Association of Typical Toxic Heavy Metals with Schizophrenia
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Sample Collection and ICP Analysis
2.3. Statistical Analysis
2.4. Meta-Analysis
3. Results
3.1. Description of Subjects and Serum THM Concentrations
3.2. Associations between THM Concentrations and Schizophrenia
3.3. Correlation between THM Concentrations and Metabolic Biomarkers
3.4. Meta-Analysis—Associations between THM Concentrations and Schizophrenia
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Saha, S.; Chant, D.; Welham, J.; McGrath, J. A systematic review of the prevalence of schizophrenia. PLoS Med. 2005, 2, e141. [Google Scholar] [CrossRef]
- Van Os, J.; Kapur, S. Schizophrenia. Lancet 2009, 374, 635–645. [Google Scholar] [CrossRef]
- Brown, A.S. The environment and susceptibility to schizophrenia. Prog. Neurobiol. 2011, 93, 23–58. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, C.B.; Raaschou-Nielsen, O.; Hertel, O.; Mortensen, P.B. Air pollution from traffic and schizophrenia risk. Schizophr. Res. 2004, 66, 83–85. [Google Scholar] [CrossRef]
- Pedersen, C.B.; Mortensen, P.B. Urbanization and traffic related exposures as risk factors for schizophrenia. BMC Psychiatry 2006, 6, 2. [Google Scholar] [CrossRef]
- Sun, H.J.; Xiang, P.; Luo, J.; Hong, H.; Lin, H.; Li, H.B.; Ma, L.Q. Mechanisms of arsenic disruption on gonadal, adrenal and thyroid endocrine systems in humans: A review. Environ. Int. 2016, 95, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Schultz, S.K.; Andreasen, N.C. Schizophrenia. Lancet 1999, 353, 1425–1430. [Google Scholar] [CrossRef]
- Suzuki, Y.; Inoue, T.; Ra, C. Autoimmunity-inducing metals (Hg, Au and Ag) modulate mast cell signaling, function and survival. Curr. Pharm. Des. 2011, 17, 3805–3814. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Valko, M. Advances in metal-induced oxidative stress and human disease. Toxicology 2011, 283, 65–87. [Google Scholar] [CrossRef] [PubMed]
- Finefrock, A.E.; Bush, A.I.; Doraiswamy, P.M. Current status of metals as therapeutic targets in Alzheimer’s disease. J. Am. Geriatr. Soc. 2003, 51, 1143–1148. [Google Scholar] [CrossRef]
- Vahidnia, A.; van der Voet, G.B.; de Wolff, F.A. Arsenic neurotoxicity—A review. Hum. Exp. Toxicol. 2007, 26, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Abazyan, B.; Dziedzic, J.; Hua, K.; Abazyan, S.; Yang, C.; Mori, S.; Pletnikov, M.V.; Guilarte, T.R. Chronic exposure of mutant DISC1 mice to lead produces sex-dependent abnormalities consistent with schizophrenia and related mental disorders: A gene-environment interaction study. Schizophr. Bull. 2014, 40, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Chen, T.; Yang, J.; Zhou, K.; Yan, X.; Chen, W.; Sun, L.; Li, L.; Qin, S.; Wang, P.; et al. Serum trace element differences between Schizophrenia patients and controls in the Han Chinese population. Sci. Rep. 2015, 5, 15013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaddadi, K.S.; Soosai, E.; Vaddadi, G. Low blood selenium concentrations in schizophrenic patients on clozapine. Br. J. Clin. Pharmacol. 2003, 55, 307–309. [Google Scholar] [CrossRef]
