Decoupling Analysis of Water Footprint and Economic Growth: A Case Study of Beijing–Tianjin–Hebei Region from 2004 to 2017
Abstract
:1. Introduction
2. Data Source and Methodology
2.1. Study Area
2.2. Data Source
2.3. Water Footprint Method
2.4. LMDI Model
2.5. Tapio Decoupling Elasticity Model
3. Results
3.1. Measurement of Water Footprint
3.2. Analysis of Driving Factors of Water Footprint
3.3. Decoupling Analysis of Water Footprint and Economic Growth
4. Discussion
5. Conclusions
- BTHR is suffering from a more serious water scarcity compared with the national average. Meanwhile, its water footprint is slowly increasing year by year, and the agricultural water footprint accounts for most of it. Additionally, the water utilization efficiency keeps improving, indicating less water is used to produce per unit of GDP, while the agricultural efficiency, mainly driven by water-saving irrigation technology, remains low level in the short term.
- The change of water footprint can be decomposed into efficiency effect, economic effect, and population effect. Specifically, the economic effect is the main driving factor for the increase in water footprint. On the contrary, population effect has small influence on the increase of water footprint, while water utilization efficiency proves to be the decisive factor for the decrease in water footprint.
- Water footprint and economic growth are in strong decoupling or weak decoupling, while the decoupling status between water footprint intensity and economic growth remains strong decoupling. Moreover, the decoupling status between population size and economic growth remains expansive coupling. Above decoupling states indicate that water utilization efficiency is improving.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Year | Agricultural Water Footprint | Industrial Water Footprint | Residential Water Footprint | Ecological Water Footprint | Virtual Water Import | Virtual Water Export | Total Water Footprint |
---|---|---|---|---|---|---|---|
2004 | 7.158 | 0.766 | 1.291 | 0.100 | 3.496 | 0.971 | 11.840 |
2005 | 6.960 | 0.680 | 1.393 | 0.110 | 3.880 | 1.265 | 11.758 |
2006 | 6.631 | 0.620 | 1.443 | 0.162 | 4.098 | 1.295 | 11.659 |
2007 | 6.213 | 0.575 | 1.460 | 0.272 | 3.975 | 1.350 | 11.145 |
2008 | 6.291 | 0.520 | 1.533 | 0.320 | 4.936 | 1.324 | 12.276 |
2009 | 6.345 | 0.520 | 1.533 | 0.360 | 3.324 | 0.966 | 11.116 |
2010 | 6.074 | 0.506 | 1.530 | 0.397 | 4.188 | 0.945 | 11.751 |
2011 | 6.101 | 0.500 | 1.630 | 0.450 | 4.739 | 0.846 | 12.573 |
2012 | 5.927 | 0.490 | 1.600 | 0.570 | 4.403 | 0.754 | 12.236 |
2013 | 5.590 | 0.512 | 1.625 | 0.592 | 4.239 | 0.729 | 11.829 |
2014 | 5.075 | 0.510 | 1.700 | 0.720 | 3.815 | 0.673 | 11.147 |
2015 | 4.784 | 0.380 | 1.750 | 1.040 | 2.737 | 0.565 | 10.126 |
2016 | 4.051 | 0.380 | 1.780 | 1.110 | 2.311 | 0.522 | 9.109 |
2017 | 3.490 | 0.350 | 1.830 | 1.270 | 2.525 | 0.557 | 8.908 |
Year | Agricultural Water Footprint | Industrial Water Footprint | Residential Water Footprint | Ecological Water Footprint | Virtual Water Import | Virtual Water Export | Total Water Footprint |
---|---|---|---|---|---|---|---|
2004 | 8.349 | 0.507 | 0.453 | 0.048 | 1.242 | 1.225 | 9.374 |
2005 | 8.743 | 0.451 | 0.454 | 0.045 | 1.271 | 1.341 | 9.622 |
