Impact of PM2.5 on Second Birth Intentions of China’s Floating Population in a Low Fertility Context
Abstract
:1. Introduction
2. Determinants of Birth Intentions of the Chinese Floating Population
3. Impact of Air Pollution on the Birth Intentions of China’s Floating Population
4. Data, Measures and Method
4.1. Data Sources
4.2. The Outcome Variable
4.3. The Key Explanatory Variable
4.4. Control Variables
4.5. Method
5. Results
5.1. Impact of PM2.5 on Second Birth Intentions: Reducing Intentions
5.2. Impact of PM2.5 on Second Birth Intentions: Individual Differences
5.3. Impact of PM2.5 on Second Birth Intention: Regional Differences
6. Discussion
7. Conclusions and Limitations
Author Contributions
Funding
Conflicts of Interest
References
- Chen, W.; Wu, L.L. Research on the relationships between migration and fertility in China (In Chinese). Popul. Res. 2006, 30, 13–20. (In Chinese) [Google Scholar]
- National Bureau of Statistics of China. China Statistical Yearbook 2014; China Statistics Press: Beijing, China, 2015.
- Liang, Z.; Li, Z.; Ma, Z. Changing patterns of the floating population in China, 2000–2010. Popul. Dev. Rev. 2014, 40, 695–716. [Google Scholar] [CrossRef] [PubMed]
- National Health and Family Planning Commission. China’s Health and Family Planning Statistical Yearbook 2016; Peking Union Medical College Press: Beijing, China, 2017.
- Du, M. Change trend, social integration and the innovation of management system of floating population in China. Public Manag. 2013, 234, 147–156. [Google Scholar]
- Feyisetan, B.; Casterline, J.B. Fertility preferences and contraceptive change in developing countries. Int. Fam. Plan. Perspect. 2000, 26, 100–109. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, F.; Wu, F. Intergroup neighbouring in urban China: Implications for the social integration of migrants. Urban Stud. 2016, 53, 651–668. [Google Scholar] [CrossRef]
- Guo, Z.; Wu, Z.; Schimmele, C.M.; Li, S. The effect of urbanization on China’s fertility. Popul. Res. Policy Rev. 2012, 31, 417–434. [Google Scholar] [CrossRef]
- Feeney, G.; Wang, F. Parity progression and birth intervals in China: The influence of policy in hastening fertility decline. Popul. Dev. Rev. 1993, 19, 61–101. [Google Scholar] [CrossRef]
- Goldstein, J.R.; Sobotka, T.; Jasilioniene, A. The end of “lowest-low” fertility? Popul. Dev. Rev. 2009, 35, 663–699. [Google Scholar] [CrossRef]
- EPI. Environmental Performance Index 2014; Yale University: New Haven, CT, USA, 2014; Available online: http://www.epi.yale.edu/epi/issue-ranking/air-quality (accessed on 10 October 2019).
- Zhou, M.; He, G.; Fan, M.; Wang, Z.; Liu, Y.; Ma, J.; Ma, Z.; Liu, J.; Liu, Y.; Wang, L.; et al. Smog episodes, fine particulate pollution and mortality in China. Environ. Res. 2015, 136, 396–404. [Google Scholar] [CrossRef]
- EPA. Integrated Science Assessment for Particulate Matter; US Environmental Protection Agency: Washington, DC, USA, 2009.
