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Abstract: With the development of industrialization and urbanization, air pollution in many countries
has become more serious and has affected people’s health. The air quality has been continuously
concerned by environmental managers and the public. Therefore, accurate air quality deterioration
warning system can avoid health hazards. In this study, an air quality index (AQI) warning system
based on Azure cloud computing platform is proposed. The prediction model is based on DFR
(Decision Forest Regression), NNR (Neural Network Regression), and LR (Linear Regression) machine
learning algorithms. The best algorithm was selected to calculate the 6 pollutants required for the
AQI calculation of the air quality monitoring in real time. The experimental results show that the LR
algorithm has the best performance, and the method of this study has a good prediction on the AQI
index warning for the next one to three hours. Based on the ACES system proposed, it is hoped that
it can prevent personal health hazards and help to reduce medical costs in public.
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1. Introduction

The degree of air pollution has risen in recent years and has a direct impact on urban pollution and
people’s health, especially in developing and industrial countries where there is no or only minimal
air quality management [1]. Daily predictions of pollutant concentrations in the atmosphere are very
important for regulatory planning. When harmful events are predicted, information is provided to the
public and social activities are restricted in advance. If early and effective early warning systems are
established, casualties and negative impacts on human beings can be greatly reduced [2]. Air pollution
early warning system is a very useful tool for avoiding adverse health effects and formulating effective
prevention programs, but the development of a strong early warning system is very challenging, but
also necessary [3].

In 2017, Taiwan set a new air quality index (AQI) with reference to American standards. It not
only integrates the old PSI (Pollutant Standards Index) and PM2.5, which are not easy to interpret,
but also is the most widely used index in many different countries in the world [4]. It can precisely
remind people of self-protection. According to research, air pollutant exposure is strongly associated
with asthma and lung diseases [5,6]. The study published in the American Heart Association Journal
Hypertension concludes that short-term exposure to SO2, PM2.5 and PM10 increases the incidence of
hypertension. According to the World Health Organization (WHO), 92% of the world’s population
lives in areas where air quality levels exceed their organizational limits, and 3 million deaths per year
for human health are related to outdoor air pollution. In 2017, about 1.7 million children under the age
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of 5 died each year due to environmental health problems such as air pollution, accounting for more
than a quarter of the total number of children dying in this age group.

The harm of air pollution to people’s health also results in huge medical expenditure of diseases
derived from it every year. According to the research and estimation of European and American
countries, every year when the life span of individuals is reduced, the society must pay NT$2 million
in labor loss, care, and medical expenditure and other costs. According to a 2010 Rand Medical and
Health Research Report on Air Pollution in California, the number of patients hospitalized in California
during 2005–2007 was as high as 30,000, resulting in medical costs of up to $190.3 million [7]. In China,
where air pollution is very serious, the high mortality rate and health care costs caused by pollution
are about $300 billion a year, and as many as 500,000 people die prematurely each year because of
air pollution. The Organization for Economic Cooperation and Development (OECD) published a
report on the economic consequences of air pollution in 2016. Air pollution is causing delays in work,
reduced agricultural production and increased medical costs. health care expenditures have increased
from $210 in 2015 to $176 billion, and misemployment losses from related diseases have increased
from $1.2 billion to $3.7 billion. At the same time, air pollution will kill 6 million to 9 million people
worldwide every year.

There are many state-of-the-art studies on air quality prediction such as Singh et al. [8] in spatial
deterministic and Zhou et al. [9] in statistical forecasting. However, most of studies focus on the
concentration prediction of PM2.5, which is different from the AQI predicted in this study. In the
newer AQI-related air quality prediction research, Wang et al. [10] solved the factors that caused
the prediction difficulties such as randomness, instability and irregularity in AQI research by using
two-phase decomposition technology, and used the Extreme Learning Machine (ELM) to predict
AQI. The proposed hybrid model based on two-phase decomposition technique and applicable to
AQI prediction has obviously higher prediction accuracy than other models. Zhu et al. [11] have
designed two mixed models for regional AQI index to carry out numerical prediction, and solved
the shortcomings of using single model to grasp information comprehensively from the index, and
improved the prediction accuracy with new effective technology. Chen et al. [12] have developed a
prediction model based on neural network, which combines social media with monitoring sensors, and
uses AQI related values as input variables to predict health hazards caused by smoke. This prediction
method can provide decision-making information for health hazard management through early
warning and other functions. In this study, data are collected from the Taiwan air quality monitoring
network, which provides information on the air monitoring stations set up by the environmental
protection department of the Executive Yuan.

In the past few years, machine learning algorithms have been widely used to detect potential
patterns in various data streams and obtain predictive results [13,14]. However, with the change of data
characteristics, scalable machine learning has become a necessary solution. The basic concept of scalable
machine learning is to disperse computing to the cloud to accelerate the process of modeling [15].
With the increasing amount of data, the speed of data storage and reading, and more and more
different types and sources of data, these problems can be solved by utilizing the advantages of
infrastructure services such as cloud platform, and by designing prediction models with machine
learning module [16].

This study will be completed on Azure cloud computing platform using cloud services, according
to the characteristics of air quality monitoring data, with Microsoft Azure Machine Learning service.
The AQI deterioration on-line warning alert is carried out by capturing the real-time air quality
monitoring data updated hourly by the government. Thus, this study collects air quality monitoring
data from January 2016 to May 2018 in Taiwan, establishes the prediction model of AQI pollutant
concentration and attempts to browse the AQI warning in next six hours, since the government only
provides the forecast information at least one day later. It is hoped that this study can help public to
avoid approaching the areas with serious air pollution, and to reduce the health hazards to individuals.
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2. Literature Review

2.1. Impact of Air Pollution

According to the WEO (World Energy Outlook) report of IEA (International Energy Agency), air
pollution has become a major public health crisis. Nearly 6.5 million people around the world have
died of poor air quality, making air pollution the fourth leading cause of human death in the world,
and affecting the environment, economy, and food safety [17]. Air pollution is mainly caused by a large
number of human energy production and use. The WHO report also points out that most of the deaths
and diseases caused by air pollution are related to PM2.5, i.e., particulate matter with a diameter less
than 2.5 micrometers. Among them, carbon black, also known as short-term climate pollutant (SLCP),
is the main component of PM2.5, which is harmful to human health, mostly from diesel vehicles, diesel
engines, and so on [18]. Biomass Boiler and Waste Incineration. Another short-term climate pollutant,
ozone, is a mixture of pollutants emitted from urban or nearby rural areas. Therefore, the burning
of biomass and fossil fuels, along with people’s economic activities and the energy demand of many
growing cities in the world, makes poor air quality a serious urban problem.

2.2. Air Quality Index AQI

There are many different standards for judging air pollution quality, and there will be some
differences in the degree of air pollution judged under different standards. In 2017, Taiwan adopted
AQI (Air Quality Index) as the formal criterion, so that people can have more simple and clear air
quality information as the criterion for judging. Comparing the difference between AQI and PM2.5

index, grading color is added to the classification of low concentration, which can make AQI, even in
the condition of ordinary air quality, more clearly understand the influence degree of air pollution
at present, and keep the concentration (35 µg/m3) of the warning focus of the original PM2.5 index
and give cautious suggestions. Air quality index AQI, a new air quality index set by EPA of Taiwan
Executive authorities, refers to American standards. Compared with the old ones, AQI adds the
moving average value of PM2.5 pollutants and ozone (O3) for 8 h to the sub-index of AQI judgment,
and becomes the judgment basis of the latest air quality standard in Taiwan.

The AQI value ranges from 0 to 500 and is divided into six different pollution levels by six colors.
The calculation of AQI is based on the concentration values of ozone (O3), fine suspended particulate
matter (PM2.5), suspended particulate matter (PM10), carbon monoxide (CO), sulfur dioxide (SO2) and
nitrogen dioxide (NO2). With its impact on human health, the individualized air quality index (IAQI)
of different pollutants was calculated by Formula (1). Then the maximum of each indices was selected
by Formula (2) to determine the final air quality index (AQI). Detailed formulas, symbolic descriptions
and AQI indicators calculation comparison table shown in Table 1:

IAQIp =
IAQIHi − IAQILo

BPHi − BPLo

(
Cp − BPLo

)
+ IAQILo (1)

AQI = max{IAQI1, IAQI2, IAQI3, · · · , IAQIn} (2)

Table 1. Table for individualized air quality index (IAQI) and AQI formulas.