2006 | 8.752 | 0.443 | 0.461 | 0.049 | 1.288 | 1.393 | 9.601 |
2007 | 7.465 | 0.420 | 0.482 | 0.051 | 1.160 | 1.326 | 8.252 |
2008 | 7.697 | 0.381 | 0.488 | 0.065 | 0.929 | 1.024 | 8.536 |
2009 | 7.893 | 0.435 | 0.509 | 0.109 | 0.721 | 0.637 | 9.030 |
2010 | 7.965 | 0.483 | 0.548 | 0.122 | 0.744 | 0.624 | 9.237 |
2011 | 8.111 | 0.500 | 0.540 | 0.110 | 0.775 | 0.586 | 9.451 |
2012 | 8.146 | 0.510 | 0.500 | 0.140 | 0.761 | 0.546 | 9.511 |
2013 | 8.240 | 0.537 | 0.505 | 0.090 | 0.823 | 0.507 | 9.688 |
2014 | 8.397 | 0.540 | 0.500 | 0.210 | 0.765 | 0.495 | 9.918 |
2015 | 8.346 | 0.530 | 0.490 | 0.290 | 0.611 | 0.495 | 9.772 |
2016 | 8.428 | 0.550 | 0.560 | 0.410 | 0.590 | 0.447 | 10.090 |
2017 | 7.658 | 0.550 | 0.610 | 0.520 | 0.694 | 0.444 | 9.588 |
Year | Agricultural Water Footprint | Industrial Water Footprint | Residential Water Footprint | Ecological Water Footprint | Virtual Water Import | Virtual Water Export | Total Water Footprint |
---|---|---|---|---|---|---|---|
2004 | 100.986 | 2.518 | 2.158 | 0.204 | 0.801 | 1.786 | 104.881 |
2005 | 106.544 | 2.566 | 2.368 | 0.222 | 0.858 | 1.822 | 110.735 |
2006 | 111.853 | 2.622 | 2.405 | 0.116 | 0.817 | 1.843 | 115.971 |
2007 | 103.196 | 2.497 | 2.391 | 0.203 | 0.990 | 1.977 | 107.300 |
2008 | 106.747 | 2.522 | 2.339 | 0.318 | 1.279 | 2.136 | 111.069 |
2009 | 103.357 | 2.371 | 2.339 | 0.270 | 1.084 | 1.206 | 108.216 |
2010 | 103.901 | 2.306 | 2.398 | 0.287 | 1.255 | 1.464 | 108.684 |
2011 | 108.101 | 2.570 | 2.610 | 0.360 | 1.309 | 1.495 | 113.454 |
2012 | 110.925 | 2.520 | 2.330 | 0.380 | 0.970 | 1.371 | 115.754 |
2013 | 112.612 | 2.523 | 2.377 | 0.465 | 1.012 | 1.310 | 117.679 |
2014 | 115.486 | 2.450 | 2.410 | 0.510 | 0.973 | 1.438 | 120.391 |
2015 | 116.355 | 2.250 | 2.440 | 0.500 | 0.725 | 1.289 | 120.981 |
2016 | 118.359 | 2.190 | 2.590 | 0.670 | 0.607 | 1.157 | 123.260 |
2017 | 109.525 | 2.030 | 2.700 | 0.820 | 0.665 | 1.130 | 114.610 |
References
- Degefu, D.M.; He, W.J.; Liao, Z.Y.; Yuan, L.; Huang, Z.W.; An, M. Mapping Monthly Water Scarcity in Global Transboundary Basins at Country-Basin Mesh Based Spatial Resolution. Sci. Rep. 2018, 8, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Degefu, D.M.; He, W.J.; Yuan, L.; Zhao, J.H. Water Allocation in Transboundary River Basins under Water Scarcity: A Cooperative Bargaining Approach. Water Resour. Manag. 2016, 30, 4451–4466. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, L.; Xie, G.; Zhang, C.; Li, S.; Yue, Q.; Cao, S.; He, T. An Evaluation of China’s Water Footprint. Water Resour. Manag. 2011, 25, 2633–2647. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Long, A. The Primary Study on Assessing Social Water Scarcity in China. Acta Geogr. Sin. 2004, 59, 982–988. [Google Scholar] [CrossRef]
- Lasserre, F. Alleviating water scarcity in Northern China: Balancing options and policies among Chinese decision-makers. Water Sci. Technol. 2003, 47, 153–159. [Google Scholar] [CrossRef]
- Hoekstra, A.Y. Virtual Water Trade: Proceeding of the International Expert Meeting on Virtual Water Trade; Value of Water Research Report Series No 12; UNESCO-IHE: Delft, The Netherlands, 12–13 December 2002; Available online: www.waterfootprint.org/Reports/Report 12.pdf (accessed on 15 September 2019).