- Li, P.; Xin, J.; Wang, Y.; Wang, S.; Li, G.; Pan, X.; Liu, Z.; Wang, L. The acute effects of fine particles on respiratory mortality and morbidity in Beijing, 2004–2009. Environ. Sci. Pollut. Res. 2013, 20, 6433–6444. [Google Scholar] [CrossRef]
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; Aryee, M. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef]
- Lin, H.; Tao, J.; Kan, H.; Qian, Z.; Chen, A.; Du, Y.; Ma, W. Ambient particulate matter air pollution associated with acute respiratory distress syndrome in Guangzhou, China. J. Expo. Sci. Environ. Epidemiol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Dadvand, P.; Parker, J.; Bell, M.L.; Bonzini, M.; Brauer, M.; Darrow, L.A.; Gehring, U.; Glinianaia, S.V.; Gouveia, N.; Ha, E.H.; et al. Maternal Exposure to Particulate Air Pollution and Term Birth Weight: A Multi-Country Evaluation of Effect and Heterogeneity. Environ. Health Perspect. 2013, 121, 267–373. [Google Scholar] [CrossRef] [PubMed]
- Rich, D.Q.; Liu, K.; Zhang, J.; Thurston, S.W.; Stevens, T.P.; Pan, Y.; Kane, C.; Weinberger, B.; Ohman-Strickland, P.; Woodruff, T.; et al. Differences in birth weight associated with the 2008 Beijing Olympics air pollution reduction: Results from a natural experiment. Environ. Health Perspect. 2015, 123, 880–887. [Google Scholar] [CrossRef] [PubMed]
- Carré, J.; Gatimel, N.; Moreau, J.; Parinaud, J.; Léandri, R. Does air pollution play a role in infertility? A systematic review. Environ. Health 2017, 16, 82. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.; Sundaram, R.; Louis, G.M.B.; Nobles, C.; Seeni, I.; Sherman, S.; Mendola, P. Ambient air pollution and the risk of pregnancy loss: A prospective cohort study. Fertil. Steril. 2018, 109, 148–153. [Google Scholar] [CrossRef]
- Vizcaíno, M.A.C.; González-Comadran, M.; Jacquemin, B. Outdoor air pollution and human infertility: A systematic review. Fertil. Steril. 2016, 106, 897–904. [Google Scholar] [CrossRef]
- Sun, C. Floating population in Shanghai: A perspective on social transformation in China. In Floating Population and Migration in China: The Impact of Economic Reforms; Scharping, T., Ed.; Institute of Asian Studies: Hamburg, Germany, 1997; pp. 201–215. [Google Scholar]
- Schoen, R.; Astone, N.M.; Kim, Y.J.; Nathanson, C.A.; Fields, J.M. Do fertility intentions affect fertility behavior? J. Marriage Fam. 1999, 61, 790–799. [Google Scholar] [CrossRef]
- Testa, M.R. On the positive correlation between education and fertility intentions in Europe: Individual-and country-level evidence. Adv. Life Course Res. 2014, 21, 28–42. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, Y.Y.; Wei, X.J.; Chen, E. What determines “giving birth to a son”: The social transformation of how institution and culture affect women’s fertility choices. J. Chin. Sociol. 2017, 4, 9. [Google Scholar]
- Zeng, Y.; Hesketh, T. The effects of China’s universal two-child policy. Lancet 2016, 388, 1930–1938. [Google Scholar] [CrossRef]
- Guo, W. The changes of disability-free life expectancy and inter-generation support for the elderly in China: 2005–2010. In Cross-Cultural and Cross-Disciplinary Perspectives in Social Gerontology; Springer: Singapore, 2017; pp. 221–243. [Google Scholar]
- Wang, F.; Gu, B.; Cai, Y. The End of China’s One-Child Policy. Stud. Fam. Plan. 2016, 47, 83–86. [Google Scholar]
