An Azure ACES Early Warning System for Air Quality Index Deteriorating
Abstract
:1. Introduction
2. Literature Review
2.1. Impact of Air Pollution
2.2. Air Quality Index AQI
2.3. Relevant Research on Existing Air Pollution and AQI
2.3.1. Study on the Impact of Air Pollution
2.3.2. Research on AQI and Other Air Pollution
3. Methodology
3.1. System Architecture
3.1.1. Data Collection and Preprocessing Module
3.1.2. Prediction Model Constructing and Application Module
3.1.3. Decision Module
3.1.4. Early Warning Alert Module
3.2. System Environment
3.2.1. Establishment and Deployment of Azure Environments
3.2.2. Establishment and Deployment of Prediction Model
4. Experiment
4.1. Procedure
4.1.1. Model Training
4.1.2. Model Prediction
4.2. Air Quality Index Data
4.3. Evaluation
4.3.1. Evaluation Indicators
4.3.2. Assessment Indicators of Air Quality Index
5. Experimental Results and Discussion
5.1. Data Collection and Processing
5.1.1. Data Collection
5.1.2. Data Processing
5.2. Experimental Results and Performance
5.2.1. Model Training
5.2.2. Model Testing
5.2.3. Model Prediction
5.3. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization Regional Office for Europe. Monitoring Ambient Air Quality for Health Impact Assessment; WHO Regional Office for Europe: Copenhagen, Denmark, 1999. [Google Scholar]
- Zhou, Q.; Jiang, H.; Wang, J.; Zhou, J. A hybrid model for PM 2.5 forecasting based on ensemble empirical mode decomposition and a general regression neural network. Sci. Total Environ. 2014, 496, 264–274. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Guo, Z.; Lu, H. Developing an early-warning system for air quality prediction and assessment of cities in China. Expert Syst. Appl. 2017, 84, 102–116. [Google Scholar] [CrossRef]
- Hu, J.; Ying, Q.; Wang, Y.; Zhang, H. Characterizing multi-pollutant air pollution in China: Comparison of three air quality indices. Environ. Int. 2015, 84, 17–25. [Google Scholar] [CrossRef]
- Gehring, U.; Wijga, A.H.; Brauer, M.; Fischer, P.; de Jongste, J.C.; Kerkhof, M.; Brunekreef, B. Traffic-related air pollution and the development of asthma and allergies during the first 8 years of life. Am. J. Respir. Crit. Care Med. 2010, 181, 596–603. [Google Scholar] [CrossRef]
- Plummer, L.E.; Smiley-Jewell, S.; Pinkerton, K.E. Impact of air pollution on lung inflammation and the role of Toll-like receptors. Int. J. Interferon Cytokine Mediat. Res. 2012, 4, 43–57. [Google Scholar]
- Romley, J.A.; Hackbarth, A.; Goldman, D.P. The Impact of Air Quality on Hospital Spending; RAND Corporation: Santa Monica, CA, USA, 2010. [Google Scholar]
- Singh, V.; Carnevale, C.; Finzi, G.; Pisoni, E.; Volta, M. A cokriging based approach to reconstruct air pollution maps, processing measurement station concentrations and deterministic model simulations. Environ. Model. Softw. 2011, 26, 778–786. [Google Scholar] [CrossRef]