Calculation Symbol Explanation

IAQI

IAQIP Individual air quality index of pollutant item P.
CP Concentration value of pollutant item P.
BPHi The upper limit for classification of pollutant items and CPs.
BPLo The lower limit for classification of pollutant and CPs
IAQIHi The upper limit of AQI classification corresponding to BPHi for pollutant items.
IAQILo The lower grading limit of AQI value corresponding to BPLo for pollutant items.

AQI IAQI Individual air quality index.
n Pollutant projects.
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2.3. Relevant Research on Existing Air Pollution and AQI

2.3.1. Study on the Impact of Air Pollution

Pan et al. [19] used the Gauss distribution model to analyze the impact of traffic flow and regional
carbon monoxide concentration. Finally, it was confirmed that there was a significant relationship
between traffic flow and regional carbon monoxide concentration. Statistical analysis was used to
study the effects of air pollution and suicide in Tokyo from 2001 to 2011, and positive results were
obtained [20], Hjortebjerg et al. [21] have studied the effects of maternal exposure to air pollution and
traffic noise on the number of births of newborns. Deng et al. [22] assessed the association between
outdoor air pollution and allergic rhinitis in children, Lee et al. [23] and others have studied the effects of
air pollution on Parkinson’s disease, Lichter et al. [24] found that air pollution was negatively correlated
with the performance of German football players. Kingsley et al. [25] explored the relationship between
air pollution in pregnant women’s living areas and fetal development according to their geographical
location, assessed the levels of pollutants in women and infants, and investigated the results through
linear regression.

Research by literature review methods, Vizcaino et al. [26] systematically analyze the adverse
effects of outdoor air pollution on human infertility, Chen et al. [27] use the literature to outline the
effect of UFP (ultrafine particles) on adverse health effects. Santibáñez-Andrade et al. [28] also used a
literature review to explore the relationship between air pollution and lung cancer, and found that air
pollution in addition to smoking also has a certain risk for lung cancer. For the time series, Ma et al. [29]
analyzed the relationship between patients hospitalized for cardiovascular disease in Beijing and air
pollution, and found significant effects with men older than 65 years. Li et al. [30] tried to explore the
impact of these variables on PM2.5 by using PM10, weather variables and spatial effects to estimate the
temporal and spatial concentration of historical PM2.5. The results show that these variables are the
most important in autocorrelation prediction.

2.3.2. Research on AQI and Other Air Pollution

There are many studies aimed at predicting air quality index. Machine learning is the most
common method used in predictive research. Perez and Gramsch [31] used neural networks to predict
PM2.5 hourly concentration in Chile’s capital. Particularly, some events that cause concentration rise at
night, such as traffic flow, were added as predictive variables. Their model can predict the concentration
of PM2.5 in the next 24 h, and successfully warn the time when the concentration exceeds the standard
from night to midnight. Zhan et al. [32] Established a continuous learning model for predicting daily
PM2.5 concentration in China. In addition to its superior predictive performance, it can also deal
with missing values, which can be used to assess the impact of acute human health. Wang et al. [10]
used two-phase decomposition technology to improve the difficulty of AQI prediction with Extreme
Learning Machine (ELM). Chen et al. [12] used the combination of social media and monitoring sensors
to predict smoke health hazards by using AQI index as an input variable, Shaban et al. [33] also carried
out systematic monitoring and prediction for the three most harmful gases released by WHO. Detailed
air pollution-related research can be shown in Table 2.



Int. J. Environ. Res. Public Health 2019, 16, 4679 5 of 23

Table 2. Research on Air Pollution in Recent Years.

Research Category Method Pollution Index Author

Discussion on
the Influences

Gauss
Distribution CO Pan et al., [19]

Statistical
Analysis

PM2.5, NO2, SO2 Ng et al., [20]
NO2, NOx Hjortebjerg et al., [21]
PM10, NO2, SO2 Deng et al., [22]
PM2.5, PM10, NO2, SO2, CO, O3 Lee et al., [23]
PM10, O3 Lichter et al., [24]
PM2.5, BC Kingsley et al., [25]

Literature
Review

PM2.5, PM10, NO2, SO2, CO, O3 Vizcaino et al., [26]

PM2.5, PM10
Chen et al., [27]
Santibáñez-Andrade et al., [28]

Time Series
PM10, NO2, SO2 Ma et al., [29]
PM2.5 Li et al., [30]

Prediction of Air
Quality Index

Machine
Learning

PM2.5 Perez & Gramsch, [31]
NO2, SO2, O3 Shaban et al., [33]
PM2.5 Zhan et al., [32]

AQI Wang et al., [33]
Chen et al., [12]

Statistical
Model

PM2.5
Dong et al., [34]
Xu & Wang, [35]

AQI Zhu et al., [11]

Numerical
Analysis NO, NO2, SO2, CO, O3 Feng et al., [36]

IoT Monitoring PM2.5 Chen et al., [37]

3. Methodology

3.1. System Architecture

The overall ACES (Azure Computing and Evaluate Services) system framework is built on
Microsoft Azure Cloud, which uses App Service and Machine Learning to predict the deterioration of
AQI index on-line and send warning messages to users. It is composed of different databases, and six
modules. First, the data collection and pre-processing module stores and backs up the data after it’s
collected. Then the Prediction Model Constructing and Applying Module reads the air quality data
from the database and performs the prediction of the air quality index data. The results are stored and
backed up again and transmitted to the Decision Module for the user with the warning message. If the
predicted results compared with the AQI standard and exceed the standard values, the Early Warning
Alert Module will be given the instructions to transmit warning messages to users, Finally, the system
users can clearly understand the current AQI distribution by browsing the visualization map generated
by data visualization module. The system architecture diagram and modules are shown in Figure 1.
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3.1.1. Data Collection and Preprocessing Module

Data Collection and Preprocessing Module is the first step of ACES system. First, two instant
mechanisms called Pollutants Real-Time Data and PM2.5 Real-Time Data, contained in Time Module,
the corresponding data collection function models “Pollutants Data Collection Model” and “PM2.5

Data Collection Model” are used to collect real-time data. It will request the Web of Taiwan Air Quality
Monitoring Network to obtain the data.

Next, the original data is stored in the database and transmitted to the data preprocessing module
for the data pre-processing. The first step is data cleaning, and the second step is to convert all data
into the content needed for the early warning system, the last step is to integrate the data captured and
processed from two different data collection function models, and then compare and merge them into
the final required data form and store them in the Azure cloud, the processing module architecture is
shown in Figure 2.

Int. J. Environ. Res. Public Health 2019, 16, x 6 of 23 

 

 

Figure 1. System Architecture Diagram. 

3.1.1. Data Collection and Preprocessing Module 

Data Collection and Preprocessing Module is the first step of ACES system. First, two instant 
mechanisms called Pollutants Real-Time Data and PM2.5 Real-Time Data, contained in Time Module, 
the corresponding data collection function models “Pollutants Data Collection Model” and “PM2.5 
Data Collection Model” are used to collect real-time data. It will request the Web of Taiwan Air 
Quality Monitoring Network to obtain the data. 

Next, the original data is stored in the database and transmitted to the data preprocessing 
module for the data pre-processing. The first step is data cleaning, and the second step is to convert 
all data into the content needed for the early warning system, the last step is to integrate the data 
captured and processed from two different data collection function models, and then compare and 
merge them into the final required data form and store them in the Azure cloud, the processing 
module architecture is shown in Figure 2. 

 

Figure 2. Data Collection and Preprocessing Module Diagram. 

3.1.2. Prediction Model Constructing and Application Module 

Prediction Model Constructing and Applying Module will be divided into two parts: Firstly, the 
historical air quality monitoring data will be input into Preprocessing Process in Prediction Model 
Constructing Module, Training Data and Testing Data are input into Training and Testing processes 

Figure 2. Data Collection and Preprocessing Module Diagram.

3.1.2. Prediction Model Constructing and Application Module

Prediction Model Constructing and Applying Module will be divided into two parts: Firstly,
the historical air quality monitoring data will be input into Preprocessing Process in Prediction Model
Constructing Module, Training Data and Testing Data are input into Training and Testing processes
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respectively for training and testing of model building. In the model training phase, the training data
will be iterated many times by the regression-type machine learning algorithms provided by Azure
Machine Learning service to complete individual model training. In the test phase, the test data are
input into individual training models, and the output results are compared with the actual values.