- Bao, L.; Chen, F.; Zheng, Z. Transition in second birth intention in a low fertility context: The case of Jiangsu, China. Asian Popul. Stud. 2017, 13, 198–222. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, F. Too early or too late: What have we learned from the 30-year two-child policy experiment in Yicheng, China? Demogr. Res. 2017, 37, 929–956. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.H. Research on Migrants’ Fertility Intention of the Second Child (In Chinese). Chin. J. Popul. Sci. 2018, 32, 72–82. [Google Scholar]
- Zhang, J. The evolution of China’s one-child policy and its effects on family outcomes. J. Econ. Perspect. 2017, 31, 141–160. [Google Scholar] [CrossRef]
- Piotrowski, M.; Tong, Y. Education and fertility decline in China during transitional times: A cohort approach. Soc. Sci. Res. 2016, 55, 94–110. [Google Scholar] [CrossRef]
- Becker, G.S.; Lewis, H.G. On the Interaction between the Quantity and Quality of Children. J. Political Econ. 1973, 81, S279–S288. [Google Scholar] [CrossRef]
- Cai, Y. China’s below-replacement fertility: Government policy or socioeconomic development? Popul. Dev. Rev. 2010, 36, 419–440. [Google Scholar] [CrossRef]
- Bongaarts, J. Trends in unwanted childbearing in the developing world. Stud. Fam. Plan. 1997, 28, 267–277. [Google Scholar] [CrossRef]
- Bongaarts, J. Completing the fertility transition in the developing world: The role of educational differences and fertility preferences. Popul. Stud. 2003, 57, 321–335. [Google Scholar] [CrossRef] [PubMed]
- Gu, P.; Ma, X. Investigation and analysis of a floating population’s settlement intention and environmental concerns: A case study in the Shawan River Basin in Shenzhen. China. Habitat Int. 2013, 39, 170–178. [Google Scholar] [CrossRef]
- Démurger, S.; Gurgand, M.; Li, S.; Yue, X. Migrants as second-class workers in urban China? A decomposition analysis. J. Comp. Econ. 2009, 37, 610–628. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Eggleston, K.N.; Rizzo, J.A.; Zeckhauser, R. Female Employment and Fertility in Rural China; HKS Faculty Research Working Paper Series, RWP10-011; John, F., Ed.; Kennedy School of Government, Harvard University: Cambridge, MA, USA, 2010. [Google Scholar]
- Moav, O. Cheap children and the persistence of poverty. Econ. J. 2005, 115, 88–110. [Google Scholar] [CrossRef]
- Engelhardt, H.; Kögel, T.; Prskawetz, A. Fertility and women’s employment reconsidered: A macro-level time-series analysis for developed countries, 1960–2000. Popul. Stud. 2004, 58, 109–120. [Google Scholar] [CrossRef]
- Zhou, M.; Guo, W. Fertility intentions of having a second child among the floating population in China: Effects of socioeconomic factors and home ownership. Popul. Space Place 2019. [Google Scholar] [CrossRef]
- Martin, E. The woman in the body: A cultural analysis of reproduction. Birth 1990, 17, 169–171. [Google Scholar]
- Poston, D.L., Jr.; Gu, B.; Liu, P.P.; McDaniel, T. Son preference and the sex ratio at birth in China: A provincial level analysis. Soc. Biol. 1997, 44, 55–76. [Google Scholar] [CrossRef]
- Poston, D.L., Jr. Son preference and fertility in China. J. Biosoc. Sci. 2002, 34, 333–347. [Google Scholar] [CrossRef]
- Attané, I.; Guilmoto, C.Z. Watering the Neighbours’ Garden: The Growing Female Demographic Deficit in Asia; CICRED: Paris, France, 2007. [Google Scholar]