- Zhou, G.; Xu, J.; Xie, Y.; Chang, L.; Gao, W.; Gu, Y.; Zhou, J. Numerical air quality forecasting over eastern China: An operational application of WRF-Chem. Atmos. Environ. 2017, 153, 94–108. [Google Scholar] [CrossRef]
- Wang, D.; Wei, S.; Luo, H.; Yue, C.; Grunder, O. A novel hybrid model for air quality index forecasting based on two-phase decomposition technique and modified extreme learning machine. Sci. Total Environ. 2017, 80, 719–733. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Lian, X.; Liu, H.; Hu, J.; Wang, Y.; Che, J. Daily air quality index forecasting with hybrid models: A case in China. Environ. Pollut. 2017, 231, 1232–1244. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, H.; Wu, Z.; Hu, D.; Pan, J.Z. Forecasting smog-related health hazard based on social media and physical sensor. Inf. Syst. 2017, 64, 281–291. [Google Scholar] [CrossRef]
- Piatetsky-Shapiro, G. Advances in Knowledge Discovery and Data Mining; Fayyad, U.M., Smyth, P., Uthurusamy, R., Eds.; AAAI Press: Menlo Park, CA, USA, 1996; Volume 21. [Google Scholar]
- Kubat, M.; Holte, R.C.; Matwin, S. Machine learning for the detection of oil spills in satellite radar images. Mach. Learn. 1998, 30, 195–215. [Google Scholar] [CrossRef]
- Shepherd, T.; Teras, M.; Beichel, R.R.; Boellaard, R.; Bruynooghe, M.; Dicken, V.; Mix, M. Comparative study with new accuracy metrics for target volume contouring in PET image guided radiation therapy. IEEE Trans. Med. Imaging 2012, 31, 2006–2024. [Google Scholar] [CrossRef]
- Lehrig, S.; Sanders, R.; Brataas, G.; Cecowski, M.; Ivanšek, S.; Polutnik, J. CloudStore—Towards scalability, elasticity, and efficiency benchmarking and analysis in Cloud computing. Future Gener. Comput. Syst. 2018, 78, 115–126. [Google Scholar] [CrossRef]
- OECD; IEA. Energy and Air Pollution: World Energy Outlook Special Report 2016; OECD: Paris, France, 2016. [Google Scholar]
- World Health Organization. Outdoor Air Pollution a Leading Environmental Cause of Cancer Deaths; World Health Organization: Copenhagen, Denmark, 2013. [Google Scholar]
- Pan, L.; Yao, E.; Yang, Y. Impact analysis of traffic-related air pollution based on real-time traffic and basic meteorological information. J. Environ. Manag. 2016, 183, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.F.S.; Stickley, A.; Konishi, S.; Watanabe, C. Ambient air pollution and suicide in Tokyo, 2001–2011. J. Affect. Disord. 2016, 201, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Hjortebjerg, D.; Andersen, A.M.N.; Ketzel, M.; Pedersen, M.; Raaschou-Nielsen, O.; Sørensen, M. Associations between maternal exposure to air pollution and traffic noise and newborn’s size at birth: A cohort study. Environ. Int. 2016, 95, 1–7. [Google Scholar] [CrossRef]