- Ma, J.; Wang, B.; Gao, X.; Wu, H.; Wang, D.; Li, N.; Tan, J.; Wang, J.; Yan, L. A comparative study of the typical toxic metals in serum by patients of schizophrenia and healthy controls in China. Psychiatry Res. 2018, 269, 558–564. [Google Scholar] [CrossRef]
- Arinola, G.; Idonije, B.; Akinlade, K.; Ihenyen, O. Essential trace metals and heavy metals in newly diagnosed schizophrenic patients and those on anti-psychotic medication. J. Res. Med. Sci. 2010, 15, 245–249. [Google Scholar]
- Ordemann, J.M.; Austin, R.N. Lead neurotoxicity: Exploring the potential impact of lead substitution in zinc-finger proteins on mental health. Metallomics 2016, 8, 579–588. [Google Scholar] [CrossRef]
- Jing, G.; Jing, Z.; Lai-Lai, Y.; Jin-Yun, Q.; Fang-Bo, F.; Jing-Yu, W. Quantitative detection and analysis of 41 kinds of trace elements in serum of patients with schizophrenia. Clin. J. Med. Off. 2013, 41, 44–46. [Google Scholar]
- Li, Z.; Liu, Y.; Li, X.; Ju, W.; Wu, G.; Yang, X.; Fu, X.; Gao, X. Association of Elements with Schizophrenia and Intervention of Selenium Supplements. Biol. Trace Elem. Res. 2018, 183, 16–21. [Google Scholar] [CrossRef]
- Stanley, P.C.; Wakwe, V.C. Toxic trace metals in the mentally ill patients. Niger. Postgrad. Med. J. 2002, 9, 199–204. [Google Scholar]
- Saha, S.; Chant, D.; McGrath, J. A systematic review of mortality in schizophrenia: Is the differential mortality gap worsening over time? Arch. Gen. Psychiatry 2007, 64, 1123–1131. [Google Scholar] [CrossRef] [PubMed]
- Henderson, D.C.; Vincenzi, B.; Andrea, N.V.; Ulloa, M.; Copeland, P.M. Pathophysiological mechanisms of increased cardiometabolic risk in people with schizophrenia and other severe mental illnesses. Lancet Psychiatry 2015, 2, 452–464. [Google Scholar] [CrossRef]
- Spratlen, M.J.; Grau-Perez, M.; Best, L.G.; Yracheta, J.; Lazo, M.; Vaidya, D.; Balakrishnan, P.; Gamble, M.V.; Francesconi, K.A.; Goessler, W.; et al. The Association of Arsenic Exposure and Arsenic Metabolism With the Metabolic Syndrome and Its Individual Components: Prospective Evidence from the Strong Heart Family Study. Am. J. Epidemiol. 2018, 187, 1598–1612. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Jin, C.; Pan, Z.; Sun, L.; Fu, Z.; Jin, Y. Chronic exposure to low concentrations of lead induces metabolic disorder and dysbiosis of the gut microbiota in mice. Sci. Total Environ. 2018, 631–632, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M. Cochrane Handbook for Systematic Reviews of Interventions; Version 6.0; Welch, V., Ed.; Cochrane: London, UK, 2019. [Google Scholar]
- Wells, G.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle–Ottawa Scale (NOS) for Assessing the Quality of Non-Randomized Studies in Meta-Analysis; The Ottawa Hospital Foundation: Ottawa, ON, Canada, 2000. [Google Scholar]
