

A - Synthesis of the macrocycle [15]aneN₄S

The macrocycle 1-thia-4,7,10,13-tetraazacyclopentadecane ([15]aneN₄S) was prepared according to the reactions depicted in Figure 1. The first step involved the synthesis of the precursor diamide, 1-thia-4,7,10,13-tetraazacyclopentadecane-3,14-dione (dioxo-[15]aneN₄S) by reaction of the dimethyl ester of thiodiglycolic acid, with triethylenetetramine in dry methanol. The compound was purified by chromatography. Yield = 74%.

Figure S1. Schematic synthesis of [15]aneN₄S.

The reduction of the cyclic diamide dioxo-[15]aneN₄S with borane, in refluxing dry THF under nitrogen afforded the macrocycle [15]aneN₄S. The compound was purified by chromatography. Yield = 68%.

B - Characterization of the macrocycles dioxo-[15]aneN₄S and [15]aneN₄S

dioxo-[15]aneN₄S: ¹H NMR (400.13 MHz; D₂O; DSS; pD = 3.4): δ 3.26 (t, 4H, (triplet), *H*_d) 3.35 (s, 4H, (singlet), *H*_a), 3.53 (t, 4H, *H*_c), 3.57 (s, 4H, *H*_e) ppm. ¹³C NMR (100.61 MHz; D₂O; dioxane; pD = 3.4): δ 35.3 (*C*_c), δ 37.5 (*C*_a), 42.8 (*C*_e), 48.2 (*C*_d), 175.0 (*C*₂) ppm. FT-IR (KBr, cm⁻¹): ν 3427 (N–H), 1652 (C=O).

[15]aneN4S:

¹H NMR (400.13 MHz; D₂O; DSS; pD = 1.72): δ 3.17 (t, 4H, ³*J* = 6, *H*_{*a*}), 3.34 (s, 4H, ³*J* = 6, *H*_{*e*}), 3.44 (t, 4H, *H*_{*d*}), δ 3.50 (t, 4H, ³*J* = 6, *H*_{*b*}), 3.57 (t, 4H, ³*J* = 6, *H*_{*c*}) ppm.

¹³C NMR (100.61 MHz; D₂O; dioxane; pD = 1.72): δ 29.55 (*C_a*), 43.64 (*C_d*), 45.00 (*C_c*), 45.37 (*C_e*), 46.94 (*C_b*).

FT-IR (KBr, cm⁻¹):v 3426 (N–H).

m/z (ESI-MS; methanol; positive ion mode) 233.20 [M + H]⁺.

	Figure 2a	
Experimental group		Mean ± SE
Control		100
MeHg		24 ± 3.7
MeHg + [15]aneN4S 40µM		48 ± 7.9
[15]aneN4S 40µM		97 ±6.8
MeHg + BAL 40µM		36 ± 2.8
BAL 40µM		94 ± 2.6
MeHg + DMSA 40µM		53 + 6 3
DMSA 40uM		95 + 6 2
	Figure 2h	70 ± 0.2
Experimental group	Figure 20	Moon + SE
Control		100
Control		100
Meng		49 ± 6.0
$MeHg + [15]aneN_4S 40\mu M$		70 ± 2.7
[15]aneN45 40µM		102 ±6.2
MeHg + BAL 40μ M		93 ± 3.2
BAL 40µM		102 ± 3.7
MeHg + DMSA 40µM		81 ± 6.4
DMSA 40µM		93 ± 7.2
	Figure 3	
Experimental group		Mean ± SE
Control		100
[15]aneN₄S 10μM		96 ± 2.0
[15]aneN4S 20µM		106 ± 11
[15]aneN4S 40µM		111 ± 4.1
[15]aneN4S 80µM		102 ± 8.1
[15]aneN4S 120µM		103 ± 14.6
BAL 10uM		91 + 1
BAL 20uM		87 + 4.8
BAL 40µM		87 + 9.8
BAL SOUM		86 + 0 1
DAL 80µM		30 ± 9.1
DMCA 10. M		100 + 5 2
DMSA 10µM		100 ± 5.2
DMSA 20µM		106 ± 1.2
DMSA 40µM		108 ± 8.0
DMSA 80µM		115 ± 3.3
DMSA 120µM		115 ± 2.6
	Figure 4a	
Experimental group		Mean ± SE
Control		100
MeHg		33 ± 8.8
MeHg + [15]aneN4S 40μM		36 ± 12
[15]aneN4S 40µM		111 ± 26
MeHg + BAL 40μ M		35 ± 16
BAL 40µM		106 ± 16
MeHg + DMSA 40µM		28 ± 11
DMSA 40µM		82 + 1 6
	Figure 4b	022110
Experimental group	riguit in	Mean + SF
Control		100
Malla		100
		47 ± 5.7
MeHg + [15]aneN45 40μ M		105 ± 17
[15]aneN45 40µM		102 ± 7.4
MeHg + BAL 40µM		112 ± 16
BAL 40µM		94 ± 9.4
MeHg + DMSA 40µM		48 ± 3.0
DMSA 40µM		111 ± 15
Figure 5b		
Experimental group		Mean ± SE
C		1.0
М		0.87 ± 0.015
M+N		0.99 ± 0.19

Supplementary Table S1. Mean ± Standard Error for each experimental group in Figures 2, 3, 4 and 5.

Int. J. Environ. Res. Public Health 2019, 16, 4817

Ν	0.99 ± 0.16	
M+B	0.99 ± 0.092	
В	1.0 ± 0.039	
M+D	1.0 ± 0.12	
D	1.02 ± 0.043	
Figure 5c		
Experimental group	Mean ± SE	
С	1.0	
М	0.88 ± 0.12	
M+N	1.1 ± 0.15	
Ν	1.0 ± 0.17	
M+B	0.89 ± 0.20	
В	0.77 ± 0.19	
M+D	0.71 ± 0.060	
D	0.69 ± 0.16	