- Mohabir, N.; Jiang, Y.; Ma, R. Chinese floating migrants: Rural-urban migrant laborers’ intentions to stay or return. Habitat Int. 2017, 60, 101–110. [Google Scholar] [CrossRef]
- Cheng, T.; Selden, M. The origins and social consequences of China’s hukou system. China Q. 1994, 139, 644–668. [Google Scholar] [CrossRef]
- Chan, K.W. The household registration system and migrant labor in China: Notes on a debate. Popul. Dev. Rev. 2010, 36, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.; Fu, D.; Li, C.Y.; Song, H.X. Rural migrant workers in urban China: Living a marginalised life. Int. J. Soc. Welf. 2007, 16, 32–40. [Google Scholar] [CrossRef]
- Lindstrom, D.P.; Saucedo, S.G. The short-and long-term effects of US migration experience on Mexican women’s fertility. Soc. Forces 2002, 80, 1341–1368. [Google Scholar] [CrossRef]
- Wolf, K.; Mulder, C.H. Comparing the fertility of Ghanaian migrants in Europe with non-migrants in Ghana. Popul. Space Place 2018, e2171. [Google Scholar] [CrossRef]
- Goldstein, A.; White, M. Migration, fertility, and state policy in Hubei Province, China. Demography 1997, 34, 481–491. [Google Scholar] [CrossRef]
- Massey, D.S. Segregation and stratification: A biosocial perspective. Du Bois Rev. 2004, 1, 7–25. [Google Scholar] [CrossRef]
- Xie, Y.B.; Chen, J.; Li, W. An assessment of PM2.5 related health risks and impaired values of Beijing residents in a consecutive high-level exposure during heavy haze days. Huan Jing Kexue 2014, 35, 1–8. (In Chinese) [Google Scholar]
- Ma, Y.; Chen, R.; Pan, G.; Xu, X.; Song, W.; Chen, B.; Kan, H. Fine particulate air pollution and daily mortality in Shenyang, China. Sci. Total Environ. 2011, 409, 2473–2477. [Google Scholar] [CrossRef]
- Wong, C.M.; Lai, H.K.; Tsang, H.; Thach, T.Q.; Thomas, G.N.; Lam, K.B.; Chan, K.P.; Yang, L.; Lau, A.K.; Ayres, J.G.; et al. Satellite-based estimates of long-term exposure to fine particles and association with mortality in elderly Hong Kong residents. Environ. Health Perspect. 2015, 123, 1167–1172. [Google Scholar] [CrossRef]
- Grant, W. Autos, Smog and Pollution Control. In The Politics of Air Quality Management in California; Edward Elgar Publishing: Cheltenham, UK, 1996. [Google Scholar]
- Kahn, M.E. Smog reduction’s impact on California county growth. J. Reg. Sci. 2000, 40, 565–582. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M.J.; Basagaña, X.; Dadvand, P.; Martinez, D.; Cirach, M.; Beelen, R.; Jacquemin, B. Air pollution and human fertility rates. Environ. Int. 2014, 70, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Perera, F.P.; Tang, D.; Wang, S.; Vishnevetsky, J.; Zhang, B.; Diaz, D.; Rauh, V. Prenatal polycyclic aromatic hydrocarbon (PAH) exposure and child behavior at age 6–7 years. Environ. Health Perspect. 2012, 120, 921–926. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, Z.; Zhang, W. Exploring spatiotemporal patterns of PM2.5 in China based on ground-level observations for 190 cities. Environ. Pollut. 2016, 216, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, W.; Cheng, M.; Liu, S.; Xu, J.; He, Y.; Meng, F. The contribution of residential coal combustion to PM2. 5 pollutions over China’s Beijing-Tianjin-Hebei region in winter. Atmos. Environ. 2017, 159, 147–161. [Google Scholar] [CrossRef]
- Greene, W. Econometric Analysis; Pearson Education Inc.: New York, NY, USA, 2008. [Google Scholar]
