The Impact of PM10 Levels on Pedestrian Volume: Findings from Streets in Seoul, South Korea
Abstract
:1. Introduction
2. Literature Review
2.1. The Importance of Pedestrian Volume and Measuring Methods
2.2. Determinants of Pedestrian Volume on the Streets
2.2.1. Built Environment and Pedestrian Volume
2.2.2. Weather and Atmosphere Conditions and Pedestrian Volume
2.3. Limitations of Previous Studies and Research Questions
3. Empirical Setting
3.1. Study Area
3.2. Data, Variables, and Model Specification
3.2.1. Pedestrian Volume (Dependent Variable)
3.2.2. Weather and Atmospheric Condition (Test Variables) and the Model Specifications
3.2.3. Physical Environment and Other Control Variables
4. Results
4.1. Preliminary Analysis: PM10 Concentration and Pedestrian Volume in Seoul
4.2. Impact of Weather and Atmospheric Condition on Pedestrian Volume by the Spatial Unit of Alert
4.3. Comparing the Coefficients of PM10 in Three Stratified Models by Grade
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Multiple Regression Models of Log-Transformed Daily Pedestrian Volume by the Spatial Alert Unit of Weather and Atmospheric Condition Variables
Variable | Si-Level Model | Gu-Level Model | Cell-Level Model | |||
OLS | OLS | OLS | ||||
Coef. | t | Coef. | t | Coef. | t | |
Constant | 5.062 *** | 7.937 | 4.314 *** | 6.521 | 4.839 *** | 7.499 |
Weather and atmosphere condition | ||||||
log_ PM10 concentration | −0.169 *** | −2.912 | −0.247 *** | −4.339 | −0.149 *** | −2.609 |
log_lowest temperature | 0.076 | 0.713 | 0.419 | 3.217 | 0.102 | 0.803 |
log_precipitation | −0.059 *** | −3.151 | −0.051 *** | −2.872 | −0.058 *** | −3.188 |
Population | ||||||
log_population density | −0.194 *** | −3.734 | −0.178 *** | −3.423 | −0.186 *** | −3.592 |
log_job density | 0.076 *** | 2.753 | 0.081 | 2.922 | 0.078 | 2.821 |
log_bus ridership | 0.330 *** | 17.500 | 0.329 *** | 17.440 | 0.330 *** | 17.436 |
log_subway ridership | 0.047 *** | 13.558 | 0.047 *** | 13.566 | 0.047 *** | 13.540 |
Land use | ||||||
Residential | 0.309 *** | 3.214 | 0.304 *** | 3.169 | 0.307 *** | 3.192 |
Commercial | 0.538 *** | 5.070 | 0.542 *** | 5.113 | 0.536 *** | 5.046 |
Industrial | 0.319 *** | 2.636 | 0.318 *** | 2.627 | 0.321 *** | 2.646 |
Street type | ||||||
With a sidewalk | 0.685 *** | 11.468 | 0.683 *** | 11.452 | 0.683 *** | 11.427 |
Without a sidewalk (shared with pedestrians and vehicles) | 0.579 *** | 7.449 | 0.579 *** | 7.456 | 0.574 *** | 7.377 |
Street condition | ||||||
Sidewalk width | 0.083 *** | 9.929 | 0.082 *** | 9.935 | 0.083 *** | 9.913 |
# of traffic lanes | 0.017 * | 1.941 | 0.018 ** | 2.038 | 0.017 * | 1.938 |
Presence of centerline | −0.223 *** | −3.660 | −0.228 *** | −3.749 | −0.223 *** | −3.656 |
Presence of street furniture | −0.026 | −0.417 | −0.026 | −0.419 | −0.025 | −0.395 |
Presence of obstacle | 0.487 *** | 6.975 | 0.482 *** | 6.906 | 0.487 *** | 6.976 |
Presence of braille block | 0.004 | 0.107 | 0.004 | 0.111 | 0.003 | 0.099 |
Presence of street slope | −0.239 *** | −5.740 | −0.240 *** | −5.783 | −0.240 *** | −5.779 |
Presence of fence | 0.132 *** | 3.162 | 0.132 *** | 3.155 | 0.133 *** | 3.168 |
Presence of crosswalk | 0.176 *** | 4.371 | 0.179 *** | 4.437 | 0.178 *** | 4.409 |
Day of the week | ||||||
Friday | 0.007 | 0.163 | 0.019 | 0.449 | 0.004 | 0.098 |
Saturday | 0.076 | 1.586 | 0.030 | 0.646 | 0.084 | 1.786 |
Summary | ||||||
N | 2,990 | |||||
Adjusted R-square | 0.417 | 0.418 | 0.416 | |||
Log likelihood | −3946.19 | −3943.49 | −3948.17 | |||