- Deng, Q.; Lu, C.; Yu, Y.; Li, Y.; Sundell, J.; Norbäck, D. Early life exposure to traffic-related air pollution and allergic rhinitis in preschool children. Respir. Med. 2016, 121, 67–73. [Google Scholar] [CrossRef]
- Lee, P.C.; Raaschou-Nielsen, O.; Lill, C.M.; Bertram, L.; Sinsheimer, J.S.; Hansen, J.; Ritz, B. Gene-environment interactions linking air pollution and inflammation in Parkinson’s disease. Environ. Res. 2016, 151, 713–720. [Google Scholar] [CrossRef]
- Lichter, A.; Pestel, N.; Sommer, E. Productivity effects of air pollution: Evidence from professional soccer. Labour Econ. 2017, 48, 54–66. [Google Scholar] [CrossRef]
- Kingsley, S.L.; Deyssenroth, M.A.; Kelsey, K.T.; Awad, Y.A.; Kloog, I.; Schwartz, J.D.; Wellenius, G.A. Maternal residential air pollution and placental imprinted gene expression. Environ. Int. 2017, 108, 204–211. [Google Scholar] [CrossRef]
- Vizcaíno, M.A.C.; González-Comadran, M.; Jacquemin, B. Outdoor air pollution and human infertility: A systematic review. Fertil. Steril. 2016, 106, 897–904. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Hu, B.; Liu, Y.; Xu, J.; Yang, G.; Xu, D.; Chen, C. Beyond PM 2.5: The role of ultrafine particles on adverse health effects of air pollution. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2016, 1860, 2844–2855. [Google Scholar] [CrossRef] [PubMed]
- Santibáñez-Andrade, M.; Quezada-Maldonado, E.M.; Osornio-Vargas, Á.; Sánchez-Pérez, Y.; García-Cuellar, C.M. Air pollution and genomic instability: The role of particulate matter in lung carcinogenesis. Environ. Pollut. 2017, 229, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhao, Y.; Yang, S.; Zhou, J.; Xin, J.; Wang, S.; Yang, D. Short-term effects of ambient air pollution on emergency room admissions due to cardiovascular causes in Beijing, China. Environ. Pollut. 2017, 230, 974–980. [Google Scholar] [CrossRef]
- Li, L.; Wu, A.H.; Cheng, I.; Chen, J.C.; Wu, J. Spatiotemporal estimation of historical PM2.5 concentrations using PM10, meteorological variables, and spatial effect. Atmos. Environ. 2017, 166, 182–191. [Google Scholar] [CrossRef]
- Perez, P.; Gramsch, E. Forecasting hourly PM2.5 in Santiago de Chile with emphasis on night episodes. Atmos. Environ. 2016, 124, 22–27. [Google Scholar] [CrossRef]
- Zhan, Y.; Luo, Y.; Deng, X.; Chen, H.; Grieneisen, M.L.; Shen, X.; Zhang, M. Spatiotemporal prediction of continuous daily PM 2.5 concentrations across China using a spatially explicit machine learning algorithm. Atmos. Environ. 2017, 155, 129–139. [Google Scholar] [CrossRef]
- Shaban, K.B.; Kadri, A.; Rezk, E. Urban air pollution monitoring system with forecasting models. IEEE Sens. J. 2016, 16, 2598–2606. [Google Scholar] [CrossRef]
- Dong, M.; Yang, D.; Kuang, Y.; He, D.; Erdal, S.; Kenski, D. PM 2.5 concentration prediction using hidden semi-Markov model-based times series data mining. Expert Syst. Appl. 2009, 36, 9046–9055. [Google Scholar] [CrossRef]