- Sun, C.Z.; Xie, W.; Jiang, N.; Chen, L.X. The Spatial-Temporal Difference of Water Resources Utilization Relative Efficiency and Influence Factors in China. Econ. Geogr. 2010, 30, 1878–1884. [Google Scholar]
- Grigorievna, M.L.; Anatolievna, C.O.; Alexeevna, K.N.; Evgenievich, K.A. Assessment of water resources use efficiency based on the Russian Federation’s gross regional product water intensity indicator. Reg. Stat. 2018, 8, 154–169. [Google Scholar] [CrossRef]
- Hsieh, J.C.; Ma, L.H.; Chiu, Y.H. Assessing China’s Use Efficiency of Water Resources from the Resampling Super Data Envelopment Analysis Approach. Water 2019, 11, 69. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y.; Chapagain, A.K. Water footprints of nations: Water use by people as a function of their consumption pattern. Water Resour. Manag. 2007, 21, 35–48. [Google Scholar] [CrossRef]
- Chouchane, H.; Hoekstra, A.Y.; Krol, M.S.; Mekonnen, M.M. The water footprint of Tunisia from an economic perspective. Ecol. Indic. 2015, 52, 311–319. [Google Scholar] [CrossRef] [Green Version]
- Novoa, V.; Ahumada-Rudolph, R.; Rojas, O.; Munizag, J.; Saez, K.; Arumi, J.L. Sustainability assessment of the agricultural water footprint in the Cachapoal River basin, Chile. Ecol. Indic. 2019, 98, 19–28. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K.; van Oel, P.R. Progress in Water Footprint Assessment: Towards Collective Action in Water Governance. Water 2019, 11, 70. [Google Scholar] [CrossRef] [Green Version]
- Lombardi, G.V.; Stefani, G.; Paci, A.; Becagli, C.; Miliacca, M.; Gastaldi, M.; Giannetti, B.F.; Almeida, C. The sustainability of the Italian water sector: An empirical analysis by DEA. J. Clean. Prod. 2019, 227, 1035–1043. [Google Scholar] [CrossRef]
- Egilmez, G.; Park, Y.S. Transportation related carbon, energy and water footprint analysis of US manufacturing: An eco-efficiency assessment. Transp. Res. Part. D 2014, 32, 143–159. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Shen, J.Q.; He, W.J.; An, M. An Analysis of Water Utilization Efficiency of the Belt and Road Initiative’s Provinces and Municipalities in China Based on DEA-MalmquistTobit Model. J. Hohai Univ. 2018, 20, 60–66. [Google Scholar] [CrossRef]
- De Oliveira-De Jesus, P.M. Effect of generation capacity factors on carbon emission intensity of electricity of Latin America & the Caribbean, a temporal IDA-LMDI analysis. Renew. Sustain. Energy Rev. 2019, 101, 516–526. [Google Scholar] [CrossRef]
- Kim, S. LMDI Decomposition Analysis of Energy Consumption in the Korean Manufacturing Sector. Sustainability 2017, 9, 202. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, B.; Lopez, N.S.A.; Biona, J.B.M.; Chiu, A.S.F.; Blesl, M. Driving forces of Iran’s CO2 emissions from energy consumption: An LMDI decomposition approach. Appl. Energy 2017, 206, 804–814. [Google Scholar] [CrossRef]
- Zhang, Z.F.; He, W.J.; Shen, J.Q.; An, M.; Gao, X.; Degefu, D.M.; Yuan, L.; Kong, Y.; Zhang, C.C.; Huang, J. The Driving Forces of Point Source Wastewater Emission: Case Study of COD and NH4-N Discharges in Mainland China. Int. J. Environ. Res. Public Health 2019, 16, 2556. [Google Scholar] [CrossRef] [Green Version]
- Lei, H.J.; Xia, X.F.; Li, C.J.; Xi, B.D. Decomposition Analysis of Wastewater Pollutant Discharges in Industrial Sectors of China (2001–2009) Using the LMDI I Method. Int. J. Environ. Res. Public Health 2012, 9, 2226. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xu, J. Analysis on the Dynamic Evolution and Decomposition Effect of Industrial Water Consumption in Henan Province: Based on the LMDI Model Analysis. Econ. Geogr. 2018, 38, 185–192. [Google Scholar]