Next, in the Prediction Model Applying Module, the pre-processed data is obtained from the
database and then processed by the feature engineering step to produce the data required for the
prediction, finally input the best prediction model evaluated in the Prediction Model Constructing
Module to predict the concentration of air pollutants and generated the predicted value into the
database. The detailed module operation process described in this section is shown in Figure 3.
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3.1.3. Decision Module

The function of decision module is that after receiving the air pollutant concentration prediction
value, the AQI calculation formula is used to calculate the side-index value of each pollutant, and then
the highest value of the side-index value is selected as the real-time AQI value and compared with the
level Table. If the deterioration of AQI exceeds the general standard, the Early Warning Alert Module
will be given an early Warning Alert Decision function. The decision execution steps of this module
are shown in Figures 4 and 5.
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3.1.4. Early Warning Alert Module

Early Warning Alert Module only operates when it receives instructions from Decision Module to
send warnings. After receiving high level data and instructions, it checks the area where AQI exceeds
the standard with the area where all users in the database are located and send alert to users in relevant
areas. the process of sending warning messages by this module is shown in Figure 6.
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3.2. System Environment

The ACES early warning system of this study is built using Visual Studio 2017 version and
Microsoft Azure cloud platform. The Azure uses the level of effectiveness of functions as shown in
Table 3 below.

Table 3. Azure adopt function.

Item Use of Efficiency Layer

App Service B1 (Cores: 1, RAM: 1.75 GB, Storage: 10 GB, Disk Space: 10 GB)
SQL Database S0 (DTUs: 10, Included Storage: 250 GB)

Machine Learning Studio S1 (Included transactions: 100,000, Included compute hours: 25, Total number of
web services: 10)

Storage Standard

3.2.1. Establishment and Deployment of Azure Environments

ACES early warning system will use four kinds of services in Azure, namely App Service, SQL
Database, Machine Learning Studio and Storage. Firstly, App Service will be established to deploy the
completed system project to the cloud. Then, the database of system data storage will be established
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with the function of SQL Database. Then, Learning Machine Studio will be established. Functions and
Storage can be completed.

3.2.2. Establishment and Deployment of Prediction Model

The Machine Learning prediction model used in the operation of the system is constructed by
using Machine Learning Studio. First, the data set for training is uploaded. Then the experiments
are established for each model. The prediction model can be built according to the requirements in
each experiment. the prediction model is deployed to the network using Web Service, detailed picture
shown in Figure 7.
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4. Experiment

4.1. Procedure

The experimental procedure is divided into three stages: model training, testing and prediction.
And, all the data set used and their duration are shown in Figure 8. The goal of model training is to
find the best window size in training, that is, by using historical data set {X(t − n), X(t − n + 1), . . . ,
X(t)} what is the best n in forecasting Y(t + 1). Then, in model testing stage, three machine learning
algorithms are tested to find the best algorithm in prediction for next prediction stage. A detailed flow
chart of experiment is shown in Figure 9.
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4.1.1. Model Training

Due to the limitations Azure Machine Learning Studio, only per hour model can be established
for each pollutant. AQI index came from six pollutants, SO2, CO, O3, PM10, PM2.5, NO2, in order to
predict next six hours, a total of 36 separate prediction models are generated. The input data of model
training is adjusted by “Time Series” method, which has been shown in Shaban et al. [33]. For example,
the output value of SO2(t + 1) can be predicted by {SO2(t)}, or {SO2(t), SO2(t − 1)}, or {SO2(t), SO2(t − 1),
SO2(t − 2)}, . . . , etc. base on window size 1, 2, 3, . . . etc. as shown in Figure 10. After testing from
training data of SO2, it is shown that if window size is set to be 4 since it has the best performance in
all measure than other window size as shown in Table 4. Therefore, all the model proposed in next
section are all base on this result which is the output value of SO2(t + 1) is predicted by the input set of
{SO2(t), SO2(t − 1), SO2(t − 2), SO2(t − 3)}. The predicted value of SO2(t + 1) is defined as SO2y(t + 1).
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Table 4. Testing results of different window size.

Performance
Window Size

1 2 3 4

MAE 3.833 3.868 3.824 3.633
RMSE 5.302 5.671 5.341 4.969

R2 0.881 0.868 0.882 0.898

When it comes to predicting the next six hours (t + 1, t + 2, ..., t + 6), the predicted value SO2y(t + 1)
of SO2(t + 1) is added to the prediction of SO2(t + 2) whose input set is {SO2y(t + 1), SO2(t), SO2(t − 1),
SO2(t − 2), SO2(t − 3)} and so on. Finally, the prediction value of SO2(t + 6) is came from the prediction
of the input set of {SO2y(t + 5), SO2y(t + 4), SO2y(t + 3), SO2y(t + 2), SO2y(t + 1), SO2(t), SO2(t − 1),
SO2(t − 2), SO2(t− 3)}. A generic representation of model training is shown in Figure 11. Note that, AQI
index has six pollutants and each pollutant use 15 variables to predict which will show in Section 4.2.
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4.1.2. Model Prediction

Because AQI index use 6 pollutants and pollutants at time t + 1 can be predicted with values at
time t − 3, t − 2, t − 1 and t. Burgos et al. [38] substitute the future real values with the values predicted
by their study, and then complete all stages of the prediction. This is more like an incremental learning
in this prediction process. Five predicted vectors, Y(t + 1) to Y(t + 5), are replaced with XY(t + 1) to
XY(t + 5) and the pollutant prediction process of the next one to six hours will be completed, and the
results will be used for subsequent AQI calculation. The detailed generic model prediction process
is shown in Figure 12. That is, the pollutant prediction process of the next one to six hours will be
completed, and the results will be used for subsequent AQI calculation. The detailed model prediction
process is shown in Figure 12 below.
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4.2. Air Quality Index Data

This study collects air quality monitoring data from January 2016 to May 2018 in Taiwan for
training and testing model, establishes the prediction model of AQI pollutant concentration, and
obtains the latest air quality monitoring data through the system’s real-time data collection program
for real-time prediction, supplemented by the relevant variables contained in the monitoring data
that may affect the prediction results. As shown in Table 5, yi(t + 1), . . . ,yi(t + 6) are the output
variables where I = 1, 2, . . . , 6, xj(t − 3), . . . ,xj(t) are the input variable where j = 1, 2, . . . , 15, and
xyi(t + 1), . . . ,xyi(t + 5) are the input variable of the next stage which are the predicted value of yi(t + 1),
. . . ,yi(t + 5) in the model.
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Table 5. Data Source Content and variables description.

Data
Source Variables Data Field Measurement/Units Related Study

EPA

NA Date Time yyyy/MM/ddHH:mm:ss

Lee et al., [23]
Vizcaino et al., [26]

Wang et al., [3]
Chen et al., [12]
Zhu et al., [11]