- Xu, M.; Wang, Y.X. Quantifying PM 2.5 concentrations from Multi-Weather sensors using hidden Markov models. IEEE Sens. J. 2016, 16, 22–23. [Google Scholar] [CrossRef]
- Feng, F.; Chi, X.; Wang, Z.; Li, J.; Jiang, J.; Yang, W. A nonnegativity preserved efficient chemical solver applied to the air pollution forecast. Appl. Math. Comput. 2017, 314, 44–57. [Google Scholar] [CrossRef]
- Chen, L.J.; Ho, Y.H.; Lee, H.C.; Wu, H.C.; Liu, H.M.; Hsieh, H.H.; Lung, S.C.C. An Open Framework for Participatory PM2.5 Monitoring in Smart Cities. IEEE Access 2017, 5, 14441–14454. [Google Scholar] [CrossRef]
- Burgos, C.; Campanario, M.L.; de la Pena, D.; Lara, J.A.; Lizcano, D.; Martinez, M.A. Data mining for modeling students’ performance: A tutoring action plan to prevent academic dropout. Comput. Electr. Eng. 2018, 66, 541–556. [Google Scholar] [CrossRef]
- Voukantsis, D.; Karatzas, K.; Kukkonen, J.; Räsänen, T.; Karppinen, A.; Kolehmainen, M. Intercomparison of air quality data using principal component analysis, and forecasting of PM 10 and PM 2.5 concentrations using artificial neural networks, in Thessaloniki and Helsinki. Sci. Total Environ. 2011, 409, 1266–1276. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Zhang, H.; Palazoglu, A.; Singh, A.; Zhang, W.; Liu, S. Prediction of 24-hour-average PM 2.5 concentrations using a hidden Markov model with different emission distributions in Northern California. Sci. Total Environ. 2013, 443, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Heyes, A.; Rivers, N.; Saberian, S. Alerts Work! Air Quality Warnings and Cycling (No. E1502E); Department of Economics, Faculty of Social Sciences, University of Ottawa: Ottawa, ON, Canada, 2015. [Google Scholar]
Calculation | Symbol | Explanation |
---|---|---|
IAQI | IAQIP | Individual air quality index of pollutant item P. |
CP | Concentration value of pollutant item P. | |
BPHi | The upper limit for classification of pollutant items and CPs. | |
BPLo | The lower limit for classification of pollutant and CPs | |
IAQIHi | The upper limit of AQI classification corresponding to BPHi for pollutant items. | |
IAQILo | The lower grading limit of AQI value corresponding to BPLo for pollutant items. | |
AQI | IAQI | Individual air quality index. |
n | Pollutant projects. |
Research Category | Method | Pollution Index | Author |
---|---|---|---|
Discussion on the Influences | Gauss Distribution | CO | Pan et al., [19] |
Statistical Analysis | PM2.5, NO2, SO2 | Ng et al., [20] | |
NO2, NOx | Hjortebjerg et al., [21] | ||
PM10, NO2, SO2 | Deng et al., [22] | ||
PM2.5, PM10, NO2, SO2, CO, O3 | Lee et al., [23] | ||
PM10, O3 | Lichter et al., [24] | ||
PM2.5, BC | Kingsley et al., [25] | ||
Literature Review | PM2.5, PM10, NO2, SO2, CO, O3 | Vizcaino et al., [26] | |
