Chang. Work Pap. 2005, 12, 1–26. [Google Scholar]
- Rota, A.; Sidahmed, A. IFAD’s Livestock Position Paper: Livestock Planning, Challenges and Strategies for Livestock Development in IFAD. IFAD: Rome, Italy, 2010. [Google Scholar]
- McCubbin, S.; Smit, B.; Pearce, T. Where does climate fit? Vulnerability to climate change in the context of multiple stressors in Funafuti, Tuvalu. Glob. Environ. Chang. 2015, 30, 43–55. [Google Scholar] [CrossRef]
- Mertz, O.; Mbow, C.; Reenberg, A.; Diouf, A. Farmers’ perceptions of climate change and agricultural adaptation strategies in rural Sahel. Environ. Manag. 2009, 43, 804–816. [Google Scholar] [CrossRef]
- Shrum, T.R.; Travis, W.R.; Williams, T.M.; Lih, E. Managing climate risks on the ranch with limited drought information. Clim. Risk Manag. 2018, 20, 11–26. [Google Scholar] [CrossRef]
- Ado, A.M.; Leshan, J.; Savadogo, P.; Bo, L.; Shah, A.A. Farmers’ awareness and perception of climate change impacts: Case study of Aguie district in Niger. Environ. Dev. Sustain. 2018, 1–15. [Google Scholar] [CrossRef]
- Ullah, W.; Nihei, T.; Nafees, M.; Zaman, R.; Ali, M. Understanding climate change vulnerability, adaptation and risk perceptions at household level in Khyber Pakhtunkhwa, Pakistan. Int. J. Clim. Chang. Strateg. Manag. 2018, 10, 359–378. [Google Scholar] [CrossRef]
- Akhtar, S.; LI, G.-C.; Ullah, R.; Nazir, A.; Iqbal, M.A.; Raza, M.H.; Iqbal, N.; Faisal, M. Factors influencing hybrid maize farmers’ risk attitudes and their perceptions in Punjab Province, Pakistan. J. Integr. Agric. 2018, 17, 1454–1462. [Google Scholar] [CrossRef]
- Bakhsh, K.; Sana, F.; Ahmad, N. Dengue fever in Punjab, Pakistan: Knowledge, perception and adaptation among urban adults. Sci. Total Environ. 2018, 644, 1304–1311. [Google Scholar] [CrossRef] [PubMed]
- Harrison, M.T.; Cullen, B.R.; Armstrong, D. Management options for dairy farms under climate change: Effects of intensification, adaptation and simplification on pastures, milk production and profitability. Agric. Syst. 2017, 155, 19–32. [Google Scholar] [CrossRef]
- Kais, S.M.; Islam, M.S. Perception of Climate Change in Shrimp-Farming Communities in Bangladesh: A Critical Assessment. Int. J. Environ. Res. Public Health 2019, 16, 672. [Google Scholar] [CrossRef] [PubMed]
- Saqib, S.E.; Ahmad, M.M.; Panezai, S.; Rana, I.A. An empirical assessment of farmers’ risk attitudes in flood-prone areas of Pakistan. Int. J. Disaster Risk Reduct. 2016, 18, 107–114. [Google Scholar] [CrossRef]
- Imran, M.; Shrestha, R.P.; Datta, A. Comparing farmers’ perceptions of climate change with meteorological data in three irrigated cropping zones of Punjab, Pakistan. Environ. Dev. Sustain. 2018, 1–20. [Google Scholar] [CrossRef]
- Siddiky, M.N.A. SAARC Dairy Outlook; SAARC Agriculture Centre: Dhaka, Bangladesh, 2015; pp. 1–160. [Google Scholar]
- Mandal, D.; SUBBA RAO, A.; SINGH, K.; Singh, S. Effects of macroclimatic factors on milk production in a frieswal herd@. Indian J. Dairy Sci. 2002, 55, 166–170. [Google Scholar]
- Younas, M.; Ishaq, K.; Ali, I. Effect of climate change on livestock production in Pakistan. In Proceedings of the International Seminar on Animal Industry, Jakarta, Indonesia, 5–6 July 2012. [Google Scholar]
- Morton, J.F. The impact of climate change on smallholder and subsistence agriculture. Proc. Natl. Acad. Sci. USA 2007, 104, 19680–19685. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Raju, B.; Ramarao, C.; Ramilan, T. Sensitivity of livestock production to climatic variability under indian drylands and future perspective. Curr. Agric. Res. J. 2015, 3, 142–149. [Google Scholar] [CrossRef]
- Hidosa, D.; Guyo, M. Climate Change Effects on Livestock Feed Resources: A Review. J. Fish. Livest Prod. 2017, 5, 259. [Google Scholar]
- Change, I.C. The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2007; p. 996. [Google Scholar]
- Lacetera, N. Impact of climate change on animal health and welfare. Anim. Front. 2018, 9, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Grace, D.; Bett, B.K.; Lindahl, J.F.; Robinson, T.P. Climate and Livestock Disease: Assessing the Vulnerability of Agricultural Systems to Livestock Pests under Climate Change Scenarios; CCAFS Working Paper: Copenhagen, Denmark, 2015. [Google Scholar]
- National Disaster Management Authority Pakistan. Annual Report; National Disaster Management Authority: Islamabad, Pakistan, 2014.