NA Observatory Name Station name/NA
y1(t + 1), . . . ,y1(t + 6) SO2(t + 1), . . . ,SO2(t + 6) Sulfur dioxide/ppb
y2(t + 1), . . . ,y2(t + 6) CO(t + 1), . . . ,CO(t + 6) Carbon monoxide/ppm
y3(t + 1), . . . ,y3(t + 6) O3(t + 1), . . . ,O3(t + 6) Ozone/ppb
y4(t + 1), . . . ,y4(t + 6) PM10(t + 1), . . . ,PM10(t + 6) Suspended particulates/µg/m3

y5(t + 1), . . . ,y5(t + 6) PM2.5(t + 1), . . . ,PM2.5(t + 6) Particulate matter/µg/m3

y6(t + 1), . . . ,y6(t + 6) NO2(t + 1), . . . ,NO2(t + 6) Nitrogen dioxide/ppb
xy1(t + 1), . . . ,xy1(t + 5) SO2(t + 1), . . . ,SO2(t + 5) Sulfur dioxide/ppb
xy2(t + 1), . . . ,xy2(t + 5) CO(t + 1), . . . ,CO(t + 5) Carbon monoxide/ppm
xy3(t + 1), . . . ,xy3(t + 5) O3(t + 1), . . . ,O3(t + 5) Ozone/ppb
xy4(t + 1), . . . ,xy4(t + 5) PM10(t + 1), . . . ,PM10(t + 5) Suspended particulates/µg/m3

xy5(t + 1), . . . ,xy5(t + 5) PM2.5(t + 1), . . . ,PM2.5(t + 5) Particulate matter/µg/m3

xy6(t + 1), . . . ,xy6(t + 5) NO2(t + 1), . . . ,NO2(t + 5) Nitrogen dioxide/ppb
x1(t − 3), . . . ,x1(t) SO2(t − 3), . . . ,SO2(t) Sulfur dioxide/ppb
x2(t − 3), . . . ,x2(t) CO(t − 3), . . . ,CO(t) Carbon monoxide/ppm
x3(t − 3), . . . ,x3(t) O3(t − 3), . . . ,O3(t) Ozone/ppb
x4(t − 3), . . . ,x4(t) PM10(t − 3), . . . ,PM10(t) Suspended particulates/µg/m3

x5(t − 3), . . . ,x5(t) PM2.5(t − 3), . . . ,PM2.5(t) Particulate matter/µg/m3

x6(t − 3), . . . ,x6(t) NO2(t − 3), . . . ,NO2(t) Nitrogen dioxide/ppb

x7(t − 3), . . . ,x7(t) NOX(t − 3), . . . ,NOX(t) Nitrogen oxide/ppb Hjortebjerg et., [21]

x8(t − 3), . . . ,x8(t) NO(t − 3), . . . ,NO(t) Nitric oxide/ppb Feng et al., [36]

x9(t − 3), . . . ,x9(t) AMB_TEMP(t − 3), . . . ,
AMB_TEMP(t) Atmospheric temperature/◦C

Voukantsis et al., [39]
Sun et al., [40]

Heyes et al., [41]

x10(t − 3), . . . ,x10(t) RAINFALL(t − 3), . . . ,
RAINFALL(t) Rainfall/mm Sun et al., [40]

Heyes et al., [41]

x11(t − 3), . . . ,x11(t) RH(t − 3), . . . ,
RH(t) Relative humidity/% Voukantsis et al., [39]

Sun et al., [40]

x12(t − 3), . . . ,x12(t) WIND_SPEED(t − 3), . . . ,
WIND_SPEED(t) Wind speed/m/sec Heyes et al., [41]

x13(t − 3), . . . ,x13(t) WIND_DIREC(t − 3), . . . ,
WIND_DIREC(t) Wind direction/degress

x14(t − 3), . . . ,x14(t) WS_HR(t − 3), . . . ,
WS_HR(t) Wind speed per hour/m/sec Voukantsis et al., [39]

Sun et al., [40]

x15(t − 3), . . . ,x15(t) WD_HR(t − 3), . . . ,
WS_HR(t)

Wind direction per
hour/degress

Heyes et al., [41]
Li et al., [30]

Notes: yi = Output variables; xi = Input variables; xyi = Input Variables Predicted value of yi.

4.3. Evaluation

After the establishment of the prediction model, the performance of each model and the predicted
index results are compared. The corresponding evaluation indicators are used to evaluate each model.
Therefore, the indicators of model evaluation and the air quality index evaluation will be explained in
this section.

4.3.1. Evaluation Indicators

Through the prediction models trained by three machine learning algorithms, we need to use
appropriate model evaluation indicators to judge each model. We can verify the prediction accuracy
errors between the predicted AQI values of the system and the actual AQI values published by the
government afterwards, and select the best model with the highest performance. The following
indicators are selected to evaluate the prediction model for the model of regression algorithm in
this study:
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(1) Mean Absolute Error (MAE)

The mean absolute error has the same unit as the original data. It can only be compared between
models whose errors are measured in the same unit. It is used to measure how close the prediction is
to the actual results. Its calculation formula is shown in Formula (3):

MAE =

∑n
i=1|Predictedi −Actuali|

n
(3)

(2) Root Mean Squared Error (RMSE)

The root mean square error is a popular formula to measure the error rate of regression models,
but only when the errors are compared between the models measured in the same unit, a single value
of error in the aggregate model will be generated. By means of square difference, the measurement
ignores the difference between over-prediction and under-prediction, and can be used to measure the
difference between the predicted value and the actual value. The calculation formula is shown in (4):

RMSE =

√∑n
i=1(Predictedi −Actuali)

2

n
(4)

(3) Coefficient of determination

Usually referred to as R2, this paper describes the proportion of mean square deviation of
dependent variables explained by regression models, whose values range from 0 to 1. The calculation
formulas are shown in Formulas (5)–(8):

R2 =
SSR
SST

= 1−
SSE
SST

(5)

SST =
∑

(y− y)2 (6)

SSR =
∑(

y′ − y′
)2

(7)

SSE =
∑

(y− y′)2 (8)

4.3.2. Assessment Indicators of Air Quality Index

The evaluation of the predicted value of AQI pollutants predicted by the model is based on the
comparison table of AQI pollutant concentration and instant by-index value promulgated by the
Environmental Protection Department of Taiwan Executive. According to different AQI values, there
are six colors representing different degrees, Comparing the evaluation criteria table, the detailed
comparison table of AQI indicators is as follows with Table 6.

Table 6. Comparison Table of AQI and classification.

AQI Value Health Effects Status in Color

0–50 good green
51–100 ordinary yellow

101–150 Poor to sensitive orange
151–200 Bad red
201–300 Very bad purple
301–500 Harmful maroon
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5. Experimental Results and Discussion

5.1. Data Collection and Processing

The data collected in this study are from air real time data of monitoring stations published by
EPD of the Executive. After data pre-processing and deletion, 940,000 data were collected in 2016 and
2017, and 190,000 data were collected in January–May 2018. Therefore, the total number of historical
datasets is about 1.14 million.

5.1.1. Data Collection

The historical data from January 2016 to May 2018 were obtained from Excel files classified
according to the year and month of each station published by EPD, the first-hand collected data were
not entirely consistent with the needs of this study. Therefore, the results of data pre-processing are
described in the next section. The original collection structure of historical and real-time data is shown
in Tables 7 and 8.

Table 7. Primitive Structure of Historical Data.

Data Field Content

Date (yyyy/MM/dd)
Station Name of station (example: DouLiu, LunBei etc.)
Items Monitoring items (example: SO2, CO, O3 etc.)
Hour Hourly monitoring item values, 00~23 (24 h)

Table 8. Real-time data original structure.

Data Field Items/Unit Notes

Observatory_Name Station name/NA Non-input variable
DateTime yyyy/MM/dd HH:mm:ss

SO2 Sulfur dioxide/ppb
CO Carbon monoxide/ppm
O3 Ozone/ppb
PM10 Suspended particulates/µg/m3

PM2.5 Particulate matter/µg/m3

NO2 Nitrogen dioxide/ppb
NOX Nitrogen oxide/ppb
NO Nitric oxide/ppb

THC Total hydrocarbon/ppm

Delete in subsequent processingNMHC Non-methane hydrocarbons/ppm
CH4 Methane/ppm
UVB UV index/UVI

AMB_TEMP Atmospheric temperature/◦C
RAINFALL Rainfall/mm
RH Relative humidity/%
WIND_SPEED Wind speed/m/sec
WIND_DIREC Wind direction/degress
WS_HR Wind speed per hour/m/sec
WD_HR Wind direction per hour/degress

PH_RAIN PH (acid rain)/pH Delete in subsequent processing
RAIN_COND Conductivity (acid rain)/µS/cm
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5.1.2. Data Processing

Due to the large number of historical data files classified according to the year and month of each
station, it is necessary to use a function to pre-process Excel files, through data cleaning, conversion
and merging, and not all monitoring stations monitored the same items, among which the THC,
NMHC, CH4, UVB, PH_RAIN and RAIN_COND fields are less than half of the total data, so the data
fields are not equal. Then field was deleted to reduce 21 items to 15 items. Finally, in view of the lost
value processing caused by the maintenance of the station equipment and other reasons, after the
small sample interpolation method and the actual test of the deleted data, this study finds that the
performance of deleting the data directly is higher, and the data processing of instant collection will be
processed and transformed directly in the code during the operation of the system, and the data will
be processed to meet the prediction.