Akaike info criterion | 7940.39 | 7934.98 | 7944.34 | |||
Schwarz criterion | 8084.46 | 8079.05 | 8088.41 | |||
Statistics | ||||||
Moran’s I | 35.616 *** | 35.362 *** | 35.737 *** | |||
Note: The reference group of Land use, Street type and Day of the week are “Green,” “With sidewalk, but shared with bicycles” and “Tuesday,” respectively. * Significant at p < 0.1; ** Significant at p < 0.05; *** Significant at p < 0.01. |
Appendix B. Multiple Regression Models of Log-Transformed Daily Pedestrian Volume by the Grade of PM10
Variable | Good (<30 µg m−3) | Normal (30 µg m−3 ≤ PM10 < 80 µg m−3) | Bad (≥80 µg m−3) | |||
OLS | OLS | OLS | ||||
Coef. | t | Coef. | t | Coef. | t | |
Constant | 6.377 *** | 3.436 | 4.530 *** | 5.4852 | −0.830 | −0.193 |
Gu-level weather and atmosphere condition | ||||||
log_ PM10 concentration | −0.691 *** | −2.647 | −0.176 ** | −2.318 | −1.213 ** | −2.224 |
log_lowest temperature | 0.816 *** | 3.421 | 0.259 * | 1.922 | 2.365 ** | 2.203 |
Population | ||||||
log_population density | −0.167 | −1.161 | −0.242 *** | −3.882 | 0.274 ** | 1.969 |
log_job density | −0.017 | −0.283 | 0.127 *** | 3.684 | −0.010 | −0.129 |
log_bus ridership | 0.269 *** | 6.875 | 0.358 *** | 14.837 | 0.303 *** | 6.403 |
log_subway ridership | 0.045 *** | 5.495 | 0.045 *** | 10.300 | 0.053 *** | 6.486 |
Land use | ||||||
Residential | 0.008 | 0.032 | 0.350 *** | 2.966 | 0.492 ** | 2.108 |
Commercial | 0.242 | 0.941 | 0.556 *** | 4.294 | 1.070 *** | 3.978 |
Industrial | 0.280 | 0.947 | 0.307 ** | 2.028 | 0.332 | 1.202 |
Street type | ||||||
With sidewalk | 0.702 *** | 5.145 | 0.599 *** | 7.890 | 0.936 *** | 6.833 |
Without sidewalk (shared with pedestrians and vehicles) | 0.340 | 1.627 | 0.525 *** | 5.492 | 0.857 *** | 4.901 |
Street condition | ||||||
Sidewalk width | 0.068 *** | 3.053 | 0.074 *** | 7.368 | 0.118 *** | 5.840 |
# of traffic lanes | 0.057 *** | 2.641 | 0.012 | 1.113 | 0.024 | 1.215 |
Presence of centerline | −0.250 * | −1.658 | −0.273 *** | −3.605 | −0.233 * | −1.672 |
Presence of street furniture | −0.278 * | −1.856 | −0.017 | −0.221 | 0.202 | 1.393 |
Presence of obstacle | 0.350 ** | 2.105 | 0.454 *** | 5.225 | 0.730 *** | 4.488 |
Presence of braille block | −0.125 | −1.465 | 0.057 | 1.212 | −0.001 | −0.006 |
Presence of street slope | −0.173 * | −1.887 | −0.287 *** | −5.421 | −0.106 | −1.060 |
Presence of fence | 0.316 *** | 3.206 | 0.115 ** | 2.215 | 0.027 | 0.262 |
Presence of crosswalk | 0.345 *** | 3.576 | 0.107 ** | 2.142 | 0.241 ** | 2.481 |
Summary | ||||||
N | 608 | 1,874 | 508 | |||
Adjusted R-square | 0.425 | 0.423 | 0.488 | |||
Log likelihood | −805.982 | −2443.86 | −648.26 | |||
Akaike info criterion | 1653.96 | 4929.72 | 1338.52 | |||
Schwarz criterion | 1746.58 | 5045.97 | 1427.36 | |||
Statistics | ||||||
Moran’s I | 9.674 *** | 19.758 *** | 8.275 *** | |||
Note: The reference group of Land use, Street type and Day of the week are “Green,” “With sidewalk, but shared with bicycles” and “Tuesday,” respectively. * Significant at p < 0.1; ** Significant at p < 0.05; *** Significant at p < 0.01. |
References
- Kashef, M. Urban livability across disciplinary and professional boundaries. Front. Archit. Res. 2016, 5, 239–253. [Google Scholar] [CrossRef]
- Evans, G.W. Projected behavioral impacts of global climate change. Annu. Rev. Psychol. 2019, 70, 449–474. [Google Scholar] [CrossRef] [PubMed]
- Department of Health. Cardiovascular Disease and Air Pollution—A Report by the Committee on the Medical Effects of Air Pollutants; Department of Health: London, UK, 2006.