- Vorvolakos, T.; Arseniou, S.; Samakouri, M. There is no safe threshold for lead exposure: Alpha literature review. Psychiatriki 2016, 27, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Opler, M.G.; Buka, S.L.; Groeger, J.; McKeague, I.; Wei, C.; Factor-Litvak, P.; Bresnahan, M.; Graziano, J.; Goldstein, J.M.; Seidman, L.J.; et al. Prenatal exposure to lead, delta-aminolevulinic acid, and schizophrenia: Further evidence. Environ. Health Perspect. 2008, 116, 1586–1590. [Google Scholar] [CrossRef] [PubMed]
- Reuben, A.; Schaefer, J.D.; Moffitt, T.E.; Broadbent, J.; Harrington, H.; Houts, R.M.; Ramrakha, S.; Poulton, R.; Caspi, A. Association of Childhood Lead Exposure With Adult Personality Traits and Lifelong Mental Health. JAMA Psychiatry 2019, 76, 418–425. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Cao, J.; Yan, J.; Wang, J.; Cai, S.; Yan, C. Blood Lead Levels and Risk Factors among Preschool Children in a Lead Polluted Area in Taizhou, China. Biomed. Res. Int. 2017, 2017, 4934198. [Google Scholar] [CrossRef]
- Sagud, M.; Mihaljevic-Peles, A.; Muck-Seler, D.; Pivac, N.; Vuksan-Cusa, B.; Brataljenovic, T.; Jakovljevic, M. Smoking and schizophrenia. Psychiatr. Danub. 2009, 21, 371–375. [Google Scholar] [CrossRef]
- Joseph, A.; Spector, L.; Wickham, K.; Janis, G.; Winickoff, J.; Lindgren, B.; Murphy, S. Biomarker evidence of tobacco smoke exposure in children participating in lead screening. Am. J. Public Health 2013, 103, e54–e59. [Google Scholar] [CrossRef]
- Davis, J.M. Risk assessment of the developmental neurotoxicity of lead. Neurotoxicology 1990, 11, 285–291. [Google Scholar] [PubMed]
- Howes, O.D.; McCutcheon, R.; Owen, M.J.; Murray, R.M. The Role of Genes, Stress, and Dopamine in the Development of Schizophrenia. Biol. Psychiatry 2017, 81, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Khan, D.A.; Qayyum, S.; Saleem, S.; Khan, F.A. Lead-induced oxidative stress adversely affects health of the occupational workers. Toxicol. Ind. Health 2008, 24, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Takano, T.; Okutomi, Y.; Mochizuki, M.; Ochiai, Y.; Yamada, F.; Mori, M.; Ueda, F. Biological index of environmental lead pollution: Accumulation of lead in liver and kidney in mice. Environ. Monit. Assess. 2015, 187, 744. [Google Scholar] [CrossRef] [PubMed]
- Matovic, V.; Buha, A.; Ethukic-Cosic, D.; Bulat, Z. Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys. Food Chem. Toxicol. 2015, 78, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Scharf, B.; Clement, C.C.; Zolla, V.; Perino, G.; Yan, B.; Elci, S.G.; Purdue, E.; Goldring, S.; Macaluso, F.; Cobelli, N.; et al. Molecular analysis of chromium and cobalt-related toxicity. Sci. Rep. 2014, 4, 5729. [Google Scholar] [CrossRef]
- Arsent’ev, V.; Soroka, V.R.; Mukhaev, M.S. Chromium, aluminum and silver in the bodies of patients with schizophrenia. Zh. Nevropatol. Psikhiatr. Im. SS Korsakova 1973, 73, 105–110. [Google Scholar]