- Hill, D.L.; Wall, E. Weather influences feed intake and feed efficiency in a temperate climate. J. Dairy Sci. 2017, 100, 2240–2257. [Google Scholar] [CrossRef] [PubMed]
- Mote, S.; Chauhan, D.; Ghosh, N. Effect of environment factors on milk production and lactation length under different seasons in crossbred cattle. Indian J. Anim. Res. 2016, 50, 175–180. [Google Scholar] [CrossRef]
- Kimaro, E.G.; Mor, S.M.; Toribio, J.-A.L. Climate change perception and impacts on cattle production in pastoral communities of northern Tanzania. Pastoralism 2018, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Dhakal, C.; Regmi, P.; Dhakal, I.; Khanal, B.; Bhatta, U.; Barsila, S.; Acharya, B. Perception, impact and adaptation to climate change: An analysis of livestock system in Nepal. J. Anim. Sci. Adv. 2013, 3, 462–471. [Google Scholar]
- Sharma, V.B.; Verma, M.R.; Qureshi, S.; Bharti, P. Effects of diseases on milk production and body weight of cattle in Uttar Pradesh. Int. J. Agric. Environ. Biotechnol. 2016, 9, 463–465. [Google Scholar] [CrossRef]
- Kasulo, V.; Chikagwa-Malunga, S.; Chagunda, M.; Roberts, D. The perceived impact of climate change and variability on smallholder dairy production in northern Malawi. Afr. J. Agric. Res. 2012, 7, 4830–4837. [Google Scholar] [CrossRef]
- Bett, B.; Kiunga, P.; Gachohi, J.; Sindato, C.; Mbotha, D.; Robinson, T.; Lindahl, J.; Grace, D. Effects of climate change on the occurrence and distribution of livestock diseases. Prev. Vet. Med. 2017, 137, 119–129. [Google Scholar] [CrossRef]
- Dorosh, P.; Malik, S.J.; Krausova, M. Rehabilitating agriculture and promoting food security after the 2010 Pakistan floods: Insights from the south Asian experience. Pak. Dev. Rev. 2010, 49, 167. [Google Scholar] [CrossRef]
- Barnes, A.; Islam, M.M.; Toma, L. Heterogeneity in climate change risk perception amongst dairy farmers: A latent class clustering analysis. Appl. Geogr. 2013, 41, 105–115. [Google Scholar] [CrossRef]
- Deressa, T.T.; Hassan, R.M.; Ringler, C.; Alemu, T.; Yesuf, M. Analysis of the Determinants of Farmers’ Choice of Adaptation Methods and Perceptions of Climate Change in the Nile Basin of Ethiopia [in Amharic]; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2008. [Google Scholar]
- Lasco, R.D.; Espaldon, M.L.O.; Habito, C.M.D. Smallholder farmers’ perceptions of climate change and the roles of trees and agroforestry in climate risk adaptation: Evidence from Bohol, Philippines. Agrofor. Syst. 2016, 90, 521–540. [Google Scholar] [CrossRef]
- Lee, T.M.; Markowitz, E.M.; Howe, P.D.; Ko, C.-Y.; Leiserowitz, A.A. Predictors of public climate change awareness and risk perception around the world. Nat. Clim. Chang. 2015, 5, 1014. [Google Scholar] [CrossRef]
- Shikuku, K.M.; Winowiecki, L.; Twyman, J.; Eitzinger, A.; Perez, J.G.; Mwongera, C.; Läderach, P. Smallholder farmers’ attitudes and determinants of adaptation to climate risks in East Africa. Clim. Risk Manag. 2017, 16, 234–245. [Google Scholar] [CrossRef]