PM2.5, PM10 | Chen et al., [27] | ||
Santibáñez-Andrade et al., [28] | |||
Time Series | PM10, NO2, SO2 | Ma et al., [29] | |
PM2.5 | Li et al., [30] | ||
Prediction of Air Quality Index | Machine Learning | PM2.5 | Perez & Gramsch, [31] |
NO2, SO2, O3 | Shaban et al., [33] | ||
PM2.5 | Zhan et al., [32] | ||
AQI | Wang et al., [33] | ||
Chen et al., [12] | |||
Statistical Model | PM2.5 | Dong et al., [34] | |
Xu & Wang, [35] | |||
AQI | Zhu et al., [11] | ||
Numerical Analysis | NO, NO2, SO2, CO, O3 | Feng et al., [36] | |
IoT Monitoring | PM2.5 | Chen et al., [37] |
Item | Use of Efficiency Layer |
---|---|
App Service | B1 (Cores: 1, RAM: 1.75 GB, Storage: 10 GB, Disk Space: 10 GB) |
SQL Database | S0 (DTUs: 10, Included Storage: 250 GB) |
Machine Learning Studio | S1 (Included transactions: 100,000, Included compute hours: 25, Total number of web services: 10) |
Storage | Standard |
Window Size | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
Performance | |||||
MAE | 3.833 | 3.868 | 3.824 | 3.633 | |
RMSE | 5.302 | 5.671 | 5.341 | 4.969 | |
R2 | 0.881 | 0.868 | 0.882 | 0.898 |
Data Source | Variables | Data Field | Measurement/Units | Related Study |
---|---|---|---|---|
EPA | NA | Date Time | yyyy/MM/ddHH:mm:ss | Lee et al., [23] Vizcaino et al., [26] Wang et al., [3] Chen et al., [12] Zhu et al., [11] |
NA | Observatory Name | Station name/NA | ||
y1(t + 1),…,y1(t + 6) | SO2(t + 1),…,SO2(t + 6) | Sulfur dioxide/ppb | ||
y2(t + 1),…,y2(t + 6) | CO(t + 1),…,CO(t + 6) | Carbon monoxide/ppm | ||
y3(t + 1),…,y3(t + 6) | O3(t + 1),…,O3(t + 6) | Ozone/ppb | ||
y4(t + 1),…,y4(t + 6) | PM10(t + 1),…,PM10(t + 6) | Suspended particulates/μg/m3 | ||
y5(t + 1),…,y5(t + 6) | PM2.5(t + 1),…,PM2.5(t + 6) | Particulate matter/μg/m3 | ||
y6(t + 1),…,y6(t + 6) | NO2(t + 1),…,NO2(t + 6) | Nitrogen dioxide/ppb | ||
xy1(t + 1),…,xy1(t + 5) | SO2(t + 1),…,SO2(t + 5) | Sulfur dioxide/ppb | ||
xy2(t + 1),…,xy2(t + 5) | CO(t + 1),…,CO(t + 5) | Carbon monoxide/ppm | ||
xy3(t + 1),…,xy3(t + 5) | O3(t + 1),…,O3(t + 5) | Ozone/ppb | ||
xy4(t + 1),…,xy4(t + 5) | PM10(t + 1),…,PM10(t + 5) | Suspended particulates/μg/m3 | ||
xy5(t + 1),…,xy5(t + 5) | PM2.5(t + 1),…,PM2.5(t + 5) | Particulate matter/μg/m3 | ||
xy6(t + 1),…,xy6(t + 5) | NO2(t + 1),…,NO2(t + 5) | Nitrogen dioxide/ppb | ||
x1(t − 3),…,x1(t) | SO2(t − 3),…,SO2(t) | Sulfur dioxide/ppb | ||
x2(t − 3),…,x2(t) | CO(t − 3),…,CO(t) | Carbon monoxide/ppm | ||
x3(t − 3),…,x3(t) | O3(t − 3),…,O3(t) | Ozone/ppb | ||
x4(t − 3),…,x4(t) | PM10(t − 3),…,PM10(t) | Suspended particulates/μg/m3 | ||
x5(t − 3),…,x5(t) | PM2.5(t − 3),…,PM2.5(t) | Particulate matter/μg/m3 | ||
x6(t − 3),…,x6(t) | NO2(t − 3),…,NO2(t) | Nitrogen dioxide/ppb | ||
x7(t − 3),…,x7(t) | NOX(t − 3),…,NOX(t) | Nitrogen oxide/ppb | Hjortebjerg et., [21] | |