- IQAir AirVisual. World Air Quality Report-Region & City PM2.5 Ranking; IQAir AirVisual: Goldach, Switzerland, 2018. [Google Scholar]
- WHO. Available online: https://www.who.int/en/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 10 September 2019).
- Neidell, M.J. Air pollution, health, and socio-economic status: The effect of outdoor air quality on childhood asthma. J. Health Econ. 2004, 23, 1209–1236. [Google Scholar] [CrossRef] [PubMed]
- Guarnieri, M.; Balmes, J.R. Outdoor air pollution and asthma. Lancet 2014, 383, 1581–1592. [Google Scholar] [CrossRef]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A.; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate matter air pollution and cardiovascular disease. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the global burden of diseases study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef]
- Frank, L.D.; Sallis, J.F.; Conway, T.L.; Chapman, J.E.; Saelens, B.E.; Bachman, W. Many pathways from land use to health: Associations between neighborhood walkability and active transportation, body mass index, and air quality. J. Am. Plan. Assoc. 2006, 7, 75–87. [Google Scholar] [CrossRef]
- Schweitzer, L.; Zhou, J. Neighborhood air quality, respiratory health, and vulnerable populations in compact and sprawled regions. J. Am. Plan. Assoc. 2010, 76, 363–371. [Google Scholar] [CrossRef]
- Frank, L.D.; Engelke, P. Multiple impacts of the built environment on public health: Walkable places and the exposure to air pollution. Int. Reg. Sci. Rev. 2005, 28, 193–216. [Google Scholar] [CrossRef]
- Jacobs, J. The Death and Life of Great American Cities; Random House: New York, NY, USA, 1961. [Google Scholar]
- Appleyard, D. Livable Streets; University of California Press: Berkeley, CA, USA, 1981. [Google Scholar]
- Litman, T.A. Economic Value of Walkability; Victoria Transport Policy Institute: Victoria, BC, Canada, 2017. [Google Scholar]
- Sung, H.-G.; Go, D.-H.; Choi, C.G. Evidence of Jacobs’s street life in the great Seoul city: Identifying the association of physical environment with walking activity on streets. Cites 2013, 35, 164–173. [Google Scholar] [CrossRef]
- Kang, C.-D. The effects of spatial accessibility and centrality to land use on walking in Seoul, Korea. Cities 2015, 46, 94–103. [Google Scholar] [CrossRef]
- Litman, T.A. Economic value of walkability. Trans. Res. Rec. 2003, 1828, 3–11. [Google Scholar] [CrossRef]
- Ewing, R.H.; Clemente, O. Measuring Urban Design Metrics for Livable Places; Island Press: Washington, DC, USA, 2013. [Google Scholar]
- Jang, J.-Y.; Choi, S.-T.; Lee, H.-S.; Kim, S.-J.; Choo, S.-H. A comparison analysis of factors to affect pedestrian volumes by land-use type using Seoul Pedestrian Survey data. J. Korean Inst. Intell. Transp. Syst. 2015, 14, 39–53. [Google Scholar] [CrossRef]
- Kang, C.-D. Spatial access to pedestrians and retail sales in Seoul, Korea. Habitat Int. 2016, 57, 110–120. [Google Scholar] [CrossRef]
- Putnam, R.D. Bowling Alone: The Collapse and Revival of American Community; Simon & Schuster: New York, NY, USA, 2000. [Google Scholar]
- Handy, S.L.; Boarnet, M.G.; Ewing, R.; Killingsworth, R.E. How the built environment affects physical activity: Views from urban planning. Am. J. Prev. Med. 2002, 23, 64–73. [Google Scholar] [CrossRef]
- Frumkin, H.; Frank, L.; Jackson, R. Urban Sprawl and Public Health: Designing, Planning, and Building for Healthy Communities; Island Press: Washington, DC, USA, 2004. [Google Scholar]
- Wener, R.E.; Evans, G.W. A morning stroll levels of physical activity in car and mass transit commuting. Environ. Behav. 2007, 39, 62–74. [Google Scholar] [CrossRef]
- Montgomery, C. Happy City: Transforming Our Lives through Urban Design, 1st ed.; Farrar, Straus, and Giroux: New York, NY, USA, 2013. [Google Scholar]
- Koohsari, M.J.; Mavoa, S.; Villanueva, K.; Sugiyama, T.; Badland, H.; Kaczynski, A.T.; Owen, N.; Giles-Corti, B. Public open space, physical activity, urban design, and public health: Concepts, methods and research agenda. Health Place 2015, 33, 75–82. [Google Scholar] [CrossRef]
- Yin, L.; Cheng, Q.; Wang, Z.; Shao, Z. “Big data” for pedestrian volume: Exploring the use of Google Street View images for pedestrian counts. Appl. Geogr. 2015, 63, 337–345. [Google Scholar] [CrossRef]
- Verlander, N.Q.; Heydecker, B.G. Pedestrian Route Choice: An Empirical Study. In Proceedings of the 25th PTRC European Transport Forum, Brunel University, London, UK, 1–5 September 1997; pp. 39–49. [Google Scholar]
- Lamont, J.A. Where Do People Walk? The Impacts of Urban Form on Travel Behavior and Neighborhood Livability; Working Papers qt190012jw; University of California Transportation Center: Berkeley, CA, USA, 2001; Available online: https://escholarship.org/uc/item/190012jw (accessed on 10 October 2019).