- Jiang, Q.; Li, Y.; Sánchez-Barricarte, J.J. Fertility intention, son preference, and second childbirth: Survey findings from Shaanxi Province of China. Soc. Indic. Res. 2016, 125, 935–953. [Google Scholar] [CrossRef]
- Zheng, Z.Z.; Cai, Y.; Wang, F.; Gu, B.C. Below-replacement fertility and childbearing intention in Jiangsu Province, China. Asian Popul. Stud. 2009, 5, 329–347. [Google Scholar]
- Hicken, M.T.; Lee, H.; Morenoff, J.; House, J.S.; Williams, D.R. Racial/ethnic disparities in hypertension prevalence: Reconsidering the role of chronic stress. Am. J. Public Health 2014, 104, 117–123. [Google Scholar] [CrossRef]
- Xu, P.; Chen, Y.; Ye, X. Haze, air pollution, and health in China. Lancet 2013, 382, 2067. [Google Scholar] [CrossRef]
Factors | Definition | South China (N = 18,603) | North China (N = 15,788) | All (N = 34,391) |
---|---|---|---|---|
Second birth intention | Yes (%) | 22.83 | 19.47 | 21.29 |
Air pollution | PM2.5 concentration (10 μg/m3) | 5.69 | 6.85 | 6.22 |
Demographic, socioeconomic factors | Sex | |||
Male (%) | 59.83 | 63.40 | 61.47 | |
Female (%) | 40.17 | 36.60 | 38.53 | |
Household registration status | ||||
Rural (%) | 81.37 | 79.64 | 80.57 | |
Urban (%) | 18.63 | 20.36 | 19.43 | |
Age | 33.77 | 34.45 | 34.08 | |
Schooling (years) | 10.34 | 10.39 | 10.37 | |
Monthly income (100 yuan) | 41.29 | 39.26 | 40.36 | |
Social status | ||||
Employee (%) | 58.14 | 53.69 | 56.10 | |
Employer (%) | 10.06 | 9.86 | 9.97 | |
Self-management (%) | 30.44 | 34.54 | 32.32 | |
Others (%) | 1.36 | 1.91 | 1.61 | |
Second birth policy | Eligible couples (%) | 13.07 | 12.66 | 12.88 |
Knowing the policy (%) | 94.08 | 92.71 | 93.45 | |
First child | Sex | |||
Boy (%) | 62.87 | 60.21 | 61.65 | |
Girl (%) | 37.13 | 39.39 | 38.35 | |
Age (years) | 8.93 | 9.45 | 9.17 | |
City level | Total GDP (hundred billion yuan) | 7.505 | 6.659 | 7.117 |
Per capita GDP (thousand yuan) | 75.505 | 78.578 | 76.916 | |
Population density (100 people/km2) | 7.816 | 4.77 | 6.42 | |
Percentage of the secondary industry (%) | 47.55 | 45.62 | 46.66 |
Variable | All Cities | 40 Cities | |||
---|---|---|---|---|---|
Model 1 Coef. (S.E.) | Model 2 Coef. (S.E.) | Model 3 Coef. (S.E.) | Model 4 Coef. (S.E.) | Model 5 Coef. (S.E.) | |
PM2.5 concentration (10 μg/m3) | −0.064 *** (0.007) | −0.058 *** (0.008) | −0.063 *** (0.008) | −0.061 *** (0.007) | −0.087 *** (0.012) |
Female (male = 0) | −0.246 *** (0.028) | −0.162 *** (0.030) | −0.153 *** (0.030) | −0.153 *** (0.049) | |
Age | −0.092 *** (0.002) | −0.051 *** (0.004) | −0.050 *** (0.004) | −0.044 *** (0.007) | |
Schooling (years) | 0.022 *** (0.005) | −0.014 ** (0.006) | −0.010 * (0.006) | −0.009 (0.009) | |
Urban hukou (rural = 0) | −0.230 *** (0.043) | −0.349 *** (0.047) | −0.337 *** (0.048) | −0.375 *** (0.080) | |
Employer (employee = 0) | 0.179 *** (0.049) | 0.205 *** (0.053) | 0.195 *** (0.054) | 0.247 *** (0.091) | |
Self-management (employee = 0) | 0.116 *** (0.031) | 0.136 *** (0.032) | 0.115 *** (0.033) | 0.144 *** (0.054) | |
Others (employee = 0) | −0.043 (0.144) | −0.041 (0.155) | −0.048 (0.159) | 0.196 (0.256) | |
Monthly income (100 yuan) | 0.0003 (0.0003) | −0.0003 (0.0003) | 0.0001 (0.0003) | 0.0002 (0.0005) | |
Eligible couples (no = 0) | 0.578 *** (0.040) | 0.594 *** (0.041) | 0.616 *** (0.063) | ||
Knowing the second–child policy (no = 0) | 0.027 (0.055) | 0.048 (0.055) | 0.045 (0.093) | ||