5.2. Experimental Results and Performance

This section will describe and explain the training, testing and prediction results of the model
respectively. This study was carried out in Douliu City, Taiwan. The trend breakdown and regression
analysis produced in each stage of this chapter will take Douliu Monitoring Station as an example.

5.2.1. Model Training

This study tested the performance of three supervised machine learning algorithms: Decision
Forest Regression (DFR), Linear Regression (LR) and Neural Network Regression (NNR). According to
the results of each performance evaluation index, the best model was selected and the machine learning
algorithm used as the follow-up research was determined. Prediction model with Table 9 is the result
of using data from August 2016 to December 2017 for model training and using data from January 2016
to July 2016 for testing and evaluating the first-hour performance of six pollutant algorithms. Most of
the LRs have the best or the second-best performance under each performance index.

Table 9. Performance comparison of algorithms and pollutant.

Pollutant Algorithms MAE RMSE R2

SO2

DFR 0.778 1.642 0.556
LR 0.747 1.592 0.583
NNR 0.793 1.624 0.566

CO
DFR 0.061 0.115 0.808
LR 0.061 0.117 0.802
NNR 0.059 0.112 0.817

O3

DFR 3.867 5.596 0.917
LR 3.852 5.557 0.918
NNR 3.967 5.611 0.916

PM10

DFR 5.144 7.758 0.926
LR 4.849 7.452 0.932
NNR 12.894 16.826 0.656

PM2.5

DFR 3.573 4.961 0.904
LR 3.363 4.675 0.914
NNR 4.784 6.201 0.850

NO2

DFR 2.539 3.756 0.839
LR 2.461 3.641 0.848
NNR 2.458 3.679 0.845

After the algorithm has determined and established a total of 36 prediction models for six
pollutants, the data used in the training model are re-entered into the prediction model to try to
understand the prediction performance of each model based on training data. The most important AQI
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numerical prediction R2 ranges from 0.897 of Y(t + 1) to 0.97 of Y(t + 6). The six pollutants also showed
poor performance in Y(t + 1) as a whole, but the performance of each indicator increased obviously
from Y(t + 2). Although the performance decreased gradually from Y(t + 2) to Y(t + 6), the change
was not significant, perhaps the data itself was the same as the data set used in the training model.
The overall performance of the detailed training phase data forecast is shown in Table 10.

Table 10. Overall Performance in Training Stage.

Pollutant Performance Y(t + 1) Y(t + 2) Y(t + 3) Y(t + 4) Y(t + 5) Y(t + 6)

AQI
MAE 5.051 2.930 2.974 3.004 3.066 3.133
RMSE 11.458 4.324 4.562 4.668 5.261 5.287
R2 0.897 0.986 0.984 0.983 0.978 0.978

SO2

MAE 0.832 0.751 0.751 0.755 0.757 0.760
RMSE 1.784 1.621 1.625 1.620 1.629 1.644
R2 0.483 0.5740 0.569 0.571 0.568 0.562

CO
MAE 0.074 0.061 0.061 0.061 0.061 0.062
RMSE 0.144 0.116 0.117 0.117 0.119 0.120
R2 0.699 0.801 0.800 0.799 0.795 0.790

O3

MAE 5.235 3.909 3.953 3.976 4.008 4.091
RMSE 9.335 5.683 5.787 5.849 5.964 6.160
R2 0.773 0.913 0.910 0.908 0.905 0.899

PM10

MAE 6.263 4.861 4.875 4.877 4.948 4.955
RMSE 11.071 7.609 7.644 7.641 7.977 7.860
R2 0.853 0.929 0.928 0.928 0.922 0.924

PM2.5

MAE 4.134 3.373 3.388 3.390 3.422 3.440
RMSE 6.453 4.747 4.789 4.802 4.951 4.921
R2 0.839 0.912 0.911 0.910 0.905 0.906

NO2

MAE 3.000 2.479 2.482 2.478 2.478 2.500
RMSE 4.942 3.678 3.695 3.687 3.714 3.781
R2 0.725 0.844 0.842 0.842 0.839 0.833

5.2.2. Model Testing

In this study, all the data from January 2018 to May 2018 were used to the test model. In this stage,
all data were pre-processed and input into the pollutant prediction model established in the previous
stage. The prediction performance of the test stage was through the overall performance Table, trend
breakdown chart and regression analysis of Douliu City. The overall performance of the detailed test
phase data prediction is shown in Table 11. The overall prediction results show that although the
predicted performance of each pollutant is good at Y(t + 1), the performance indicators from Y(t + 2)
to Y(t + 6) begin to decrease dramatically. Except that the R2 of AQI can keep at 0.683 at the lowest
level, the R2 of other pollutants is lower than 0.5. Although the air quality warning standard can be
maintained within the ideal standard range, other pollutant predicted as AQI calculations may need
to be adjusted to make the calculated more accurate for Y(t + 2) to Y(t + 6). However, it indicates
that the public can take into account that the next hour prediction in AQI index is the best in next six
hour’s prediction and its average performance of R2 is over 0.981 (in Table 11) since it is approach
to 1 which is the idea value of R2. AQI predicted results in Douliu City in May 2018) is also shown
in Figure 13 for demonstration, its R2 is 0.9611 also approach to 1 too. From Table 11, we can also
conclude that our proposed system has an excellent prediction in next two hours since its R2 are over
0.936 in model testing.
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Table 11. Overall Performance in Test Stage.

Pollutant Performance Y(t + 1) Y(t + 2) Y(t + 3) Y(t + 4) Y(t + 5) Y(t + 6)

AQI
MAE 3.124 6.001 8.649 12.843 12.069 13.420
RMSE 4.516 8.319 11.762 18.080 15.984 17.613
R2 0.981 0.936 0.870 0.683 0.758 0.705

SO2

MAE 0.674 0.921 1.046 1.196 1.184 1.223
RMSE 1.277 1.600 1.744 1.922 1.894 1.934
R2 0.635 0.426 0.316 0.174 0.196 0.161

CO
MAE 0.058 0.089 0.108 0.128 0.126 0.128
RMSE 0.104 0.150 0.174 0.205 0.194 0.196
R2 0.805 0.592 0.451 0.254 0.319 0.307

O3

MAE 3.765 6.268 8.227 11.182 11.183 12.223
RMSE 5.310 8.490 10.930 14.958 14.569 15.821
R2 0.922 0.801 0.671 0.395 0.418 0.316

PM10

MAE 5.107 8.382 10.832 14.046 13.473 14.389
RMSE 7.746 12.428 15.813 20.445 19.210 20.758
R2 0.926 0.810 0.393 0.489 0.544 0.490

PM2.5

MAE 3.456 5.010 6.209 7.654 7.423 7.889
RMSE 4.785 6.954 8.625 10.576 10.204 10.773
R2 0.896 7.781 0.664 0.502 0.531 0.479

NO2

MAE 2.556 3.848 4.658 5.560 5.521 5.690
RMSE 3.759 5.392 6.356 7.628 7.328 7.505
R2 0.841 0.671 0.541 0.344 0.384 0.352
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5.2.3. Model Prediction

From 1 June 2018 to 30 June 2018, all the predicted results and actual values are analyzed and
compared. From the overall performance of the actual predicted in third stage, it is also found that the
performance of each pollutant at Y(t + 1) is well, but from Y(t + 2) to Y(t + 6) there is a gradual decline.
The overall performance of the detailed prediction stage is shown in Table 12. AQI index remain the
best performance in R2, it reaches 0.947, Y(t + 1) almost close to 1 in next hour prediction.
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Table 12. Overall Performance for time t + 1 to t + 6.