- Hoehner, C.M.; Brennan, L.K.; Brownson, R.C.; Handy, S.L.; Killingsworth, R. Opportunities for integrating public health and urban planning approaches to promote active community environments. Am. J. Health Promot. 2003, 18, 14–20. [Google Scholar] [CrossRef]
- Livi, A.D.; Clifton, K.J. Issues and methods in capturing pedestrian behaviors, attitudes and perceptions: Experiences with a community-based walkability survey. In Transportation Research Board, Annual Meeting; Transportation Research Board: Washington, DC, USA, 2004. [Google Scholar]
- Cervero, R.; Kockelman, K. Travel demand and the 3Ds: Density, diversity, and design. Transp. Res. Part D Transp. Environ. 1997, 2, 199–219. [Google Scholar] [CrossRef]
- Cervero, R. Travel by design: The influence of urban form on travel. J. Am. Plan. Assoc. 2002, 68, 106–107. [Google Scholar]
- Lee, C.; Moudon, A.V. The 3Ds+R: Quantifying land use and urban form correlates of walking. Transp. Res. D Transp. Environ. 2006, 11, 204–215. [Google Scholar] [CrossRef]
- Ewing, R.; Cervero, R. Travel and the built environment. J. Am. Plan. Assoc. 2010, 76, 265–294. [Google Scholar] [CrossRef]
- Ewing, R.; Hajrasouliha, A.; Neckerman, K.M.; Purciel-Hill, M.; Greene, W. Streetscape features related to pedestrian activity. J. Plan. Educ. Res. 2015, 36, 5–15. [Google Scholar] [CrossRef]
- Cao, X. Examining the impacts of neighborhood design and residential self-selection on active travel: A methodological assessment. Urban Geogr. 2014, 36, 236–255. [Google Scholar] [CrossRef]
- Wiehe, S.E.; Carroll, A.E.; Liu, G.C.; Haberkorn, K.L.; Hoch, S.C.; Wilson, J.S.; Fortenberry, J.D. Using GPS-enabled cell phones to track the travel patterns of adolescents. Int. J. Health Geogr. 2008, 7, 22. [Google Scholar] [CrossRef]
- Carlson, J.A.; Saelens, B.E.; Kerr, J.; Schipperijn, J.; Conway, T.L.; Frank, L.D. Association between neighborhood walkability and GPS-measured walking, bicycling and vehicle time in adolescents. Health Place 2015, 32, 1–7. [Google Scholar] [CrossRef]
- Cooper, A.R.; Page, A.S.; Wheeler, B.W.; Hillsdon, M.; Griew, P.; Jago, R. Patterns of GPS measured time outdoors after school and objective physical activity in English children: The PEACH Project. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 31. [Google Scholar] [CrossRef]
- Park, S.; Choi, Y.Y.; Seo, H.L.; Moudon, A.V.; Bae, C.-H.; Baek, S.R. Physical activity and the built environment in residential neighborhoods of Seoul and Seattle: An empirical study based on housewives’ GPS walking data and travel diaries. J. Asian Archit. Build. Eng. 2018, 15, 471–478. [Google Scholar] [CrossRef]
- Seeger, C.J.; Welk, G.J.; Erickson, S. Using global position systems (GPS) and physical activity monitors to assess the built environment. URISA J. 2008, 20, 5–12. [Google Scholar]
- Schneider, R.J.; Arnold, L.S.; Ragland, D.R. A pilot model for estimating pedestrian intersection crossing volumes. Transp. Res. Rec. 2009, 2140, 13–26. [Google Scholar] [CrossRef]
- Schneider, R.J.; Arnold, L.S.; Ragland, D.R. Methodology for counting pedestrians at intersections: Use of automated counters to extrapolate weekly volumes from short manual counts. Transp. Res. Rec. 2009, 2140, 1–12. [Google Scholar] [CrossRef]
- Bauer, D.; Ray, M.; Seer, S. Simple sensors used for measuring service times and counting pedestrians. Transp. Res. Rec. 2011, 2214, 77–84. [Google Scholar] [CrossRef]
- Malinovskiy, Y.; Saunier, N.; Wang, Y. Analysis of pedestrian travel with static Bluetooth sensors. Transp. Res. Rec. 2012, 2299, 137–149. [Google Scholar] [CrossRef]
- Greene-Roesel, R.; Diógenes, M.C.; Ragland, D.R.; Lindau, L.A. Effectiveness of a Commercially Available Automated Pedestrian Counting Device in Urban Environments: Comparison with Manual Counts. In Proceedings of the 2008 Transport Research Board Annual Meeting, Washington, DC, USA, 13–17 January 2008. [Google Scholar]
- Placemeter. Available online: http://www.placemeter.com/solutions/retail (accessed on 10 September 2019).