- Chen, K.; Guo, Y.; Liu, X.; Zhang, Z. Spatial-temporal Pattern and Driving Factors of Industrial Wastewater Discharge in the Yangtze River Economic Zone. Sci. Geogr. Sin. 2017, 37, 1668–1677. [Google Scholar]
- OECD. Environmental Indicators—Development, Measurement and Use; OECD: Paris, France, 2003; pp. 1–37. [Google Scholar]
- Vehmas, J.; LuuUanen, J.; Kaivo-Oja, J. Linking analyses and environmental Kuznets curves for aggregated material flows in the EU. J. Clean. Prod. 2007, 15, 1662–1673. [Google Scholar] [CrossRef]
- Enevoldsen, M.K.; Ryelund, A.V.; Andersen, M.S. Decoupling of industrial energy consumption and CO2-emissions in energy-intensive industries in Scandinavia. Energy Econ. 2007, 29, 665–692. [Google Scholar] [CrossRef]
- Tapio, P. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transp. Policy 2005, 12, 137–151. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yang, Q.S. Decoupling agricultural water consumption and environmental impact from crop production based on the water footprint method: A case study for the Heilongjiang land reclamation area, China. Ecol. Indic. 2014, 43, 29–35. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, R.; Li, R.R. Decoupling analysis of economic growth from water use in City: A case study of Beijing, Shanghai, and Guangzhou of China. Sustain. Cities Soc. 2018, 41, 86–94. [Google Scholar] [CrossRef]
- Li, N.; Zhang, J.Q.; Wang, L. Decoupling and water footprint analysis of the coordinated development between water utilization and the economy in urban agglomeration in the middle reaches of the Yangtze River. China Popul. Resour. Environ. 2017, 27, 202–208. [Google Scholar]
- Pan, A.E.; Chen, L. Decoupling and water footprint analysis of coordinated development between water utilization and the economy in Hubei. Resour. Sci. 2014, 36, 328–333. [Google Scholar]
- Wei, Y.; Yang, G.S. Decomposing the Decoupling Indicator Between Industrial Economic Growth and Carbon Emission for Low-carbon Pilot City—A Case of Zhenjiang City. Resour. Dev. Mark. 2018, 34, 28–35. [Google Scholar]
- He, Z.; Yang, Y.; Song, Z.; Liu, Y. The mutual evolution and driving factors of China’s energy consumption and economic growth. Geogr. Res. 2018, 37, 56–68. [Google Scholar]
- Li, J.; Liu, L.W. Research on energy and environment cost of household consumption in China. China Popul. Resour. Environ. 2017, 27, 31–39. [Google Scholar]
- National Bureau of Statistics of China. China Statistics Yearbook (2005–2018); China Statistical Press: Beijing, China, 2018.
- National Bureau of Statistics of China. China Water Resources Bulletin (2004–2017); China Water & Power Press: Beijing, China, 2017.
- Mekonnen, M.M.; Hoekstra, A.Y. Water footprint benchmarks for crop production: A first global assessment. Ecol. Indic. 2014, 46, 214–223. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, M.M.; Hoekstra, A.Y. A Global Assessment of the Water Footprint of Farm Animal Products. Ecosystems 2012, 15, 401–415. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.Z.; Chen, S.; Zhao, L.S. Spatial Correlation Pattern Analysis of Water Footprint Intensity Based on ESDA Model at Provincial Scale in China. J. Nat. Resour. 2013, 28, 571–582. [Google Scholar]
- Yu, H.Z.; Han, M. Spatial-temporal Analysis of Sustainable Water Resources Utilization in Shandong Province Based on Water Footprint. J. Nat. Resour. 2017, 32, 474–483. [Google Scholar] [CrossRef]
- Pan, W.; Cao, W.; Wang, F.; Chen, J.; Cao, D. Evaluation of Water Resource Utilization in the Jiulong River Basin Based on Water Footprint Theory. Resour. Sci. 2012, 34, 1905–1912. [Google Scholar] [CrossRef]