Pollutant Performance Y(t + 1) Y(t + 2) Y(t + 3) Y(t + 4) Y(t + 5) Y(t + 6)

AQI
MAE 3.246 5.936 8.076 9.283 10.430 11.242
RMSE 5.983 10.110 13.426 15.140 16.466 17.262
R2 0.947 0.853 0.728 0.638 0.555 0.506

SO2

MAE 0.766 1.026 1.146 1.221 1.269 1.301
RMSE 1.442 1.787 1.932 2.026 2.084 2.111
R2 0.592 0.380 0.282 0.217 0.171 0.146

CO
MAE 0.049 0.073 0.087 0.096 0.102 0.103
RMSE 0.091 0.121 0.138 0.148 0.154 0.155
R2 0.735 0.528 0.391 0.302 0.249 0.243

O3

MAE 1.239 6.750 8.758 10.375 12.013 13.136
RMSE 6.857 9.611 12.035 13.946 16.103 17.554
R2 0.895 0.795 0.682 0.579 0.422 0.344

PM10

MAE 4.513 6.870 8.380 9.070 9.775 10.265
RMSE 7.451 10.927 12.856 13.797 14.748 15.267
R2 0.852 0.674 0.530 0.444 0.361 0.131

PM2.5

MAE 2.923 3.925 4.565 4.792 5.116 5.350
RMSE 3.991 5.276 6.108 6.368 6.785 7.036
R2 0.767 0.601 0.470 0.421 0.351 0.314

NO2

MAE 2.072 2.966 3.520 3.917 4.200 4.369
RMSE 3.046 4.059 4.661 5.099 5.425 5.603
R2 0.786 0.622 0.503 0.406 0.328 0.281

In the prediction stage, the trend break-line chart and regression analysis chart of Douliu City
for the next hour in June 2018 is shown in Figure 14. Basically, most of the pollutant performance
indicators and AQI are almost the same as May 2018 in Figure 13. Nevertheless, after close examine
the performance in every month in 2018, the results are almost the same. It shows our proposed ACES
system’s robustness.

Int. J. Environ. Res. Public Health 2019, 16, x 19 of 23 

 

Table 12. Overall Performance for time t + 1 to t + 6. 

Pollutant Performance Y(t + 1) Y(t + 2) Y(t + 3) Y(t + 4) Y(t + 5) Y(t + 6) 

AQI 
MAE 3.246 5.936 8.076 9.283 10.430 11.242 
RMSE 5.983 10.110 13.426 15.140 16.466 17.262 
R2 0.947 0.853 0.728 0.638 0.555 0.506 

SO2 
MAE 0.766 1.026 1.146 1.221 1.269 1.301 
RMSE 1.442 1.787 1.932 2.026 2.084 2.111 
R2 0.592 0.380 0.282 0.217 0.171 0.146 

CO 
MAE 0.049 0.073 0.087 0.096 0.102 0.103 
RMSE 0.091 0.121 0.138 0.148 0.154 0.155 
R2 0.735 0.528 0.391 0.302 0.249 0.243 

O3 
MAE 1.239 6.750 8.758 10.375 12.013 13.136 
RMSE 6.857 9.611 12.035 13.946 16.103 17.554 
R2 0.895 0.795 0.682 0.579 0.422 0.344 

PM10 
MAE 4.513 6.870 8.380 9.070 9.775 10.265 
RMSE 7.451 10.927 12.856 13.797 14.748 15.267 
R2 0.852 0.674 0.530 0.444 0.361 0.131 

PM2.5 
MAE 2.923 3.925 4.565 4.792 5.116 5.350 
RMSE 3.991 5.276 6.108 6.368 6.785 7.036 
R2 0.767 0.601 0.470 0.421 0.351 0.314 

NO2 
MAE 2.072 2.966 3.520 3.917 4.200 4.369 
RMSE 3.046 4.059 4.661 5.099 5.425 5.603 
R2 0.786 0.622 0.503 0.406 0.328 0.281 

In the prediction stage, the trend break-line chart and regression analysis chart of Douliu City 
for the next hour in June 2018 is shown in Figure 14. Basically, most of the pollutant performance 
indicators and AQI are almost the same as May 2018 in Figure 13. Nevertheless, after close examine 
the performance in every month in 2018, the results are almost the same. It shows our proposed ACES 
system’s robustness. 

 

Figure 14. Regression analysis chart of AQI prediction in Douliu City (June 2018) 

5.3. Discussion 

The method proposed in this study has a good performance in predicting the results of AQI in 
the first hour in the test and prediction stage, while the predictive performance of AQI in the fourth 
to sixth hours is relatively low. Compared to other pollutants, the performance of SO2 in the six 
pollutants is relatively not well. Although the predictive performance of the six pollutants is not the 
same, the AQI values calculated in the end all show good performance. A possible reason is the 
maximum AQI is selected as the representative. When the pollutant value is incorporated into the 

Figure 14. Regression analysis chart of AQI prediction in Douliu City (June 2018).

5.3. Discussion

The method proposed in this study has a good performance in predicting the results of AQI in
the first hour in the test and prediction stage, while the predictive performance of AQI in the fourth
to sixth hours is relatively low. Compared to other pollutants, the performance of SO2 in the six
pollutants is relatively not well. Although the predictive performance of the six pollutants is not
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the same, the AQI values calculated in the end all show good performance. A possible reason is the
maximum AQI is selected as the representative. When the pollutant value is incorporated into the AQI
formula, the influence of the prediction error of the pollutant value itself may be indirectly reduced by
the calculation method of the formula.

The reason why the predictive performance of model Y(t + 1) to Y(t + 6) declines gradually may
be that the variables characteristic used in the current model are not considered traffic, factories and
other possible variables. Maybe that’s why the next hour prediction is good enough and decay as
times go by.

Azure machine learning studio is still in developing progress, therefore, this study only chooses
the matured three machine learning algorithm in prediction. Maybe by adding code from R and
Python or use another matured machine learning algorithm in prediction will achieve a better result in
the fourth to sixth hours’ AQI index prediction. The poor performance of the prediction model in the
fourth to sixth hours may also be that the old data need to be retrained. This study did not carry out
the model retraining. When the system is officially running, a threshold value of error standard can
be set to check the prediction performance every time or regularly. If the error is greater than the set
threshold, the latest data will be added to the model training data to retrain the model. A possible
detailed model retraining process is shown in Figure 15.

Int. J. Environ. Res. Public Health 2019, 16, x 20 of 23 

AQI formula, the influence of the prediction error of the pollutant value itself may be indirectly
reduced by the calculation method of the formula. 

The reason why the predictive performance of model Y(t + 1) to Y(t + 6) declines gradually may
be that the variables characteristic used in the current model are not considered traffic, factories and 
other possible variables. Maybe that’s why the next hour prediction is good enough and decay as 
times go by. 

Azure machine learning studio is still in developing progress, therefore, this study only chooses 
the matured three machine learning algorithm in prediction. Maybe by adding code from R and
Python or use another matured machine learning algorithm in prediction will achieve a better result 
in the fourth to sixth hours’ AQI index prediction. The poor performance of the prediction model in 
the fourth to sixth hours may also be that the old data need to be retrained. This study did not carry
out the model retraining. When the system is officially running, a threshold value of error standard
can be set to check the prediction performance every time or regularly. If the error is greater than the 
set threshold, the latest data will be added to the model training data to retrain the model. A possible 
detailed mode

Figure 15. Model retraining process. 

6. Conclusions 

For the achievements and contributions of this study, first of all, a set of air quality deterioration
early warning system integrated by Azure services is proposed, and its cloud-based architecture has 
many advantages over the use of local servers, such as easy maintenance and management, providing
a series of highly integrated and compatible functions, and easy expansion of efficiency. The 
experimental results show that the ACES system has good prediction results for the AQI index for 
the next one to three hours, and it also provides users with visual distribution map service of air 
pollution in Taiwan’s counties. Unaware of the shortcomings of future AQI predictions in hourly 
units, an information-based intervention to help people in advance or avoid approaching areas with
serious air pollution will reduce personal health hazards and medical costs. Finally, comparing this
study with some other related study, we find that although the prediction range of this study is 
relatively short, most of the studies seldom use cloud platform, and don’t have fully applied such as
early warning and the visualization map. The study comparison is shown in Table 13.

Figure 15. Model retraining process.

6. Conclusions

For the achievements and contributions of this study, first of all, a set of air quality deterioration
early warning system integrated by Azure services is proposed, and its cloud-based architecture
has many advantages over the use of local servers, such as easy maintenance and management,
providing a series of highly integrated and compatible functions, and easy expansion of efficiency.
The experimental results show that the ACES system has good prediction results for the AQI index
for the next one to three hours, and it also provides users with visual distribution map service of air
pollution in Taiwan’s counties. Unaware of the shortcomings of future AQI predictions in hourly units,
an information-based intervention to help people in advance or avoid approaching areas with serious
air pollution will reduce personal health hazards and medical costs. Finally, comparing this study with
some other related study, we find that although the prediction range of this study is relatively short,
most of the studies seldom use cloud platform, and don’t have fully applied such as early warning and
the visualization map. The study comparison is shown in Table 13.
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Table 13. Comparison of Studies.