x8(t − 3),…,x8(t) | NO(t − 3),…,NO(t) | Nitric oxide/ppb | Feng et al., [36] | |
x9(t − 3),…,x9(t) | AMB_TEMP(t − 3),…,AMB_TEMP(t) | Atmospheric temperature/°C | Voukantsis et al., [39] Sun et al., [40] Heyes et al., [41] | |
x10(t − 3),…,x10(t) | RAINFALL(t − 3),…,RAINFALL(t) | Rainfall/mm | Sun et al., [40] Heyes et al., [41] | |
x11(t − 3),…,x11(t) | RH(t − 3),…,RH(t) | Relative humidity/% | Voukantsis et al., [39] Sun et al., [40] | |
x12(t − 3),…,x12(t) | WIND_SPEED(t − 3),…,WIND_SPEED(t) | Wind speed/m/sec | Heyes et al., [41] | |
x13(t − 3),…,x13(t) | WIND_DIREC(t − 3),…,WIND_DIREC(t) | Wind direction/degress | ||
x14(t − 3),…,x14(t) | WS_HR(t − 3),…,WS_HR(t) | Wind speed per hour/m/sec | Voukantsis et al., [39] Sun et al., [40] | |
x15(t − 3),…,x15(t) | WD_HR(t − 3),…,WS_HR(t) | Wind direction per hour/degress | Heyes et al., [41] Li et al., [30] |
AQI Value | Health Effects | Status in Color |
---|---|---|
0–50 | good | green |
51–100 | ordinary | yellow |
101–150 | Poor to sensitive | orange |
151–200 | Bad | red |
201–300 | Very bad | purple |
301–500 | Harmful | maroon |
Data Field | Content |
---|---|
Date | (yyyy/MM/dd) |
Station | Name of station (example: DouLiu, LunBei etc.) |
Items | Monitoring items (example: SO2, CO, O3 etc.) |
Hour | Hourly monitoring item values, 00~23 (24 h) |
Data Field | Items/Unit | Notes |
---|---|---|
Observatory_Name | Station name/NA | Non-input variable |
DateTime | yyyy/MM/dd HH:mm:ss | |
SO2 | Sulfur dioxide/ppb | |
CO | Carbon monoxide/ppm | |
O3 | Ozone/ppb | |
PM10 | Suspended particulates/μg/m3 | |
PM2.5 | Particulate matter/μg/m3 | |
NO2 | Nitrogen dioxide/ppb | |
NOX | Nitrogen oxide/ppb | |
NO | Nitric oxide/ppb | |
THC | Total hydrocarbon/ppm | Delete in subsequent processing |
NMHC | Non-methane hydrocarbons/ppm | |
CH4 | Methane/ppm | |
UVB | UV index/UVI | |
AMB_TEMP | Atmospheric temperature/°C | |
RAINFALL | Rainfall/mm | |
RH | Relative humidity/% | |
WIND_SPEED | Wind speed/m/sec | |
WIND_DIREC | Wind direction/degress | |
WS_HR | Wind speed per hour/m/sec | |
WD_HR | Wind direction per hour/degress | |
PH_RAIN | PH (acid rain)/pH | Delete in subsequent processing |
RAIN_COND | Conductivity (acid rain)/μS/cm |
Pollutant | Algorithms | MAE | RMSE | R2 |
---|---|---|---|---|
SO2 | DFR | 0.778 | 1.642 | 0.556 |
LR | 0.747 | 1.592 | 0.583 | |
NNR | 0.793 | 1.624 | 0.566 | |
CO | DFR | 0.061 | 0.115 | 0.808 |
LR | 0.061 | 0.117 | 0.802 | |
NNR | 0.059 | 0.112 | 0.817 | |
O3 | DFR | 3.867 | 5.596 | 0.917 |
LR | 3.852 | 5.557 | 0.918 | |
NNR | 3.967 | 5.611 | 0.916 | |
PM10 | DFR | 5.144 | 7.758 | 0.926 |
LR | 4.849 | 7.452 | 0.932 | |
NNR | 12.894 | 16.826 | 0.656 | |
PM2.5 | DFR | 3.573 | 4.961 | 0.904 |
LR | 3.363 | 4.675 | 0.914 | |
NNR | 4.784 | 6.201 | 0.850 | |
NO2 | DFR | 2.539 | 3.756 | 0.839 |
LR | 2.461 | 3.641 | 0.848 | |
NNR | 2.458 | 3.679 | 0.845 |