- Liu, M.S.; Liu, X.S.; Hou, L.G. Assessing water resources of Anhui Province based on water footprint theory. Resour. Environ. Yangtze Basin 2014, 23, 220–224. [Google Scholar]
- Deng, X.J.; Han, L.F.; Yang, M.N.; Yu, Z.H.; Zhang, Y. Comparative analysis of urban water footprint—A case study of Shanghai and Chongqing. Resour. Environ. Yangtze Basin 2014, 23, 185–195. [Google Scholar]
- Allan, J.A. Fortunately there are substitutes for water otherwise our futures would be impossible. In Priorities for Water Resources Allocation and Management; ODA: London, UK, 1993; pp. 13–26. [Google Scholar]
- Qi, R.; Geng, Y.; Zhu, Q.H. Evaluation of Regional Water Resources Utilization Based on Water Footprint Method. J. Nat. Resour. 2011, 26, 486–495. [Google Scholar] [CrossRef]
- Sun, C.Z.; Liu, Y.Y.; Chen, L.X.; Zhang, L. The spatial-temporal disparities of water footprints intensity based on Gini coefficient and Theil index in China. Acta Ecol. Sin. 2010, 30, 1312–1321. [Google Scholar]
- Chapagain, A.K.; Hoekstra, A.Y.; Savenije, H.H.G.; Gautam, R. The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries. Ecol. Econ. 2007, 60, 186–203. [Google Scholar] [CrossRef]
- Ang, B.W.; Liu, F.L. A new energy decomposition method: Perfect in decomposition and consistent in aggregation. Energy 2001, 26, 537–548. [Google Scholar] [CrossRef]
- Liu, B.W.; Zhang, X.; Yang, L. Decoupling efforts of regional industrial development on CO2 emissions in China based on LMDI analysis. China Popul. Resour. Environ. 2018, 28, 78–86. [Google Scholar]
- Pan, Z.W.; Xu, C.H. Decoupling Analysis of Water Resources Utilization and Economic Growth in China. J. South 2019, 18, 101–112. [Google Scholar] [CrossRef]
- Ratnasiri, S.; Wilson, C.; Athukorala, W.; Garcia-Valinas, M.A.; Torgler, B.; Gifford, R. Effectiveness of two pricing structures on urban water use and conservation: A quasi-experimental investigation. Environ. Econ. Policy Stud. 2018, 20, 547–560. [Google Scholar] [CrossRef]
- Chouchane, H.; Krol, M.S.; Hoekstra, A.Y. Virtual water trade patterns in relation to environmental and socioeconomic factors: A case study for Tunisia. Sci. Total Environ. 2018, 613, 287–297. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.S.; Sun, C.Z.; Zheng, D.F. A spatial econometric analysis of water footprint intensity convergence on a provincial scale in China. Acta Ecol. Sin. 2014, 34, 1085–1093. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.D.; Tang, Y.; Liu, J.G.; Tillotson, M.R. Water footprint of Jing-Jin-Ji urban agglomeration in China. J. Clean Prod. 2017, 167, 919–928. [Google Scholar] [CrossRef]
- Hussain, M.I.; Muscolo, A.; Farooq, M.; Ahmad, W. Sustainable use and management of non-conventional water resources for rehabilitation of marginal lands in arid and semiarid environments. Agric. Water Manag. 2019, 221, 462–476. [Google Scholar] [CrossRef]
- Russell, S.V.; Knoeri, C. Exploring the psychosocial and behavioural determinants of household water conservation and intention. Int. J. Water Resour. Dev. 2019, 16. [Google Scholar] [CrossRef] [Green Version]
- Donoso, G. Urban water pricing in Chile: Cost recovery, affordability, and water conservation. Wiley Interdiscip. Rev. Water 2017, 4, 10. [Google Scholar] [CrossRef]
- Yuan, L.; He, W.; Liao, Z.; Degefu, D.M.; An, M.; Zhang, Z.; Wu, X. Allocating Water in the Mekong River Basin during the Dry Season. Water 2019, 11, 400. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.H.; Tang, N.; He, J.H. The Threshold Effect of Environmental Regulation, FDI Agglomeration, and Water Utilization Efficiency under “Double Control Actions”-An Empirical Test Based on Yangtze River Economic Belt. Water 2019, 11, 452. [Google Scholar] [CrossRef] [Green Version]