- Appleyard, D.; Lintell, M. The environmental quality of city streets: The residents’ viewpoint. J. Am. Inst. Plan. 1972, 38, 84–101. [Google Scholar] [CrossRef]
- Gehl, J.; Svarre, B. How to Study Public Life; Island Press: Washington, DC, USA, 2013. [Google Scholar]
- Miranda-Moreno, L.F.; Morency, P.; El-Geneidy, A.M. The link between built environment, pedestrian activity, and pedestrian-vehicle collision occurrence at signalized intersections. Accid. Anal. Prev. 2011, 43, 1624–1634. [Google Scholar] [CrossRef]
- Open Data Portal, Data.Go.Kr. Available online: https://www.data.go.kr/ (accessed on 10 September 2019).
- Rodríguez, D.A.; Brisson, E.M.; Estupiñán, N. The relationship between segment-level built environment attributes and pedestrian activity around Bogota’s BRT stations. Transp. Res. Part D Transp. Environ. 2009, 14, 470–478. [Google Scholar] [CrossRef]
- Hajrasouliha, A.; Yin, L. The impact of street network connectivity on pedestrian volume. Urban Stud. 2015, 52, 2483–2497. [Google Scholar] [CrossRef]
- Sung, H.; Go, D.W.; Choi, C.-G.; Cheon, S.H.; Park, S.J. Effects of street-level physical environment and zoning on walking activity in Seoul, Korea. Land Use Policy 2015, 49, 152–160. [Google Scholar] [CrossRef]
- Lee, J.W.; Kim, H.Y.; Jun, C.M. Analysis of physical environmental factors that affect pedestrian volumes by street type. J. Urban Des. Inst. Korea 2015, 16, 123–140. [Google Scholar]
- Lee, J.-A.; Koo, J.-H. The effect of the physical environment of streets on pedestrian volume. J. Korea Plan. Assoc. 2013, 48, 269–286. [Google Scholar]
- Lee, H.S.; Kim, J.Y.; Choo, S.H. Analyzing pedestrian characteristics using the Seoul floating population survey: Focusing on 5 urban communities in Seoul. J. Korean Soc. Transp. 2014, 32, 315–326. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-A.; Lee, H.; Koo, J.-H. The study on factors influencing pedestrian volume based on the physical environment of the streets. J. Korea Plan. Assoc. 2014, 49, 145–163. [Google Scholar]
- Chan, C.B.; Ryan, D.A.; Tudor-Locke, C. Relationship between objective measures of physical activity and weather: A longitudinal study. Int. J. Behav. Nutr. Phys. Act. 2006, 3, 21. [Google Scholar] [CrossRef] [Green Version]
- Aultman-Hall, L.; Lane, D.; Lambert, R.R. Assessing the impact of weather and season on pedestrian traffic volumes. Transp. Res. Rec. 2009, 2140, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Montigny, L.D.; Ling, R.; Zacharias, J. The effects of weather on walking rates in nine cities. Environ. Behav. 2012, 44, 821–840. [Google Scholar] [CrossRef]
- Shaaban, K.; Muley, D. Investigation of weather impacts on pedestrian volumes. Transp. Res. Procedia 2016, 14, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Cools, M.; Moons, E.; Creemers, L.; Wets, G. Changes in travel behavior in response to weather conditions. Transp. Res. Rec. 2010, 2157, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Vanky, A.P.; Verma, S.K.; Courtney, T.K.; Santi, P.; Ratti, C. Effect of weather on pedestrian trip count and duration: City-scale evaluations using mobile phone application data. Prev. Med. Rep. 2017, 8, 30–37. [Google Scholar] [CrossRef]