- Cheung, K.H.; Gu, J.-D. Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: A review. Int. Biodeterior. Biodegrad. 2007, 59, 8–15. [Google Scholar] [CrossRef]
- Davidson, J.R.; Abraham, K.; Connor, K.M.; McLeod, M.N. Effectiveness of chromium in atypical depression: A placebo-controlled trial. Biol. Psychiatry 2003, 53, 261–264. [Google Scholar] [CrossRef]
- Yang, C.P.; Wang, Y.Y.; Lin, S.Y.; Hong, Y.J.; Liao, K.Y.; Hsieh, S.K.; Pan, P.H.; Chen, C.J.; Chen, W.Y. Olanzapine Induced Dysmetabolic Changes Involving Tissue Chromium Mobilization in Female Rats. Int. J. Mol. Sci. 2019, 20, 640. [Google Scholar] [CrossRef]
- Sarkar, M.; Chaudhuri, G.R.; Chattopadhyay, A.; Biswas, N.M. Effect of sodium arsenite on spermatogenesis, plasma gonadotrophins and testosterone in rats. Asian J. Androl. 2003, 5, 27–31. [Google Scholar] [PubMed]
- Guha Mazumder, D.N. Arsenic and liver disease. J. Indian Med. Assoc. 2001, 99, 311, 314–315, 318–320. [Google Scholar] [PubMed]
- Hopenhayn-Rich, C.; Biggs, M.L.; Smith, A.H. Lung and kidney cancer mortality associated with arsenic in drinking water in Cordoba, Argentina. Int. J. Epidemiol. 1998, 27, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Dorval, K.M.; Burcescu, I.; Adams, J.; Wigg, K.G.; King, N.; Kiss, E.; Kapornai, K.; Gadoros, J.; Tamas, Z.; Daroczi, G.; et al. Association study of N-methyl-D-aspartate glutamate receptor subunit genes and childhood-onset mood disorders. Psychiatr. Genet. 2009, 19, 156–157. [Google Scholar] [CrossRef]
Characteristics | Cases (N a = 95) | Controls (N = 95) | pb |
---|---|---|---|
Age (years) | |||
<25 | 19 (20.0) | 32 (33.7) | 0.180 |
25–30 | 33 (34.7) | 27 (28.4) | |
30–35 | 22 (23.2) | 16 (16.8) | |
>35 | 21 (22.1) | 20 (20.1) | |
Sex | |||
Male | 41 (43.2) | 49 (51.6) | 0.309 |
Female | 54 (56.8) | 46 (48.4) | |
BMI (kg/m2) | |||
<18.5 | 5 (5.3) | 2 (2.2) | 0.719 |
18.5–24.9 | 57 (60.0) | 57 (61.3) | |
25–29.9 | 27 (28.4) | 27 (29.0) | |
≥30 | 6 (6.3) | 7 (7.5) | |
Marital status | |||
Single | 73 (76.8) | 45 (47.4) | <0.001 |
Married | 22 (23.2) | 50 (52.6) | |
Education level | |||
Elementary school or below | 23 (24.2) | 25 (26.3) | 0.305 |
Junior high school | 43 (45.3) | 42 (44.2) | |
High school | 16 (16.8) | 22 (23.2) | |
College or above | 13 (13.7) | 6 (6.3) | |
Active smoking | |||
No | 70 (73.7) | 73 (76.8) | 0.717 |
Yes | 25 (26.3) | 22 (23.2) | |
Drinking | |||
No | 88 (92.6) | 82 (86.3) | 0.237 |
Yes | 7 (7.4) | 13 (13.7) |
Metals (ng/mL) | Cases | Controls | pa | Ratio (Cases/Controls) |
---|---|---|---|---|
Cr | 0.850 (0.743–0.996) | 0.852 (0.763–0.932) | 0.770 | 0.998 |
Cd | 0.756 (0.619–0.886) | 0.768 (0.655–0.898) | 0.405 | 0.984 |
Pb | 0.626 (0.488–0.855) | 0.546 (0.381–0.727) | 0.011 | 1.15 |
As | 0.593 (0.253–0.984) | 0.767 (0.325–1.800) | 0.025 | 0.773 |
Toxic Metals | Median (IQR) a | Univariate OR (95% CI) b | p | Adjusted OR (95% CI) | pc |
---|---|---|---|---|---|
Cr | 0.851 (0.748–0.956) | 0.65 (0.31–1.40) | 0.276 | 0.74 (0.34–1.61) | 0.452 |