Shaban et al. [33] Chen et al. [12] Zhu et al. [11] This Study

Computing
platform Local Local Local Cloud

Prediction interval 1–24 h in the future 1 day in the future 1 h in the future 1–6 h in the future

Prediction target SO2, O3, NO2
AQI, PM2.5, PHI,
SSI AQI AQI, SO2, CO, O3,

PM10, PM2.5, NO2

Research method Machine Learning Data Mining,
Machine Learning Machine Learning Machine Learning

Algorithm SVM, M5P, ANN ANN SVR DFR, LR, NNR

Early Warning
notice N N N Y

Visualization N N N Y

In the future, institute has limited types of data related to air pollution and some sensitive data
are difficult to obtain, so it cannot consider various factors that may affect air quality, such as urban
traffic or factory exhaust. If there is an opportunity, more different kinds of data like open data can be
added to improve the research. As for the model retraining mechanism, threshold issue and feature
correlation analysis can also be further studied for future prospects.

Author Contributions: Conceptualization, D.-H.S.; Formal analysis, T.-W.W. and W.-X.L.; Investigation, T.-W.W.
and W.-X.L.; Methodology, D.-H.S., T.-W.W. and W.-X.L.; Project administration, D.-H.S.; Software, W.-X.L.;
Validation, P.-Y.S.; Visualization, P.-Y.S.; Writing—review & editing, P.-Y.S.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. World Health Organization Regional Office for Europe. Monitoring Ambient Air Quality for Health Impact
Assessment; WHO Regional Office for Europe: Copenhagen, Denmark, 1999.

2. Zhou, Q.; Jiang, H.; Wang, J.; Zhou, J. A hybrid model for PM 2.5 forecasting based on ensemble empirical
mode decomposition and a general regression neural network. Sci. Total Environ. 2014, 496, 264–274.
[CrossRef]

3. Wang, J.; Zhang, X.; Guo, Z.; Lu, H. Developing an early-warning system for air quality prediction and
assessment of cities in China. Expert Syst. Appl. 2017, 84, 102–116. [CrossRef]

4. Hu, J.; Ying, Q.; Wang, Y.; Zhang, H. Characterizing multi-pollutant air pollution in China: Comparison of
three air quality indices. Environ. Int. 2015, 84, 17–25. [CrossRef]

5. Gehring, U.; Wijga, A.H.; Brauer, M.; Fischer, P.; de Jongste, J.C.; Kerkhof, M.; Brunekreef, B. Traffic-related
air pollution and the development of asthma and allergies during the first 8 years of life. Am. J. Respir. Crit.
Care Med. 2010, 181, 596–603. [CrossRef]

6. Plummer, L.E.; Smiley-Jewell, S.; Pinkerton, K.E. Impact of air pollution on lung inflammation and the role
of Toll-like receptors. Int. J. Interferon Cytokine Mediat. Res. 2012, 4, 43–57.

7. Romley, J.A.; Hackbarth, A.; Goldman, D.P. The Impact of Air Quality on Hospital Spending; RAND Corporation:
Santa Monica, CA, USA, 2010.

8. Singh, V.; Carnevale, C.; Finzi, G.; Pisoni, E.; Volta, M. A cokriging based approach to reconstruct air pollution
maps, processing measurement station concentrations and deterministic model simulations. Environ. Model.
Softw. 2011, 26, 778–786. [CrossRef]

9. Zhou, G.; Xu, J.; Xie, Y.; Chang, L.; Gao, W.; Gu, Y.; Zhou, J. Numerical air quality forecasting over eastern
China: An operational application of WRF-Chem. Atmos. Environ. 2017, 153, 94–108. [CrossRef]

http://dx.doi.org/10.1016/j.scitotenv.2014.07.051
http://dx.doi.org/10.1016/j.eswa.2017.04.059
http://dx.doi.org/10.1016/j.envint.2015.06.014
http://dx.doi.org/10.1164/rccm.200906-0858OC
http://dx.doi.org/10.1016/j.envsoft.2010.11.014
http://dx.doi.org/10.1016/j.atmosenv.2017.01.020


Int. J. Environ. Res. Public Health 2019, 16, 4679 22 of 23

10. Wang, D.; Wei, S.; Luo, H.; Yue, C.; Grunder, O. A novel hybrid model for air quality index forecasting based
on two-phase decomposition technique and modified extreme learning machine. Sci. Total Environ. 2017, 80,
719–733. [CrossRef] [PubMed]

11. Zhu, S.; Lian, X.; Liu, H.; Hu, J.; Wang, Y.; Che, J. Daily air quality index forecasting with hybrid models:
A case in China. Environ. Pollut. 2017, 231, 1232–1244. [CrossRef] [PubMed]

12. Chen, J.; Chen, H.; Wu, Z.; Hu, D.; Pan, J.Z. Forecasting smog-related health hazard based on social media
and physical sensor. Inf. Syst. 2017, 64, 281–291. [CrossRef]

13. Piatetsky-Shapiro, G. Advances in Knowledge Discovery and Data Mining; Fayyad, U.M., Smyth, P.,
Uthurusamy, R., Eds.; AAAI Press: Menlo Park, CA, USA, 1996; Volume 21.

14. Kubat, M.; Holte, R.C.; Matwin, S. Machine learning for the detection of oil spills in satellite radar images.
Mach. Learn. 1998, 30, 195–215. [CrossRef]

15. Shepherd, T.; Teras, M.; Beichel, R.R.; Boellaard, R.; Bruynooghe, M.; Dicken, V.; Mix, M. Comparative study
with new accuracy metrics for target volume contouring in PET image guided radiation therapy. IEEE Trans.
Med. Imaging 2012, 31, 2006–2024. [CrossRef]

16. Lehrig, S.; Sanders, R.; Brataas, G.; Cecowski, M.; Ivanšek, S.; Polutnik, J. CloudStore—Towards scalability,
elasticity, and efficiency benchmarking and analysis in Cloud computing. Future Gener. Comput. Syst. 2018,
78, 115–126. [CrossRef]

17. OECD; IEA. Energy and Air Pollution: World Energy Outlook Special Report 2016; OECD: Paris, France, 2016.
18. World Health Organization. Outdoor Air Pollution a Leading Environmental Cause of Cancer Deaths; World

Health Organization: Copenhagen, Denmark, 2013.
19. Pan, L.; Yao, E.; Yang, Y. Impact analysis of traffic-related air pollution based on real-time traffic and basic

meteorological information. J. Environ. Manag. 2016, 183, 510–520. [CrossRef] [PubMed]
20. Ng, C.F.S.; Stickley, A.; Konishi, S.; Watanabe, C. Ambient air pollution and suicide in Tokyo, 2001–2011.

J. Affect. Disord. 2016, 201, 194–202. [CrossRef] [PubMed]
21. Hjortebjerg, D.; Andersen, A.M.N.; Ketzel, M.; Pedersen, M.; Raaschou-Nielsen, O.; Sørensen, M. Associations

between maternal exposure to air pollution and traffic noise and newborn’s size at birth: A cohort study.
Environ. Int. 2016, 95, 1–7. [CrossRef]

22. Deng, Q.; Lu, C.; Yu, Y.; Li, Y.; Sundell, J.; Norbäck, D. Early life exposure to traffic-related air pollution and
allergic rhinitis in preschool children. Respir. Med. 2016, 121, 67–73. [CrossRef]

23. Lee, P.C.; Raaschou-Nielsen, O.; Lill, C.M.; Bertram, L.; Sinsheimer, J.S.; Hansen, J.; Ritz, B. Gene-environment
interactions linking air pollution and inflammation in Parkinson’s disease. Environ. Res. 2016, 151, 713–720.
[CrossRef]

24. Lichter, A.; Pestel, N.; Sommer, E. Productivity effects of air pollution: Evidence from professional soccer.
Labour Econ. 2017, 48, 54–66. [CrossRef]