- Oki, T.; Yano, S.; Hanasaki, N. Economic aspects of virtual water trade. Environ. Res. Lett. 2017, 12, 6. [Google Scholar] [CrossRef]
- Mayer, A.; Mubako, S.; Ruddell, B.L. Developing the greatest Blue Economy: Water productivity, fresh water depletion, and virtual water trade in the Great Lakes basin. Earth Future 2016, 4, 282–297. [Google Scholar] [CrossRef] [Green Version]
Product | Virtual Water Content |
---|---|
Grain | 1.13 |
Cotton | 4.4 |
Oil plants | 3.967 |
Vegetables | 0.1 |
Fruit | 0.82 |
Pork | 2.21 |
Beef | 12.56 |
Mutton | 5.202 |
Poultry | 3.652 |
Dairy | 1.9 |
Eggs | 3.55 |
Freshwater aquatic products | 5 |
Index Meaning | Formulas |
---|---|
Per capita water footprint (PWFP) represents the per capita consumption of water resource. The larger this index is, the more per capita water consumption is. (P refers to the population) | Equation (4) |
Water import dependency (WD) is defined as the ratio of external water footprint and total water footprint. The larger this index is, the more virtual water import is. | Equation (5) |
Water self-sufficiency (WSS) is represented as the ratio of internal water footprint to total water footprint. The larger this index is, the more internal water resources are used. | Equation (6) |
Water scarcity (WS) measures the degree of regional water shortage. The higher this index is, the more serious the local water shortage is. (WA refers to the available water resources) | Equation (7) |
Water footprint intensity (WFI) refers to the amount of regional water resources consumed per unit of GDP. The larger this index is, the lower the water utilization efficiency is. | Equation (8) |
Decoupling Type | ∆EP | ∆DP | X | Decoupling State |
---|---|---|---|---|
Negative decoupling | Expansive negative decoupling | |||
Strong negative decoupling | ||||
Weak negative decoupling | ||||
Decoupling | Weak decoupling | |||
Strong decoupling | ||||
Recessive decoupling | ||||
Coupling | Expansive coupling | |||
Recessive coupling |
Year | Agricultural Water Footprint | Industrial Water Footprint | Residential Water Footprint | Ecological Water Footprint | Virtual Water Import | Virtual Water Export | Total Water Footprint | Internal Water Footprint | External Water Footprint |
---|---|---|---|---|---|---|---|---|---|
2004 | 116.494 | 3.791 | 3.902 | 0.352 | 5.538 | 3.982 | 126.095 | 120.557 | 5.538 |
2005 | 122.246 | 3.697 | 4.215 | 0.377 | 6.009 | 4.429 | 132.116 | 126.107 | 6.009 |
2006 | 127.236 | 3.685 | 4.309 | 0.327 | 6.203 | 4.530 | 137.231 | 131.028 | 6.203 |
2007 | 116.873 | 3.492 | 4.333 | 0.526 | 6.125 | 4.653 | 126.696 | 120.571 | 6.125 |
2008 | 120.734 | 3.423 | 4.360 | 0.703 | 7.145 | 4.484 | 131.881 | 124.736 | 7.145 |
2009 | 117.595 | 3.326 | 4.381 | 0.739 | 5.129 | 2.808 | 128.363 | 123.234 | 5.129 |
2010 | 117.941 | 3.295 | 4.476 | 0.806 | 6.187 | 3.033 | 129.672 | 123.485 | 6.187 |
2011 | 122.313 | 3.570 | 4.780 | 0.920 | 6.823 | 2.927 | 135.479 | 128.656 | 6.823 |
2012 | 124.998 | 3.520 | 4.430 | 1.090 | 6.134 | 2.671 | 137.500 | 131.366 | 6.134 |
2013 | 126.442 | 3.572 | 4.508 | 1.147 | 6.074 | 2.546 | 139.195 | 133.121 | 6.074 |
2014 | 128.958 | 3.500 | 4.610 | 1.440 | 5.554 | 2.606 | 141.456 | 135.902 | 5.554 |
2015 | 129.485 | 3.160 | 4.680 | 1.830 | 4.074 | 2.349 | 140.879 | 136.805 | 4.074 |
2016 | 130.838 | 3.120 | 4.930 | 2.190 | 3.507 | 2.126 | 142.459 | 138.952 | 3.507 |
2017 | 120.673 | 2.930 | 5.140 | 2.610 | 3.884 | 2.131 | 133.106 | 129.222 | 3.884 |
Year | Per capita Water Footprint (m3/person) | Water Import Dependency (%) | Water Self-sufficiency (%) | Water Scarcity (%) | Water Footprint Intensity (m3/CNY) |
---|---|---|---|---|---|
2004 | 1352.08 | 4.39% | 95.61% | 1660.89 | 0.09 |
