Effects of Weight Loss on FGF-21 in Human Subjects: An Exploratory Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Methods
2.2. Weight and Height
2.3. Laboratory Analysis
2.4. Ethics
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Owen, B.M.; Mangelsdorf, D.J.; Kliewer, S.A. Tissue-specifc actions of the metabolic hormones FGF15/19 and FGF21. Trends Endocrinol. Metab. 2015, 26, 22–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angelin, B.; Larsson, T.E.; Rudling, M. Circulating fibroblast growth factors as metabolic regulators—A cricitcal apprasial. Cell Metab. 2012, 16, 693–705. [Google Scholar] [PubMed] [Green Version]
- Fisher, F.M.; Chiu, P.C.; Antonellis, P.J.; Bina, H.A.; Kharitonenkov, A.; Flier, J.S.; Maratos-Flier, E. Obesity Is a Fibroblast Growth Factor 21 (FGF21)-Resistant State. Diabetes 2010, 59, 2781–2789. [Google Scholar]
- Badman, M.K.; Pissios, P.; Kennedy, A.R.; Koukos, G.; Flier, J.S.; Maratos-Flier, E. Hepatic fibroblast growth factor 21 is regulated by PPAR-alpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 2007, 5, 426–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inagaki, T.; Dutchak, P.; Zhao, G.; Ding, X.; Gautron, L.; Parameswara, V.; Li, Y.; Goetz, R.; Mohammadi, M.; Esser, V.; et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 2007, 5, 415–425. [Google Scholar] [CrossRef] [Green Version]
- Lundasen, T.; Hunt, M.C.; Nilsson, L.M.; Sanyal, S.; Angelin, B.; Alexson, S.E.; Rudling, M. PPAR-alpha is a key regulator of hepatic FGF21. Biochem. Biophys. Res. Commun. 2007, 360, 437–440. [Google Scholar]
- Kliewer, S.A.; Mangelsdorf, D.J. Fibroblast growth factor 21: From pharmacology to physiology. Am. J. Clin. Nutr. 2010, 91, 254S–257S. [Google Scholar] [CrossRef] [Green Version]
- Lips, M.A.; de Groot, G.H.; Berends, F.J.; Wiezer, R.; van Wagensveld, B.A.; Swank, D.J.; Luijten, A.; van Dijk, K.W.; Pijl, H.; Jansen, P.L.; et al. Calorie restriction and Roux-en-Y gastric bypass have opposing effects on circulating FGF21 in morbidly obese subjects. Clin. Endocrinol. 2014, 81, 862–870. [Google Scholar]
- Mai, K.; Schwarz, F.; Bobbert, T.; Andres, J.; Assmann, A.; Pfeiffer, A.F.H.; Spranger, J. Relation between fibroblast growth factor-21, adiposity, metabolism, and weight reduction. Metab. Clin. Exp. 2011, 60, 306–311. [Google Scholar]
- Haluzikova, D.; Lacinova, Z.; Kavalkova, P.; Drapalova, J.; Krizova, J.; Bartlova, M.; Mraz, M.; Petr, T.; Vitek, L.; Kasalicky, M.; et al. Laparoscopic sleeve gastrectomy differentially affects serum concentrations of FGF-19 and FGF-21 in morbidly obese subjects. Obesity (Silver Spring) 2013, 21, 1335–1342. [Google Scholar] [CrossRef]
- Jansen, P.L.; van Werven, J.; Aarts, E.; Berends, F.; Janssen, I.; Stoker, J.; Schaap, F.G. Alterations of hormonally active fibrobalst growth factors after Roux-en Y gastric bypass surgery. Dig. Dis. 2011, 29, 48–51. [Google Scholar] [PubMed]
- Woelnerhanssen, B.; Peterli, R.; Steinert, R.E.; Peters, T.; Borbely, Y.; Beglinger, C. Effects of postbariatic surgery weight loss on adipokines and metabolic parameters: Comparison of laparoscopic Roux-en Y gastric bypass and laparoscopic sleeve gastrectomy—A prospectice randomized trial. Surg. Obes. Relat. Dis. 2011, 7, 561–568. [Google Scholar] [PubMed]
- Headland, M.L.; Clifton, P.M.; Keogh, J.B. Effect of intermittent compared to continuous energy restriction on weight loss and weight maintenance after 12 months in healthy overweight or obese adults. Int. J. Obes. 2019, 43, 2028–2036. [Google Scholar]
- Christodoulides, C.; Dyson, P.; Sprecher, D.; Tsintzas, K.; Karpe, F. Circulating FGF21 is induced by PRAR agonists but not ketosis in man. J. Clin. Endocrinol. Metab. 2009, 94, 3594–3601. [Google Scholar]
- Gomez-Ambrosi, J.; Gallego-Escuredo, J.M.; Catalan, V.; Rodriguez, A.; Domingo, P.; Moncada, R.; Valenti, V.; Salvador, J.; Giralt, M.; Villarroya, F.; et al. FGF19 and FGF21 serum concentrations in human obesity and type 2 diabetes behave differently after diet- or surgically-induced weight loss. Clin. Nutr. 2017, 36, 861–868. [Google Scholar]