- Frank, L.D.; Stone, B., Jr.; Bachman, W. Linking land use with household vehicle emissions in the central Puget Sound: Methodological framework and findings. Transp. Res. Part D Transp. Environ. 2000, 5, 173–196. [Google Scholar] [CrossRef]
- Stone, B., Jr. Urban sprawl and air quality in large U.S. cities. J. Environ. Manag. 2008, 86, 688–698. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Goodchild, A. Land use policies and transport emissions: Modeling the impact of trip speed, vehicle characteristics, and residential location. Transp. Res. Part D Transp. Environ. 2014, 26, 47–51. [Google Scholar] [CrossRef]
- Kang, J.E.; Yoon, D.K.; Bae, H.-J. Evaluating the effect of compact urban form on air quality in Korea. Environ. Plan. B Urban Anal. City Sci. 2017, 46, 179–200. [Google Scholar] [CrossRef]
- Briggs, D.J.; de Hoogh, K.; Morris, C.; Gulliver, J. Effects of travel mode on exposures to particulate air pollution. Environ. Int. 2008, 34, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Stone, B., Jr.; Mednick, A.C.; Holloway, T.; Spak, S.N. Is compact growth good for air quality? J. Am. Plan. Assoc. 2007, 73, 404–418. [Google Scholar] [CrossRef]
- Sider, T.; Alam, A.; Zukari, M.; Dugum, H.; Goldstein, N.; Eluru, N.; Hatzopoulou, M. Land-use and socio-economics as determinants of traffic emissions and individual exposure to air pollution. J. Transp. Geogr. 2013, 33, 230–239. [Google Scholar] [CrossRef]
- Semenza, J.C.; Wilson, D.J.; Parra, J.; Bontempo, B.D.; Hart, M.; Sailor, D.J.; George, L.A. Public perception and behavior change in relationship to hot weather and air pollution. Environ. Res. 2008, 107, 401–411. [Google Scholar] [CrossRef]
- Oltra, C.; Sala, R. Perception of risk from air pollution and reported behaviors: A cross-sectional survey study in four cities. J. Risk Res. 2018, 21, 869–884. [Google Scholar] [CrossRef]
- Yoon, H. Effects of particulate matter (PM10) on tourism sales revenue: A generalized additive modeling approach. Tourism Manag. 2019, 74, 358–369. [Google Scholar] [CrossRef]
- Kim, H.M.; Han, S.S. Seoul. Cities 2012, 29, 142–154. [Google Scholar] [CrossRef]
- Korean Statistical Information Service. Available online: http://kosis.kr/ (accessed on 10 September 2019).
- Ministry of Land, Infrastructure, and Transport. Modal Share Statistics in Seoul and Six Metropolitan Cities. 2016. Available online: https://www.data.go.kr/dataset/fileDownload.do?atchFileId=FILE_000000001523455&fileDetailSn=1 (accessed on 18 April 2018).
- Seoul Metropolitan Government. 2015 Seoul Air Quality Report; Seoul Metropolitan Government: Seoul, Korea, 2016.
- Seoul Open Data Plaza. Available online: http://data.seoul.go.kr/ (accessed on 10 September 2019).
- National Meteorological Super Computer Center. Available online: http://www.kma.go.kr/aboutkma/intro/supercom/model/model_manage_10.jsp (accessed on 10 September 2019).
- Air Korea. Available online: https://www.airkorea.or.kr/ (accessed on 26 September 2019).
- KMA. Available online: http://www.weather.go.kr/ (accessed on 26 September 2019).
- Seoul Metropolitan Government. Available online: http://cleanair.seoul.go.kr/ (accessed on 26 September 2019).