25. Kingsley, S.L.; Deyssenroth, M.A.; Kelsey, K.T.; Awad, Y.A.; Kloog, I.; Schwartz, J.D.; Wellenius, G.A. Maternal
residential air pollution and placental imprinted gene expression. Environ. Int. 2017, 108, 204–211. [CrossRef]

26. Vizcaíno, M.A.C.; González-Comadran, M.; Jacquemin, B. Outdoor air pollution and human infertility:
A systematic review. Fertil. Steril. 2016, 106, 897–904. [CrossRef] [PubMed]

27. Chen, R.; Hu, B.; Liu, Y.; Xu, J.; Yang, G.; Xu, D.; Chen, C. Beyond PM 2.5: The role of ultrafine particles
on adverse health effects of air pollution. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2016, 1860, 2844–2855.
[CrossRef] [PubMed]

28. Santibáñez-Andrade, M.; Quezada-Maldonado, E.M.; Osornio-Vargas, Á.; Sánchez-Pérez, Y.; García-Cuellar, C.M.
Air pollution and genomic instability: The role of particulate matter in lung carcinogenesis. Environ. Pollut. 2017,
229, 412–422. [CrossRef] [PubMed]

29. Ma, Y.; Zhao, Y.; Yang, S.; Zhou, J.; Xin, J.; Wang, S.; Yang, D. Short-term effects of ambient air pollution
on emergency room admissions due to cardiovascular causes in Beijing, China. Environ. Pollut. 2017, 230,
974–980. [CrossRef]

30. Li, L.; Wu, A.H.; Cheng, I.; Chen, J.C.; Wu, J. Spatiotemporal estimation of historical PM2.5 concentrations
using PM10, meteorological variables, and spatial effect. Atmos. Environ. 2017, 166, 182–191. [CrossRef]

31. Perez, P.; Gramsch, E. Forecasting hourly PM2.5 in Santiago de Chile with emphasis on night episodes.
Atmos. Environ. 2016, 124, 22–27. [CrossRef]

http://dx.doi.org/10.1016/j.scitotenv.2016.12.018
http://www.ncbi.nlm.nih.gov/pubmed/27989476
http://dx.doi.org/10.1016/j.envpol.2017.08.069
http://www.ncbi.nlm.nih.gov/pubmed/28939124
http://dx.doi.org/10.1016/j.is.2016.03.011
http://dx.doi.org/10.1023/A:1007452223027
http://dx.doi.org/10.1109/TMI.2012.2202322
http://dx.doi.org/10.1016/j.future.2017.04.018
http://dx.doi.org/10.1016/j.jenvman.2016.09.010
http://www.ncbi.nlm.nih.gov/pubmed/27623372
http://dx.doi.org/10.1016/j.jad.2016.05.006
http://www.ncbi.nlm.nih.gov/pubmed/27240312
http://dx.doi.org/10.1016/j.envint.2016.07.003
http://dx.doi.org/10.1016/j.rmed.2016.10.016
http://dx.doi.org/10.1016/j.envres.2016.09.006
http://dx.doi.org/10.1016/j.labeco.2017.06.002
http://dx.doi.org/10.1016/j.envint.2017.08.022
http://dx.doi.org/10.1016/j.fertnstert.2016.07.1110
http://www.ncbi.nlm.nih.gov/pubmed/27513553
http://dx.doi.org/10.1016/j.bbagen.2016.03.019
http://www.ncbi.nlm.nih.gov/pubmed/26993200
http://dx.doi.org/10.1016/j.envpol.2017.06.019
http://www.ncbi.nlm.nih.gov/pubmed/28622661
http://dx.doi.org/10.1016/j.envpol.2017.06.104
http://dx.doi.org/10.1016/j.atmosenv.2017.07.023
http://dx.doi.org/10.1016/j.atmosenv.2015.11.016


Int. J. Environ. Res. Public Health 2019, 16, 4679 23 of 23

32. Zhan, Y.; Luo, Y.; Deng, X.; Chen, H.; Grieneisen, M.L.; Shen, X.; Zhang, M. Spatiotemporal prediction of
continuous daily PM 2.5 concentrations across China using a spatially explicit machine learning algorithm.
Atmos. Environ. 2017, 155, 129–139. [CrossRef]

33. Shaban, K.B.; Kadri, A.; Rezk, E. Urban air pollution monitoring system with forecasting models. IEEE Sens. J.
2016, 16, 2598–2606. [CrossRef]

34. Dong, M.; Yang, D.; Kuang, Y.; He, D.; Erdal, S.; Kenski, D. PM 2.5 concentration prediction using hidden
semi-Markov model-based times series data mining. Expert Syst. Appl. 2009, 36, 9046–9055. [CrossRef]

35. Xu, M.; Wang, Y.X. Quantifying PM 2.5 concentrations from Multi-Weather sensors using hidden Markov
models. IEEE Sens. J. 2016, 16, 22–23. [CrossRef]

36. Feng, F.; Chi, X.; Wang, Z.; Li, J.; Jiang, J.; Yang, W. A nonnegativity preserved efficient chemical solver
applied to the air pollution forecast. Appl. Math. Comput. 2017, 314, 44–57. [CrossRef]

37. Chen, L.J.; Ho, Y.H.; Lee, H.C.; Wu, H.C.; Liu, H.M.; Hsieh, H.H.; Lung, S.C.C. An Open Framework for
Participatory PM2.5 Monitoring in Smart Cities. IEEE Access 2017, 5, 14441–14454. [CrossRef]

38. Burgos, C.; Campanario, M.L.; de la Pena, D.; Lara, J.A.; Lizcano, D.; Martinez, M.A. Data mining for
modeling students’ performance: A tutoring action plan to prevent academic dropout. Comput. Electr. Eng.
2018, 66, 541–556. [CrossRef]

39. Voukantsis, D.; Karatzas, K.; Kukkonen, J.; Räsänen, T.; Karppinen, A.; Kolehmainen, M. Intercomparison of
air quality data using principal component analysis, and forecasting of PM 10 and PM 2.5 concentrations
using artificial neural networks, in Thessaloniki and Helsinki. Sci. Total Environ. 2011, 409, 1266–1276.
[CrossRef] [PubMed]

40. Sun, W.; Zhang, H.; Palazoglu, A.; Singh, A.; Zhang, W.; Liu, S. Prediction of 24-hour-average PM 2.5
concentrations using a hidden Markov model with different emission distributions in Northern California.
Sci. Total Environ. 2013, 443, 93–103. [CrossRef] [PubMed]

41. Heyes, A.; Rivers, N.; Saberian, S. Alerts Work! Air Quality Warnings and Cycling (No. E1502E); Department of
Economics, Faculty of Social Sciences, University of Ottawa: Ottawa, ON, Canada, 2015.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.atmosenv.2017.02.023
http://dx.doi.org/10.1109/JSEN.2016.2514378
http://dx.doi.org/10.1016/j.eswa.2008.12.017
http://dx.doi.org/10.1109/JSEN.2015.2485665
http://dx.doi.org/10.1016/j.amc.2017.06.008
http://dx.doi.org/10.1109/ACCESS.2017.2723919
http://dx.doi.org/10.1016/j.compeleceng.2017.03.005
http://dx.doi.org/10.1016/j.scitotenv.2010.12.039
http://www.ncbi.nlm.nih.gov/pubmed/21276603
http://dx.doi.org/10.1016/j.scitotenv.2012.10.070
http://www.ncbi.nlm.nih.gov/pubmed/23178893
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Literature Review 
	Impact of Air Pollution 
	Air Quality Index AQI 
	Relevant Research on Existing Air Pollution and AQI 
	Study on the Impact of Air Pollution 
	Research on AQI and Other Air Pollution 


	Methodology 
	System Architecture 
	Data Collection and Preprocessing Module 
	Prediction Model Constructing and Application Module 
	Decision Module 
	Early Warning Alert Module 

	System Environment 
	Establishment and Deployment of Azure Environments 
	Establishment and Deployment of Prediction Model 


	Experiment 
	Procedure 
	Model Training 
	Model Prediction 

	Air Quality Index Data 
	Evaluation 
	Evaluation Indicators 
	Assessment Indicators of Air Quality Index 


	Experimental Results and Discussion 
	Data Collection and Processing 
	Data Collection 
	Data Processing 

	Experimental Results and Performance 
	Model Training 
	Model Testing 
	Model Prediction 

	Discussion 

	Conclusions 
	References