Pollutant | Performance | Y(t + 1) | Y(t + 2) | Y(t + 3) | Y(t + 4) | Y(t + 5) | Y(t + 6) |
---|---|---|---|---|---|---|---|
AQI | MAE | 5.051 | 2.930 | 2.974 | 3.004 | 3.066 | 3.133 |
RMSE | 11.458 | 4.324 | 4.562 | 4.668 | 5.261 | 5.287 | |
R2 | 0.897 | 0.986 | 0.984 | 0.983 | 0.978 | 0.978 | |
SO2 | MAE | 0.832 | 0.751 | 0.751 | 0.755 | 0.757 | 0.760 |
RMSE | 1.784 | 1.621 | 1.625 | 1.620 | 1.629 | 1.644 | |
R2 | 0.483 | 0.5740 | 0.569 | 0.571 | 0.568 | 0.562 | |
CO | MAE | 0.074 | 0.061 | 0.061 | 0.061 | 0.061 | 0.062 |
RMSE | 0.144 | 0.116 | 0.117 | 0.117 | 0.119 | 0.120 | |
R2 | 0.699 | 0.801 | 0.800 | 0.799 | 0.795 | 0.790 | |
O3 | MAE | 5.235 | 3.909 | 3.953 | 3.976 | 4.008 | 4.091 |
RMSE | 9.335 | 5.683 | 5.787 | 5.849 | 5.964 | 6.160 | |
R2 | 0.773 | 0.913 | 0.910 | 0.908 | 0.905 | 0.899 | |
PM10 | MAE | 6.263 | 4.861 | 4.875 | 4.877 | 4.948 | 4.955 |
RMSE | 11.071 | 7.609 | 7.644 | 7.641 | 7.977 | 7.860 | |
R2 | 0.853 | 0.929 | 0.928 | 0.928 | 0.922 | 0.924 | |
PM2.5 | MAE | 4.134 | 3.373 | 3.388 | 3.390 | 3.422 | 3.440 |
RMSE | 6.453 | 4.747 | 4.789 | 4.802 | 4.951 | 4.921 | |
R2 | 0.839 | 0.912 | 0.911 | 0.910 | 0.905 | 0.906 | |
NO2 | MAE | 3.000 | 2.479 | 2.482 | 2.478 | 2.478 | 2.500 |
RMSE | 4.942 | 3.678 | 3.695 | 3.687 | 3.714 | 3.781 | |
R2 | 0.725 | 0.844 | 0.842 | 0.842 | 0.839 | 0.833 |
Pollutant | Performance | Y(t + 1) | Y(t + 2) | Y(t + 3) | Y(t + 4) | Y(t + 5) | Y(t + 6) |
---|---|---|---|---|---|---|---|
AQI | MAE | 3.124 | 6.001 | 8.649 | 12.843 | 12.069 | 13.420 |
RMSE | 4.516 | 8.319 | 11.762 | 18.080 | 15.984 | 17.613 | |
R2 | 0.981 | 0.936 | 0.870 | 0.683 | 0.758 | 0.705 | |
SO2 | MAE | 0.674 | 0.921 | 1.046 | 1.196 | 1.184 | 1.223 |
RMSE | 1.277 | 1.600 | 1.744 | 1.922 | 1.894 | 1.934 | |
R2 | 0.635 | 0.426 | 0.316 | 0.174 | 0.196 | 0.161 | |
CO | MAE | 0.058 | 0.089 | 0.108 | 0.128 | 0.126 | 0.128 |
RMSE | 0.104 | 0.150 | 0.174 | 0.205 | 0.194 | 0.196 | |
R2 | 0.805 | 0.592 | 0.451 | 0.254 | 0.319 | 0.307 | |
O3 | MAE | 3.765 | 6.268 | 8.227 | 11.182 | 11.183 | 12.223 |
RMSE | 5.310 | 8.490 | 10.930 | 14.958 | 14.569 | 15.821 | |
R2 | 0.922 | 0.801 | 0.671 | 0.395 | 0.418 | 0.316 | |
PM10 | MAE | 5.107 | 8.382 | 10.832 | 14.046 | 13.473 | 14.389 |
RMSE | 7.746 | 12.428 | 15.813 | 20.445 | 19.210 | 20.758 | |
R2 | 0.926 | 0.810 | 0.393 | 0.489 | 0.544 | 0.490 | |
PM2.5 | MAE | 3.456 | 5.010 | 6.209 | 7.654 | 7.423 | 7.889 |
RMSE | 4.785 | 6.954 | 8.625 | 10.576 | 10.204 | 10.773 | |
R2 | 0.896 | 7.781 | 0.664 | 0.502 | 0.531 | 0.479 | |
NO2 | MAE | 2.556 | 3.848 | 4.658 | 5.560 | 5.521 | 5.690 |
RMSE | 3.759 | 5.392 | 6.356 | 7.628 | 7.328 | 7.505 | |
R2 | 0.841 | 0.671 | 0.541 | 0.344 | 0.384 | 0.352 |
Pollutant | Performance | Y(t + 1) | Y(t + 2) | Y(t + 3) | Y(t + 4) | Y(t + 5) | Y(t + 6) |
---|---|---|---|---|---|---|---|