- Gehl, J. Life between Buildings: Using Public Space, 5th ed.; Arkitektens Forlag: Copenhagen, Denmark, 2001. [Google Scholar]
- Kim, Y.H.; Yang, S.W. Empirical research on the vitalization factors of commercial streets with walking population data. J. Urban Des. Inst. Korea 2017, 18, 63–77. [Google Scholar]
- Lim, H.N.; Seong, E.Y.; Choi, C.G. Relationship between the diversity of commercial stores and street vitality. J. Urban Des. Inst. Korea 2017, 18, 37–49. [Google Scholar]
- Lee, H.R.; Kim, S.-N. Shared space and pedestrian safety: Empirical evidence from pedestrian priority street projects in Seoul, Korea. Sustainability 2019, 11, 4645. [Google Scholar] [CrossRef] [Green Version]
- Hamilton-Baillie, B. Towards shared space. Urban Des. Int. 2008, 13, 130–138. [Google Scholar] [CrossRef]
- Kim, S.-N.; Oh, S.; Park, Y.-S. Status and Evaluation of 2014 Pedestrian Priority Street; Architecture and Urban Research Institute: Seoul, Korea, 2015; pp. 1–130. [Google Scholar]
- Kim, W.S.; Jang, J.-H. A study on reducing roadside PM10 concentrations for walkable streets in Seoul. Seoul Stud. 2000, 1, 31–47. [Google Scholar]
Type of Outdoor Activity [86] | Possible Type of Walking on a Street | Control Variables and Their Expected Explanatory Power | |||
---|---|---|---|---|---|
Fixed and Floating Populations in Surrounding Areas | Physical Environment | ||||
# of Residents | # of Workers | # of Public Transit Users | |||
Necessary activities | A. The street or nearby area is the origin of the walking trip | ○ | ○ | △ | △ |
B. The street or nearby area is the destination of the walking trip | ○ | ○ | △ | △ | |
C. The street or nearby area is on the route of the walking trip | △ | △ | |||
Optional and social activities | D. The street or nearby area is the origin of the wandering and other related activities | ○ | ○ | ○ | |
E. The street or nearby area is the destination or on the route of the wandering and other related activities | ○ | ○ |
Variable | Si-Level Model | Gu-Level Model | Cell-Level Model | |||
---|---|---|---|---|---|---|
Spatial Error | Spatial Error | Spatial Error | ||||
Coef. | z | Coef. | z | Coef. | z | |
Lambda (λ) | 0.707 *** | 29.167 | 0.706 *** | 29.070 | 0.708 *** | 29.262 |
Constant | 6.755 *** | 5.877 | 6.476 *** | 5.526 | 6.766 *** | 5.840 |
Weather and atmosphere condition | ||||||
log_PM10 concentration | −0.085 | −1.631 | −0.121 ** | −2.286 | −0.064 | −1.232 |
log_lowest temperature | 0.022 | 0.223 | 0.152 | 1.233 | −0.023 | −0.201 |
log_precipitation | −0.035 ** | −2.083 | −0.029 * | −1.824 | −0.033 ** | −2.028 |
Population | ||||||
log_population density | −0.211 ** | −2.072 | −0.206 ** | −2.022 | −0.209 ** | −2.052 |
logjob density | −0.029 | −0.524 | −0.025 | −0.447 | −0.029 | −0.821 |
logbus ridership | 0.266 *** | 12.538 | 0.266 *** | 12.536 | 0.266 *** | 12.511 |
logsubway ridership | 0.041 *** | 10.890 | 0.040 *** | 10.880 | 0.040 *** | 10.882 |
Land use | ||||||
Residential | 0.342 *** | 3.665 | 0.341 *** | 3.645 | 0.3417 *** | 3.657 |
Commercial | 0.481 *** | 4.656 | 0.481 *** | 4.653 | 0.481 *** | 4.650 |
Industrial | 0.238 * | 1.768 | 0.241 * | 1.787 | 0.238 ** | 1.762 |
Street type | ||||||
With a sidewalk | 0.616 *** | 10.764 | 0.615 *** | 10.754 | 0.615 *** | 10.744 |
Without a sidewalk (shared with pedestrians and vehicles) | 0.530 *** | 7.088 | 0.531 *** | 7.096 | 0.529 *** | 7.070 |
Street condition | ||||||
Sidewalk width | 0.062 *** | 7.846 | 0.062 *** | 7.837 | 0.062 *** | 7.831 |
# of traffic lanes | 0.020 ** | 2.389 | 0.021 ** | 2.424 | 0.020 ** | 2.372 |
Presence of centerline | −0.119 ** | −2.045 | −0.120 ** | −2.059 | −0.118 ** | −2.020 |
Presence of street furniture | −0.078 | −1.356 | −0.077 | −1.348 | −0.078 | −1.348 |
Presence of obstacle | 0.378 *** | 5.734 | 0.377 *** | 5.720 | 0.379 *** | 5.750 |
Presence of braille block | 0.029 | 0.797 | 0.027 | 0.773 | 0.030 | 0.826 |