- Nhemachena, C.; Mano, R. Assessment of the Economic Impacts of Climate Change on Agriculture in Zimbabwe: A Ricardian Approach; The World Bank: Washington, DC, USA, 2007. [Google Scholar]
- Ochenje, I.; Ritho, C.; Guthiga, P.; Mbatia, O. Assessment of farmers’ perception to the effects of climate change on water resources at farm level: The case of Kakamega county, Kenya. In Proceedings of the 2016 Fifth International Conference, Addis Ababa, Ethiopia, 23–26 September 2016. [Google Scholar]
- Nakano, Y.; Tsusaka, T.W.; Aida, T.; Pede, V.O. Is farmer-to-farmer extension effective? The impact of training on technology adoption and rice farming productivity in Tanzania. World Dev. 2018, 105, 336–351. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, G.; Latif, I.A.; Bashir, M.K.; Shamsudin, M.N.; Daud, W.M.N.W. Determinants of farmers’ awareness of climate change. Appl. Environ. Educ. Commun. 2019, 18, 219–233. [Google Scholar] [CrossRef]
- Rondhi, M.; Fatikhul Khasan, A.; Mori, Y.; Kondo, T. Assessing the Role of the Perceived Impact of Climate Change on National Adaptation Policy: The Case of Rice Farming in Indonesia. Land 2019, 8, 81. [Google Scholar] [CrossRef]
- Pakistan Meteorological Department. Climate Change Scenerios Data for Pakistan. Available online: http://www.pmd.gov.pk (accessed on 30 September 2019).
Territory | Cattle | Buffaloes | Sheep | Goats | Major Crops |
---|---|---|---|---|---|
Pakistan | 47.8 | 40.0 | 30.9 | 76.1 | |
Punjab | 13.204 | 16.019 | 4.942 | 17.392 | |
Muzaffar-Garh (from irrigated zone of Punjab) | 1.1 | 0.9 | 0.5 | 1.3 | Cotton, wheat, maize, sugarcane |
Jhang (mixed cropping zone of Punjab) | 0.9 | 1.2 | 0.4 | 1.0 | Sugarcane, cotton, wheat, maize, tobacco |
Jhelum (rain-fed zone of Punjab) | 0.1 | 0.09 | 0.013 | 0.13 | Wheat, rice, fruit, vegetables, fodder |
Variables | Mean ± SD or n (%) |
---|---|
Socio-economic characteristics | |
Age (years) | 45.1 ± 12.6 |
Dairy Farming Experience (years) | 21.2 ± 11.7 |
Size of Family (no. of heads) | 8.5 ± 3.6 |
Share of Dairy Income (%) | 42.8 ± 15.5 |
Educational level (years) | |
No Education | 88 (19.6) |
Primary School | 137 (30.4) |
High School | 174 (38.7) |
College/University | 51 (11.3) |
Farm characteristics | |
Farm Size (ha) | 2.9 ± 1.2 |
Land Allocated to Dairy Animals (ha) | 0.2 ± 0.01 |
No. of Milking Animals (no. of heads) | 4.5 ± 2.6 |
Milk Production/per day (liter) | 14.1 ± 6.5 |
Farm type (in number) | |
Irrigated | 234 (52) |
Rain-fed | 210 (46.7) |
Mixed | 6 (1.3) |
Breed of dairy animals | |
Indigenous | 172 (38.2) |
Cross | 49 (10.9) |
Mixed | 229 (50.9) |
Variables | Coefficients | Marginal Effects | |||
---|---|---|---|---|---|
Prob (Y = 1|X) | Prob (Y = 2|X) | Prob (Y = 3|X) | Prob (Y = 4|X) | ||
dY/dX | dY/dX | dY/dX | dY/dX | ||
Climatic Parameters | |||||
Drought | 0.1404 (0.064) ** | −0.014(0.007) ** | −0.040(0.018) ** | 0.021(0.010) ** | 0.035(0.014) ** |