- Sanyal, A.; Charles, E.D.; Neuschwander-Tetri, B.A.; Loomba, R.; Harrison, S.A.; Abdelmalek, M.F.; Lawitz, E.J.; Halegoua-DeMarzio, D.; Kundu, S.; Noviello, S.; et al. Pegbelfermin (BMS-986036), a PEGylated fibroblast growth factor 21 analogue, in patients with non-alcoholic steatohepatitis: A randomised, double-blind, placebo-controlled, phase 2a trial. Lancet 2018, 392, 2705–2717. [Google Scholar]
- Potthoff, M.J.; Inagaki, T.; Satapati, S.; Ding, X.; He, T.; Goetz, R.; Mohammadi, M.; Finck, B.N.; Mangelsdorf, D.J.; Kliewer, S.A.; et al. FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc. Natl. Acad. Sci. USA 2009, 106, 10853–10858. [Google Scholar] [CrossRef] [Green Version]
- Galman, C.; Lundasen, T.; Kharitonenkov, A.; Bina, H.A.; Eriksson, M.; Hafstrom, I.; Dahlin, M.; Amark, P.; Angelin, B.; Rudling, M. The circulating metabolic regulator FGF-21 is induced by prolonged fasting and PPARalpha activation in man. Cell Metab. 2008, 8, 169–174. [Google Scholar]
- Burgess, S.C.; Leone, T.C.; Wende, A.R.; Croce, M.A.; Chen, Z.; Sherry, A.D.; Malloy, C.R.; Finck, B.N. Diminished hepatic gluconeogenesis via defects in tricarboxylic acid cycle flux in peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) deficient mice. J. Biol. Chem. 2006, 281, 19000–19008. [Google Scholar]
- Yoon, J.C.; Puigserver, P.; Chen, G.; Donovan, J.; Wu, Z.; Rhee, J.; Adelmant, G.; Staffor, J.; Kahn, C.R.; Grannfer, D.K.; et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 2001, 413, 131–138. [Google Scholar]
- Rhee, J.; Inoue, Y.; Yoon, J.C.; Puigserver, P.; Fan, M.; Gonzalez, F.J.; Spiegelman, B.M. Regulation of hepatic fasting response by PPARgamma conactivator 1 alpha (PGC-1): Requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis. Proc. Natl. Acad. Sci. USA 2003, 100, 4012–4017. [Google Scholar] [PubMed] [Green Version]
- Kharitonenkov, A.; Shanafelt, A.B. Fibroblast growth factor-21 as a therapeutic agent for metabolic diseases. BioDrugs 2008, 22, 37–44. [Google Scholar] [PubMed]
- Mraz, M.; Bartlova, M.; Lacinova, Z.; Michalsky, D.; Kasalicky, M.; Haluzikova, D.; Matoulek, M.; Dostalova, I.; Humenanska, V.; Haluzik, M. Serum concentrations and tissue expression of a novel endocrine regulator fibroblast growth factor-21 in patients with type 2 diabetes and obesity. Clin. Endocrinol. 2009, 71, 369–375. [Google Scholar]
Characteristic | Whole Cohort (n = 43) | CER (n = 23) | WOWO (n = 20) |
---|---|---|---|
Age | 53.3 ± 9.9 | 53.7 ± 7.7 | 52.9 ± 12.2 |
Sex, n (%) | |||
Male | 11 (25.6) | 6 (26) | 5 (15) |
Female | 32 (74.4) | 17 (74) | 15 (75) |
Weight, kg | 90.1 ± 13.9 | 86.8 ± 11.7 | 93.9 ± 15.6 |
BMI, kg/m2 | 32.3 ± 3.7 | 31.4 ± 2.9 | 33.2 ± 4.3* |
FGF-21 (ng/mL) | 0.8 ± 1.1 | 1.0 ± 1.4 | 0.5 ± 0.8 |
CER | WOWO | Change | |||||||
---|---|---|---|---|---|---|---|---|---|
Baseline | 12 Months | p | Baseline | 12 Months | p | CER | WOWO | p | |
Weight, kg | 86.8 ± 11.7 | 80.9 ± 11.6 | <0.01 | 93.9 ± 15.6 | 89.0 ± 16.0 | <0.01 | −5.9± 4.5 | −4.9± 3.4 | 0.5 |
BMI, kg/m2 | 31.4 ± 2.9 | 29.3 ± 3.0 | <0.01 | 33.2 ± 4.3 | 31.5 ± 4.7 | <0.01 | −2.1 ± 1.6 | −1.7± 1.2 | 0.4 |
FGF-21, ng/mL | 1.0 ± 1.4 | 1.3 ± 1.9 | 0.09 | 0.5 ± 0.8 | 0.6 ± 0.9 | 0.24 | 0.3 ± 0.9 | 0.04 ± 0.2 | 0.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Headland, M.L.; Clifton, P.M.; Keogh, J.B. Effects of Weight Loss on FGF-21 in Human Subjects: An Exploratory Study. Int. J. Environ. Res. Public Health 2019, 16, 4877. https://doi.org/10.3390/ijerph16234877
Headland ML, Clifton PM, Keogh JB. Effects of Weight Loss on FGF-21 in Human Subjects: An Exploratory Study. International Journal of Environmental Research and Public Health. 2019; 16(23):4877. https://doi.org/10.3390/ijerph16234877
Chicago/Turabian StyleHeadland, Michelle L., Peter M. Clifton, and Jennifer B. Keogh. 2019. "Effects of Weight Loss on FGF-21 in Human Subjects: An Exploratory Study" International Journal of Environmental Research and Public Health 16, no. 23: 4877. https://doi.org/10.3390/ijerph16234877
APA StyleHeadland, M. L., Clifton, P. M., & Keogh, J. B. (2019). Effects of Weight Loss on FGF-21 in Human Subjects: An Exploratory Study. International Journal of Environmental Research and Public Health, 16(23), 4877. https://doi.org/10.3390/ijerph16234877