First child’s sex (boy = 0) | 0.734 *** (0.029) | 0.733 *** (0.029) | 0.714 *** (0.045) | ||
First child’s age | −0.051 *** (0.005) | −0.053 *** (0.005) | −0.060 *** (0.008) | ||
Total GDP (100 billion yuan) | −0.012 *** (0.003) | −0.002 (0.005) | |||
Per capita GDP (thousand yuan) | −0.001 ** (0.0006) | −0.002 * (0.001) | |||
Population density (100 people/km2) | 0.002 (0.003) | −0.0007 (0.005) | |||
Secondary industry (%) | −0.0005 (0.002) | 0.0028 (0.003) | |||
Constant | −0.487 *** (0.045) | 2.441 *** (0.109) | 1.474 *** (0.132) | 1.588 *** (0.156) | 1.364 *** (0.288) |
Observations (N) | 34,391 | 34,391 | 34,391 | 34,391 | 14,368 |
Wald Chi2 statistics | 84.10 | 2061.03 | 2104.24 | 2150.42 | 865.71 |
Pseudo R2 | 0.006 | 0.168 | 0.207 | 0.211 | 0.210 |
% of correct prediction | 78.75 | 78.71 | 80.45 | 80.56 | 82.17 |
Variable | Model 6 Coef. (S.E.) | Model 7 Coef. (S.E.) | Model 8 Coef. (S.E.) | Model 9 Coef. (S.E.) | Model 10 Coef. (S.E.) | Model 11 Coef. (S.E.) | Model 12 Coef. (S.E.) |
---|---|---|---|---|---|---|---|
PM2.5 concentration (10 μg/m3) | −0.063 *** (0.009) | −0.044 *** (0.012) | −0.051 *** (0.009) | −0.059 *** (0.007) | −0.058 *** (0.007) | −0.047 *** (0.010) | −0.051 *** (0.010) |
Interaction terms | |||||||
Sex × PM2.5 | 0.009 | ||||||
(0.017) | |||||||
Old age × PM2.5 | −0.024 | ||||||
(0.017) | |||||||
Middle age × PM2.5 | −0.013 | ||||||
(0.036) | |||||||
Senior high school × PM2.5 | −0.025 | ||||||
(0.021) | |||||||
University degree × PM2.5 | −0.009 | ||||||
(0.021) | |||||||
Non-rural hukou × PM2.5 | 0.004 | ||||||
(0.024) | |||||||
Eligible couples × PM2.5 | −0.005 | ||||||
(0.025) | |||||||
Have a girl × PM2.5 | −0.025 | ||||||
(0.016) | |||||||
Monthly income of 3000–4000 × PM2.5 | −0.019 | ||||||
(0.018) | |||||||
Monthly income of 5000–7000 × PM2.5 | −0.020 | ||||||
(0.029) | |||||||
Monthly income > 7000 × PM2.5 | 0.005 | ||||||
(0.040) | |||||||
Other variables | Control | Control | Control | Control | Control | Control | Control |
Observations (N) | 34,391 | 34,391 | 34,391 | 34,391 | 34,391 | 34,391 | 34,391 |
Variable | Living in South China | Living in North China | ||
---|---|---|---|---|
Originating from the South | Originating from the North | Originating from the South | Originating from the North | |
Model 13 Coef. (S.E.) | Model 14 Coef. (S.E.) | Model 15 Coef. (S.E.) | Model 16 Coef. (S.E.) | |
PM2.5 concentration (10 μg/m3) | −0.130 *** (0.012) | −0.171 *** (0.042) | 0.042 (0.034) | 0.049 *** (0.012) |
Female (male = 0) | −0.135 *** (0.039) | −0.335 *** (0.101) | −0.280 *** (0.105) | −0.156 *** (0.043) |
Age | −0.043 *** (0.005) | −0.079 *** (0.014) | −0.066 *** (0.014) | −0.070 *** (0.006) |
Schooling (years) | −0.015 * (0.008) | 0.019 (0.020) | −0.007 (0.020) | −0.010 (0.008) |
Non-rural (rural = 0) | −0.334 *** (0.064) | −0.274 * (0.159) | −0.144 (0.146) | −0.356 *** (0.067) |
Employer (employee = 0) | 0.211 *** (0.071) | 0.309 (0.205) | 0.155 (0.151) | 0.168 ** (0.079) |
Self-management (employee = 0) | 0.068 (0.043) | 0.333 *** (0.125) | 0.330 *** (0.118) | 0.174 *** (0.049) |
Others (employee = 0) | −0.169 (0.168) | 0.559 (0.527) | 0.149 (0.422) | −0.179 (0.143) |
Monthly income (hundred yuan) | 0.0003 (0.0004) | −0.0030 * (0.0017) | 0.0006 (0.0006) | 0.0006 (0.0006) |
Eligible couples (no = 0) | 0.632 *** (0.055) | 0.753 *** (0.137) | 0.716 *** (0.133) | 0.525 *** (0.060) |