2005 | 1400.72 | 4.55% | 95.45% | 1961.34 | 0.08 |
2006 | 1433.37 | 4.52% | 95.48% | 2459.33 | 0.07 |
2007 | 1301.58 | 4.83% | 95.17% | 2044.81 | 0.06 |
2008 | 1327.30 | 5.42% | 94.58% | 1544.27 | 0.06 |
2009 | 1267.46 | 4.00% | 96.00% | 1799.84 | 0.05 |
2010 | 1240.29 | 4.77% | 95.23% | 1893.58 | 0.04 |
2011 | 1276.29 | 5.04% | 94.96% | 1698.58 | 0.04 |
2012 | 1276.70 | 4.46% | 95.54% | 1116.44 | 0.04 |
2013 | 1273.25 | 4.36% | 95.64% | 1614.41 | 0.04 |
2014 | 1278.11 | 3.93% | 96.07% | 2561.08 | 0.03 |
2015 | 1264.29 | 2.89% | 97.11% | 2016.02 | 0.03 |
2016 | 1269.73 | 2.46% | 97.54% | 1356.01 | 0.03 |
2017 | 1273.77 | 2.92% | 97.08% | 1977.69 | 0.03 |
Year | Agricultural Water Footprint | Industrial Water Footprint | Residential Water Footprint | Ecological Water Footprint | Virtual Water Import | Virtual Water Export |
---|---|---|---|---|---|---|
2004 | 92.39% | 3.01% | 3.09% | 0.28% | 4.39% | 3.16% |
2005 | 92.53% | 2.80% | 3.19% | 0.29% | 4.55% | 3.35% |
2006 | 92.72% | 2.69% | 3.14% | 0.24% | 4.52% | 3.30% |
2007 | 92.25% | 2.76% | 3.42% | 0.42% | 4.83% | 3.67% |
2008 | 91.55% | 2.60% | 3.31% | 0.53% | 5.42% | 3.40% |
2009 | 91.61% | 2.59% | 3.41% | 0.58% | 4.00% | 2.19% |
2010 | 90.95% | 2.54% | 3.45% | 0.62% | 4.77% | 2.34% |
2011 | 90.28% | 2.64% | 3.53% | 0.68% | 5.04% | 2.16% |
2012 | 90.91% | 2.56% | 3.22% | 0.79% | 4.46% | 1.94% |
2013 | 90.84% | 2.57% | 3.24% | 0.82% | 4.36% | 1.83% |
2014 | 91.16% | 2.47% | 3.26% | 1.02% | 3.93% | 1.84% |
2015 | 91.91% | 2.24% | 3.32% | 1.30% | 2.89% | 1.67% |
2016 | 91.84% | 2.19% | 3.46% | 1.54% | 2.46% | 1.49% |
2017 | 90.66% | 2.20% | 3.86% | 1.96% | 2.92% | 1.60% |
Year | WF Change | |||
---|---|---|---|---|
Efficiency Effect | Economic Effect | Population Effect | Total Effect | |
2004–2005 | −10.152 | 14.985 | 1.188 | 6.020 |
2005–2006 | −11.848 | 15.428 | 1.535 | 5.115 |
2006–2007 | −26.658 | 14.551 | 1.573 | −10.534 |
2007–2008 | −7.610 | 10.982 | 1.813 | 5.184 |
2008–2009 | −16.510 | 11.266 | 1.656 | −3.588 |
2009–2010 | −13.686 | 11.504 | 3.562 | 1.380 |
2010–2011 | −8.449 | 12.789 | 1.466 | 5.806 |
2011–2012 | −10.629 | 11.209 | 1.442 | 2.022 |
2012–2013 | −9.673 | 9.840 | 1.372 | 1.539 |
2013–2014 | −6.993 | 7.909 | 1.314 | 2.230 |
2014–2015 | −9.906 | 8.564 | 0.953 | −0.39 |
2015–2016 | −8.129 | 8.681 | 0.842 | 1.394 |
2016–2017 | −7.804 | 8.067 | 0.728 | 0.991 |
Sum | −148.048 | 145.772 | 19.444 | 17.168 |
Period | Beijing | Tianjin | Hebei | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Efficiency Effect | Economic Effect | Population Effect | Total Effect | Efficiency Effect | Economic Effect | Population Effect | Total Effect | Efficiency Effect | Economic Effect | Population Effect | Total Effect | |
2004–2005 | −1.399 | 0.966 | 0.350 | −0.083 | −1.054 | 1.128 | 0.175 | 0.248 | −7.699 | 12.891 | 0.663 | 5.855 |
2005–2006 | −1.509 | 0.940 | 0.470 | −0.099 | −1.323 | 1.011 | 0.290 | −0.021 | −9.016 | 13.477 | 0.775 | 5.235 |
2006–2007 | −1.938 | 0.902 | 0.522 | −0.514 | −2.610 | 0.935 | 0.325 | −1.349 | −22.110 | 12.714 | 0.726 | −8.671 |
2007–2008 | 0.123 | 0.363 | 0.645 | 1.132 | −0.998 | 0.835 | 0.447 | 0.284 | −6.735 | 9.784 | 0.721 | 3.769 |
2008–2009 | −2.295 | 0.562 | 0.573 | −1.160 | −0.846 | 0.961 | 0.380 | 0.495 | −13.368 | 9.743 | 0.703 | −2.922 |
2009–2010 | −0.486 | 0.510 | 0.610 | 0.635 | −1.258 | 0.952 | 0.513 | 0.207 | −11.942 | 10.042 | 2.438 | 0.538 |
2010–2011 | −0.124 | 0.599 | 0.348 | 0.823 | −1.206 | 1.025 | 0.394 | 0.213 | −7.119 | 11.166 | 0.723 | 4.770 |
2011–2012 | −1.258 | 0.617 | 0.303 | −0.338 | −1.166 | 0.828 | 0.397 | 0.060 | −8.205 | 9.764 | 0.741 | 2.300 |
2012–2013 | −1.299 | 0.628 | 0.265 | −0.407 | −1.101 | 0.732 | 0.389 | 0.021 | −7.274 | 8.480 | 0.718 | 1.925 |