Presence of street slope | −0.289 *** | −7.214 | −0.290 *** | −7.232 | −0.290 *** | −7.229 |
Presence of fence | 0.139 *** | 3.576 | 0.138 *** | 3.562 | 0.139 *** | 3.578 |
Presence of crosswalk | 0.207 *** | 5.426 | 0.207 *** | 5.420 | 0.207 *** | 5.425 |
Day of the week | ||||||
Friday | 0.011 | 0.299 | 0.022 | 0.601 | 0.017 | 0.449 |
Saturday | 0.055 | 1.329 | 0.037 | 0.892 | 0.068* | 1.650 |
Summary Statistics | ||||||
N | 2990 | |||||
Adjusted R-square | 0.539 | 0.539 | 0.539 | |||
Robust LM error | 324.154 *** | 314.508 *** | 328.838 *** |
Variable | Good (< 30 µg m−3) | Normal (30 µg m−3 ≤ PM10 < 80 µg m−3) | Bad (≥ 80 µg m−3) | |||
---|---|---|---|---|---|---|
Spatial Lag | Spatial Error | Spatial Error | ||||
Coef. | z | Coef. | z | Coef. | z | |
Rho (ρ) | 0.411 *** | 5.867 | ||||
Lambda (λ) | 0.559 *** | 16.777 | 0.516 *** | 8.218 | ||
Constant | 2.904 | 1.562 | 5.420 *** | 4.384 | 2.619 | 0.533 |
Gu-level weather and atmosphere condition | ||||||
log_PM10 concentration | −0.652 *** | −2.610 | −0.072 | −1.005 | −1.147 ** | −2.117 |
log_lowest temperature | 0.708 *** | 3.051 | 0.106 | 0.834 | 1.132 | 0.936 |
Population | ||||||
log_population density | −0.066 | −0.475 | −0.239 ** | −2.333 | 0.276 | 1.511 |
log_job density | −0.067 | −1.156 | 0.075 | 1.291 | −0.045 | −0.436 |
log_bus ridership | 0.251 *** | 6.652 | 0.318 *** | 11.829 | 0.302 *** | 6.448 |
log_subway ridership | 0.045 *** | 5.798 | 0.039 *** | 8.477 | 0.052 *** | 6.726 |
Land use | ||||||
Residential | −0.070 | −0.309 | 0.325 *** | 2.836 | 0.455 ** | 2.031 |
Commercial | 0.100 | 0.407 | 0.518 *** | 4.108 | 1.010 *** | 3.854 |
Industrial | 0.033 | 0.117 | 0.244 | 1.474 | 0.386 | 1.352 |
Street type | ||||||
With sidewalk | 0.712 *** | 5.463 | 0.610 *** | 8.385 | 0.915 *** | 6.849 |
Without sidewalk (shared with pedestrians and vehicles) | 0.425 ** | 2.125 | 0.516 *** | 5.562 | 0.804 *** | 4.779 |
Street condition | ||||||
Sidewalk width | 0.064 *** | 3.025 | 0.062 *** | 6.499 | 0.109 *** | 5.987 |
# of traffic lanes | 0.057 *** | 2.758 | 0.011 | 1.019 | 0.031 * | 1.697 |
Presence of centerline | −0.241 * | −1.668 | −0.202 *** | −2.759 | −0.123 | −0.940 |
Presence of street furniture | −0.267* | −1.868 | −0.036 | −0.491 | 0.152 | 1.114 |
Presence of obstacle | 0.301* | 1.894 | 0.438 *** | 5.249 | 0.641 *** | 4.152 |
Presence of braille block | −0.111 | −1.355 | 0.095 ** | 2.096 | −0.011 | −0.125 |
Presence of street slope | −0.180 ** | −2.060 | −0.326 *** | −6.407 | −0.129 | −1.307 |
Presence of fence | 0.315 *** | 3.340 | 0.099 ** | 2.014 | 0.078 | 0.802 |
Presence of crosswalk | 0.298 *** | 3.221 | 0.147 *** | 3.093 | 0.255 ** | 2.811 |
Summary Statistics | ||||||
N | 608 | 1874 | 508 | |||
Adjusted R-square | 0.456 | 0.559 | 0.550 | |||
Robust LM lag/error | 14.6429 *** | 74.0529 *** | 21.4013 *** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, J.; Kim, S.-N.; Kim, H. The Impact of PM10 Levels on Pedestrian Volume: Findings from Streets in Seoul, South Korea. Int. J. Environ. Res. Public Health 2019, 16, 4833. https://doi.org/10.3390/ijerph16234833
Chung J, Kim S-N, Kim H. The Impact of PM10 Levels on Pedestrian Volume: Findings from Streets in Seoul, South Korea. International Journal of Environmental Research and Public Health. 2019; 16(23):4833. https://doi.org/10.3390/ijerph16234833
Chicago/Turabian StyleChung, Juwon, Seung-Nam Kim, and Hyungkyoo Kim. 2019. "The Impact of PM10 Levels on Pedestrian Volume: Findings from Streets in Seoul, South Korea" International Journal of Environmental Research and Public Health 16, no. 23: 4833. https://doi.org/10.3390/ijerph16234833
APA StyleChung, J., Kim, S. -N., & Kim, H. (2019). The Impact of PM10 Levels on Pedestrian Volume: Findings from Streets in Seoul, South Korea. International Journal of Environmental Research and Public Health, 16(23), 4833. https://doi.org/10.3390/ijerph16234833