Knowing the policy (no = 0) | 0.035 (0.072) | −0.099 (0.195) | 0.501 ** (0.216) | 0.040 (0.076) |
First child’s sex (boy = 0) | 0.748 *** (0.038) | 0.929 *** (0.096) | 0.573 *** (0.101) | 0.649 *** (0.042) |
First child’s age | −0.062 *** (0.006) | −0.031 * (0.016) | −0.033 ** (0.015) | −0.017 ** (0.008) |
Total GDP (hundred billion yuan) | −0.015 *** (0.004) | 0.018 (0.014) | −0.041 *** (0.015) | −0.016 *** (0.005) |
Per capita GDP (thousand yuan) | −0.001 (0.001) | −0.002 (0.002) | 0.0003 (0.003) | 0.002 ** (0.001) |
Population density (100 people/km2) | −0.001 (0.005) | −0.022 (0.014) | 0.061 ** (0.025) | 0.018 * (0.010) |
Secondary industry (%) | 0.002 (0.002) | 0.003 (0.009) | −0.014 *** (0.005) | 0.002 (0.002) |
Intercept | 1.772 *** (0.211) | 2.747 *** (0.643) | 1.066 ** (0.540) | 0.865 *** (0.229) |
Observations (N) | 16,887 | 1716 | 2117 | 13,671 |
Wald Chi2 statistics | 1407.63 | 293.45 | 226.49 | 687.09 |
Pseudo R2 | 0.227 | 0.250 | 0.219 | 0.174 |
% of correct prediction | 80.92 | 76.59 | 81.71 | 81.89 |
Regions | North | Northeast | Northwest | Yangtze River Delta | Central–South | South | Southwest |
---|---|---|---|---|---|---|---|
PM2.5 concentration (10 μg/m3) | 0.029 ** (0.013) | −0.084 (0.058) | −0.057 (0.045) | −0.018 (0.034) | −0.137 *** (0.020) | −0.037 (0.040) | −0.278 *** (0.075) |
Observations (N) | 7671 | 3717 | 4400 | 6597 | 4504 | 4375 | 3127 |
Provinces | Hebei | Shanxi | Shandong | Henan | Inner Mongolia |
PM2.5 concentration (10 μg/m3) | 0.214 *** (0.081) | −0.012 (0.088) | −0.012 (0.035) | −0.041 (0.125) | −0.191 *** (0.103) |
Observations | 819 | 773 | 2303 | 674 | 1119 |
Provinces | Heilongjiang | Jilin | Liaoning | Shaanxi | Gansu |
PM2.5 concentration (10 μg/m3) | −0.169 (0.268) | −0.352 (0.301) | −0.012 (0.133) | 0.141 * (0.083) | −0.517 *** (0.192) |
Observations | 1861 | 741 | 1049 | 1203 | 828 |
Provinces | Jiangsu | Zhejiang | Anhui | Hubei | Hunan |
PM2.5 concentration (10 μg/m3) | −0.447 *** (0.173) | 0.033 (0.042) | 0.009 (0.133) | −0.279 *** (0.073) | −0.199 *** (0.052) |
Observations | 2711 | 2211 | 1624 | 1347 | 1140 |
Provinces | Guangdong | Guizhou | Fujian | Sichuan | Yunnan |
PM2.5 concentration (10 μg/m3) | −0.119 * (0.094) | −0.476 ** (0.258) | −0.548 (0.383) | 0.623 (0.496) | 0.301 (0.240) |
Observations | 1836 | 500 | 1337 | 920 | 457 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, W.; Tan, Y.; Yin, X.; Sun, Z. Impact of PM2.5 on Second Birth Intentions of China’s Floating Population in a Low Fertility Context. Int. J. Environ. Res. Public Health 2019, 16, 4293. https://doi.org/10.3390/ijerph16214293
Guo W, Tan Y, Yin X, Sun Z. Impact of PM2.5 on Second Birth Intentions of China’s Floating Population in a Low Fertility Context. International Journal of Environmental Research and Public Health. 2019; 16(21):4293. https://doi.org/10.3390/ijerph16214293
Chicago/Turabian StyleGuo, Wei, Yan Tan, Xican Yin, and Zhongwei Sun. 2019. "Impact of PM2.5 on Second Birth Intentions of China’s Floating Population in a Low Fertility Context" International Journal of Environmental Research and Public Health 16, no. 21: 4293. https://doi.org/10.3390/ijerph16214293
APA StyleGuo, W., Tan, Y., Yin, X., & Sun, Z. (2019). Impact of PM2.5 on Second Birth Intentions of China’s Floating Population in a Low Fertility Context. International Journal of Environmental Research and Public Health, 16(21), 4293. https://doi.org/10.3390/ijerph16214293