AQI | MAE | 3.246 | 5.936 | 8.076 | 9.283 | 10.430 | 11.242 |
RMSE | 5.983 | 10.110 | 13.426 | 15.140 | 16.466 | 17.262 | |
R2 | 0.947 | 0.853 | 0.728 | 0.638 | 0.555 | 0.506 | |
SO2 | MAE | 0.766 | 1.026 | 1.146 | 1.221 | 1.269 | 1.301 |
RMSE | 1.442 | 1.787 | 1.932 | 2.026 | 2.084 | 2.111 | |
R2 | 0.592 | 0.380 | 0.282 | 0.217 | 0.171 | 0.146 | |
CO | MAE | 0.049 | 0.073 | 0.087 | 0.096 | 0.102 | 0.103 |
RMSE | 0.091 | 0.121 | 0.138 | 0.148 | 0.154 | 0.155 | |
R2 | 0.735 | 0.528 | 0.391 | 0.302 | 0.249 | 0.243 | |
O3 | MAE | 1.239 | 6.750 | 8.758 | 10.375 | 12.013 | 13.136 |
RMSE | 6.857 | 9.611 | 12.035 | 13.946 | 16.103 | 17.554 | |
R2 | 0.895 | 0.795 | 0.682 | 0.579 | 0.422 | 0.344 | |
PM10 | MAE | 4.513 | 6.870 | 8.380 | 9.070 | 9.775 | 10.265 |
RMSE | 7.451 | 10.927 | 12.856 | 13.797 | 14.748 | 15.267 | |
R2 | 0.852 | 0.674 | 0.530 | 0.444 | 0.361 | 0.131 | |
PM2.5 | MAE | 2.923 | 3.925 | 4.565 | 4.792 | 5.116 | 5.350 |
RMSE | 3.991 | 5.276 | 6.108 | 6.368 | 6.785 | 7.036 | |
R2 | 0.767 | 0.601 | 0.470 | 0.421 | 0.351 | 0.314 | |
NO2 | MAE | 2.072 | 2.966 | 3.520 | 3.917 | 4.200 | 4.369 |
RMSE | 3.046 | 4.059 | 4.661 | 5.099 | 5.425 | 5.603 | |
R2 | 0.786 | 0.622 | 0.503 | 0.406 | 0.328 | 0.281 |
Shaban et al. [33] | Chen et al. [12] | Zhu et al. [11] | This Study | |
---|---|---|---|---|
Computing platform | Local | Local | Local | Cloud |
Prediction interval | 1–24 h in the future | 1 day in the future | 1 h in the future | 1–6 h in the future |
Prediction target | SO2, O3, NO2 | AQI, PM2.5, PHI, SSI | AQI | AQI, SO2, CO, O3, PM10, PM2.5, NO2 |
Research method | Machine Learning | Data Mining, Machine Learning | Machine Learning | Machine Learning |
Algorithm | SVM, M5P, ANN | ANN | SVR | DFR, LR, NNR |
Early Warning notice | N | N | N | Y |
Visualization | N | N | N | Y |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shih, D.-H.; Wu, T.-W.; Liu, W.-X.; Shih, P.-Y. An Azure ACES Early Warning System for Air Quality Index Deteriorating. Int. J. Environ. Res. Public Health 2019, 16, 4679. https://doi.org/10.3390/ijerph16234679
Shih D-H, Wu T-W, Liu W-X, Shih P-Y. An Azure ACES Early Warning System for Air Quality Index Deteriorating. International Journal of Environmental Research and Public Health. 2019; 16(23):4679. https://doi.org/10.3390/ijerph16234679
Chicago/Turabian StyleShih, Dong-Her, Ting-Wei Wu, Wen-Xuan Liu, and Po-Yuan Shih. 2019. "An Azure ACES Early Warning System for Air Quality Index Deteriorating" International Journal of Environmental Research and Public Health 16, no. 23: 4679. https://doi.org/10.3390/ijerph16234679
APA StyleShih, D. -H., Wu, T. -W., Liu, W. -X., & Shih, P. -Y. (2019). An Azure ACES Early Warning System for Air Quality Index Deteriorating. International Journal of Environmental Research and Public Health, 16(23), 4679. https://doi.org/10.3390/ijerph16234679