2013–2014 | −1.491 | 0.610 | 0.199 | −0.682 | −0.718 | 0.628 | 0.290 | 0.200 | −4.783 | 6.671 | 0.825 | 2.713 |
2014–2015 | −1.730 | 0.616 | 0.093 | −1.021 | −0.826 | 0.677 | 0.191 | 0.041 | −7.349 | 7.271 | 0.668 | 0.590 |
2015–2016 | −1.646 | 0.623 | 0.009 | −1.015 | −0.727 | 0.762 | 0.095 | 0.130 | −5.756 | 7.296 | 0.738 | 2.278 |
2016–2017 | 10.245 | 0.925 | −0.015 | 11.156 | 0.804 | 0.408 | −0.034 | 1.179 | −18.854 | 6.733 | 0.776 | −11.344 |
Sum | −4.807 | 8.860 | 4.374 | 8.426 | −13.028 | 10.881 | 3.854 | 1.708 | −130.212 | 126.030 | 11.216 | 7.035 |
Year | Decoupling Elasticity of WFI (Water Footprint Intensity) and GDP | Decoupling Status | Decoupling Elasticity of PS (Population Size) and GDP | Decoupling Status | Decoupling Elasticity of WF (Water Footprint) and GDP | Decoupling Status |
---|---|---|---|---|---|---|
2004–2005 | −0.56411 | Strong decoupling | 1.00042 | Expansive coupling | 0.36136 | Weak decoupling |
2005–2006 | −0.62775 | Strong decoupling | 1.00105 | Expansive coupling | 0.287808 | Weak decoupling |
2006–2007 | −1.3867 | Strong decoupling | 0.99701 | Expansive coupling | −0.5726 | Strong decoupling |
2007–2008 | −0.56787 | Strong decoupling | 0.99683 | Expansive coupling | 0.36919 | Weak decoupling |
2008–2009 | −1.11147 | Strong decoupling | 1.00031 | Expansive coupling | −0.23834 | Strong decoupling |
2009–2010 | −0.81198 | Strong decoupling | 0.99955 | Expansive coupling | 0.083724 | Weak decoupling |
2010–2011 | −0.55138 | Strong decoupling | 0.99878 | Expansive coupling | 0.384389 | Weak decoupling |
2011–2012 | −0.77425 | Strong decoupling | 0.99778 | Expansive coupling | 0.147319 | Weak decoupling |
2012–2013 | −0.80404 | Strong decoupling | 1.00118 | Expansive coupling | 0.122505 | Weak decoupling |
2013–2014 | −0.73278 | Strong decoupling | 1.00276 | Expansive coupling | 0.211706 | Weak decoupling |
2014–2015 | −0.96484 | Strong decoupling | 0.99775 | Expansive coupling | −0.03693 | Strong decoupling |
2015–2016 | −0.80668 | Strong decoupling | 0.99762 | Expansive coupling | 0.133597 | Weak decoupling |
2016–2017 | −0.83219 | Strong decoupling | 1.00138 | Expansive coupling | 0.119194 | Weak decoupling |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, Y.; He, W.; Yuan, L.; Shen, J.; An, M.; Degefu, D.M.; Gao, X.; Zhang, Z.; Sun, F.; Wan, Z. Decoupling Analysis of Water Footprint and Economic Growth: A Case Study of Beijing–Tianjin–Hebei Region from 2004 to 2017. Int. J. Environ. Res. Public Health 2019, 16, 4873. https://doi.org/10.3390/ijerph16234873
Kong Y, He W, Yuan L, Shen J, An M, Degefu DM, Gao X, Zhang Z, Sun F, Wan Z. Decoupling Analysis of Water Footprint and Economic Growth: A Case Study of Beijing–Tianjin–Hebei Region from 2004 to 2017. International Journal of Environmental Research and Public Health. 2019; 16(23):4873. https://doi.org/10.3390/ijerph16234873
Chicago/Turabian StyleKong, Yang, Weijun He, Liang Yuan, Juqin Shen, Min An, Dagmawi Mulugeta Degefu, Xin Gao, Zhaofang Zhang, Fuhua Sun, and Zhongchi Wan. 2019. "Decoupling Analysis of Water Footprint and Economic Growth: A Case Study of Beijing–Tianjin–Hebei Region from 2004 to 2017" International Journal of Environmental Research and Public Health 16, no. 23: 4873. https://doi.org/10.3390/ijerph16234873
APA StyleKong, Y., He, W., Yuan, L., Shen, J., An, M., Degefu, D. M., Gao, X., Zhang, Z., Sun, F., & Wan, Z. (2019). Decoupling Analysis of Water Footprint and Economic Growth: A Case Study of Beijing–Tianjin–Hebei Region from 2004 to 2017. International Journal of Environmental Research and Public Health, 16(23), 4873. https://doi.org/10.3390/ijerph16234873