Cd | 0.762 (0.646–0.893) | 0.64 (0.14–2.91) | 0.562 | 0.59 (0.12–2.86) | 0.508 |
Pb | 0.607 (0.441–0.791) | 3.21 (1.32–7.81) | 0.010 | 3.15 (1.24–7.99) | 0.016 |
As | 0.604 (0.299–1.406) | 0.85 (0.71–1.01) | 0.070 | 0.87 (0.72–1.04) | 0.118 |
EMEs | PANSS Score (Positive) | PANSS Score (Negative) | PANSS Score (General) | PANSS Score (Total) |
---|---|---|---|---|
Cr | −0.04 | 0.158 | −0.117 | −0.035 |
Cd | −0.008 | 0.030 | 0.011 | 0.068 |
Pb | 0.150 | 0.288 ** | 0.006 | 0.324 ** |
As | 0.103 | −0.085 | −0.017 | 0.012 |
Metabolic Biomarker | Cases (N a = 95) | Controls (N = 95) | pb | Correlations with THMs | |||
---|---|---|---|---|---|---|---|
Cr | Cd | Pb | As | ||||
Glucose metabolism | |||||||
FBG (mmol/L); median (IQR) | 4.60 (4.30–5.20) | 5.13 (4.71–5.73) | <0.001 | −0.058 | 0.048 | −0.023 | 0.039 |
Lipid metabolism | |||||||
TG (mmol/L); median (IQR) | 1.44 (1.01–2.15) | 1.32 (1.02–1.86) | 0.455 | 0.134 | 0.136 | 0.065 | 0.066 |
TC (mmol/L); median (IQR) | 4.13 (3.55–4.66) | 4.90 (4.29–5.76) | <0.001 | 0.045 | 0.065 | −0.100 | 0.186 * |
Liver function | |||||||
AST (U/L); median (IQR) | 17 (15–22) | 17 (15–21) | 0.610 | 0.059 | −0.138 | −0.076 | 0.002 |
ALT (U/L); median (IQR) | 18 (13–29) | 15 (12–20) | 0.006 | −0.054 | −0.132 | −0.080 | 0.046 |
ALB (g/L); median (IQR) | 40.00 (38.00–43.00) | 42.12 (39.46–44.89) | <0.001 | 0.012 | 0.054 | −0.163 * | 0.163 * |
TP (g/L); median (IQR) | 68.00 (64.00–71.00) | 69.66 (64.07–76.39) | 0.021 | 0.106 | 0.100 | −0.038 | 0.208 ** |
Renal function | |||||||
BUN (mmol/L); median (IQR) | 4.08 (3.37–5.19) | 5.24 (4.46–6.45) | <0.001 | 0.028 | −0.042 | −0.182 * | 0.217 ** |
CREA (umol/L); median (IQR) | 65.00 (57.00–72.00) | 64.05 (54.13–73.18) | 0.725 | 0.075 | −0.052 | −0.207 ** | 0.014 |
UA (umol/L); median (IQR) | 283.00 (217.00–353.00) | 262.00 (221.75–369.25) | 0.943 | −0.014 | −0.094 | −0.170 * | 0.076 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Yan, L.; Guo, T.; Yang, S.; Guo, C.; Liu, Y.; Xie, Q.; Wang, J. Association of Typical Toxic Heavy Metals with Schizophrenia. Int. J. Environ. Res. Public Health 2019, 16, 4200. https://doi.org/10.3390/ijerph16214200
Ma J, Yan L, Guo T, Yang S, Guo C, Liu Y, Xie Q, Wang J. Association of Typical Toxic Heavy Metals with Schizophrenia. International Journal of Environmental Research and Public Health. 2019; 16(21):4200. https://doi.org/10.3390/ijerph16214200
Chicago/Turabian StyleMa, Jiahui, Lailai Yan, Tongjun Guo, Siyu Yang, Chen Guo, Yaqiong Liu, Qing Xie, and Jingyu Wang. 2019. "Association of Typical Toxic Heavy Metals with Schizophrenia" International Journal of Environmental Research and Public Health 16, no. 21: 4200. https://doi.org/10.3390/ijerph16214200
APA StyleMa, J., Yan, L., Guo, T., Yang, S., Guo, C., Liu, Y., Xie, Q., & Wang, J. (2019). Association of Typical Toxic Heavy Metals with Schizophrenia. International Journal of Environmental Research and Public Health, 16(21), 4200. https://doi.org/10.3390/ijerph16214200