Flood | 0.1461 (0.063) ** | −0.014(0.006) ** | −0.041(0.017) ** | 0.022(0.001) ** | 0.031(0.013) ** |
Heat Waves | 0.1515 (0.065) * | −0.015(0.006) ** | −0.015(0.006) ** | 0.023(0.011) ** | 0.023(0.011) ** |
Humidity | 0.1433 (0.066) ** | −0.014(0.007) ** | −0.039(0.018) ** | 0.021(0.010) ** | 0.031(0.014) ** |
Pest & Diseases | 0.1530 (0.063) ** | −0.015(0.006) ** | −0.043(0.016) ** | 0.023(0.011) ** | 0.032(0.013) ** |
Heavy Rainfall | 0.0994 (0.064) ns | −0.001(0.006) ns | −0.028(0.017) ns | 0.015(0.001) ns | 0.021(0.014) ns |
Farmers’ Characteristics | |||||
Education | 0.0275 (0.013) ** | −0.030(0.010) ** | −0.080(0.040) ** | 0.040(0.020) ** | 0.060(0.030) ** |
Age | 0.0113 (0.007) ns | 0.0113 (0.007) ns | −0.003(0.002) ns | 0.002(0.001) ns | 0.002(0.002) ns |
Dairy Farming Experience | 0.0201 (0.008) ** | −0.002(0.000) ** | −0.005(0.002) ** | 0.008(0.004) ** | 0.009(0.005) ** |
Farm Characteristics | |||||
Milking Animals | 0.026 (0.014) *** | −0.003 (0.001) *** | −0.007 (0.004) *** | 0.048 (0.024) *** | 0.060 (0.030) *** |
Breed of Animals | 0.122 (0.080) ns | −0.012 (0.008) ns | −0.034 (0.022) ns | 0.020 (0.012) ns | 0.030 (0.020) ns |
Institutional Link | |||||
Social Participation | 0.055 (0.072) ns | −0.005 (0.007) ns | −0.015 (0.020) ns | 0.008 (0.010) ns | 0.012 (0.012) ns |
Source of Information | 0.1061(0.046) ** | −0.010 (0.004) ** | −0.030 (0.013) ** | 0.016 (0.007) ** | 0.023 (0.001) ** |
Contact with Extension | 0.232 (0.080) * | −0.022 (0.008) *** | −0.064 (0.023) * | 0.034 (0.013) * | 0.050 (0.017) * |
Services | |||||
μ1 | 2.4518 (0.494) *** | ||||
μ2 | 3.7753 (0.496) *** | ||||
μ3 | 5.2023 (0.518) ** | ||||
μ4 | 6.8030 (0.576) ** | ||||
Observations | 450 | ||||
LR chi2(9) | 94.90 | ||||
Prob > chi2 | 0.0000 | ||||
Log likelihood | −512.1638 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, Q.; Han, J.; Adeel, A.; Ullah, R. Dairy Production under Climatic Risks: Perception, Perceived Impacts and Adaptations in Punjab, Pakistan. Int. J. Environ. Res. Public Health 2019, 16, 4036. https://doi.org/10.3390/ijerph16204036
Abbas Q, Han J, Adeel A, Ullah R. Dairy Production under Climatic Risks: Perception, Perceived Impacts and Adaptations in Punjab, Pakistan. International Journal of Environmental Research and Public Health. 2019; 16(20):4036. https://doi.org/10.3390/ijerph16204036
Chicago/Turabian StyleAbbas, Qasir, Jiqin Han, Adnan Adeel, and Raza Ullah. 2019. "Dairy Production under Climatic Risks: Perception, Perceived Impacts and Adaptations in Punjab, Pakistan" International Journal of Environmental Research and Public Health 16, no. 20: 4036. https://doi.org/10.3390/ijerph16204036
APA StyleAbbas, Q., Han, J., Adeel, A., & Ullah, R. (2019). Dairy Production under Climatic Risks: Perception, Perceived Impacts and Adaptations in Punjab, Pakistan. International Journal of Environmental Research and Public Health, 16(20), 4036. https://doi.org/10.3390/ijerph16204036