Estimation of Time-Course Core Temperature and Water Loss in Realistic Adult and Child Models with Urban Micrometeorology Prediction
Abstract
:1. Introduction
2. Building-Resolving Urban Micrometeorology Simulation
3. Thermal and Electromagnetic Analysis in Humans
3.1. Anatomical Human Model
3.2. Thermal Analysis
3.2.1. Bioheat Equation
3.2.2. Blood Temperature Computation
3.2.3. Modeling of Thermoregulatory Response
3.3. Electromagnetic Analysis
4. Computational Results
4.1. Microscale Environment Simulation
4.2. Human Thermoregulation Simulation
5. Discussion
5.1. Atmospheric Temperature
5.2. Comparison of Temperature Elevation and Water Loss for the Sunny and Shaded Sides in Adult and Child
5.3. Numerical Uncertainly and Limitation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fire and Disaster Management Agency Number of Heat Stroke Patients. Available online: http://www.fdma.go.jp/neuter/topics/fieldList9_2.html (accessed on 10 February 2019).
- United Nations Department of Economic and Social. World Population Prospects: The 2017 Revision. Volume I: Comprehensive tables; United Nations Publications: New York, NY, USA, 2017. [Google Scholar]
- Budd, G.M.M. Wet-bulb globe temperature (WBGT)—Its history and its limitations. J. Sci. Med. Sport 2008, 11, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Casanueva, A.; Burgstall, A.; Kotlarski, S.; Messeri, A.; Morabito, M.; Flouris, A.D.; Nybo, L.; Spirig, C.; Schwierz, C. Overview of existing heat-health warning systems in Europe. Int. J. Environ. Res. Public Health 2019, 16, 2657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ACGIH. Heat Stress and Strain; American Conference of Governmental Industrial Hygienists: Cincinnati, OH, USA, 2017. [Google Scholar]
- Matzarakis, A.; Georgiadis, T.; Rossi, F. Thermal bioclimate analysis for Europe and Italy. Nuovo Cimento C 2007, 30, 623–632. [Google Scholar]
- Wong, P.P.-Y.; Lai, P.-C.; Low, C.-T.; Chen, S.; Hart, M. The impact of environmental and human factors on urban heat and microclimate variability. Build. Environ. 2016, 95, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.; Asawa, T.; Kawai, H.; Sato, R.; Hirayama, Y.; Ohta, I. Multipoint measurement method for air temperature in outdoor spaces and application to microclimate and passive cooling studies for a house. Build. Environ. 2017, 114, 267–280. [Google Scholar] [CrossRef]
- Toparlar, Y.; Blocken, B.; Vos, P.; van Heijst, G.J.F.; Janssen, W.D.; van Hooff, T.; Montazeri, H.; Timmermans, H.J.P. CFD simulation and validation of urban microclimate: A case study for Bergpolder Zuid, Rotterdam. Build. Environ. 2015, 83, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Toparlar, Y.; Blocken, B.; Maiheu, B.; van Heijst, G.J.F. A review on the CFD analysis of urban microclimate. Renew. Sustain. Energy Rev. 2017, 80, 1613–1640. [Google Scholar] [CrossRef]
- Jokinen, E.; Välimäki, I.; Antila, K.; Seppänen, A.; Tuominen, J. Children in Sauna: Cardiovascular Adjustment. Pediatrics 1990, 86, 282–288. [Google Scholar]
- Deng, Q.; Zhao, J.; Liu, W.; Li, Y. Heatstroke at home: Prediction by thermoregulation modeling. Build. Environ. 2018, 137, 147–156. [Google Scholar] [CrossRef]
- Katić, K.; Li, R.; Zeiler, W. Thermophysiological models and their applications: A review. Build. Environ. 2016, 106, 286–300. [Google Scholar] [CrossRef] [Green Version]
- Davoodi, F.; Hassanzadeh, H.; Zolfaghari, S.A.; Havenith, G.; Maerefat, M. A new individualized thermoregulatory bio-heat model for evaluating the effects of personal characteristics on human body thermal response. Build. Environ. 2018, 136, 62–76. [Google Scholar] [CrossRef] [Green Version]
- Hanatani, R.; Laakso, I.; Hirata, A.; Kojima, M.; Sasaki, H. Dominant factors affecting temperature elevation in adult and child models exposed to solar radiation in hot environment. Prog. Electromagn. Res. 2011, 34, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Kojima, K.; Hirata, A.; Hasegawa, K.; Kodera, S.S.; Laakso, I.I.; Sasaki, D.; Yamashita, T.; Egawa, R.; Horie, Y.; Yazaki, N.; et al. Risk management of heatstroke based on fast computation of temperature and water loss using weather data for exposure to ambient heat and solar radiation. IEEE Access 2018, 6, 3774–3785. [Google Scholar] [CrossRef]
- Matsuda, K.; Onishi, R.; Takahashi, K. Tree-crown-resolving large-eddy simulation coupled with three-dimensional radiative transfer model. J. Wind Eng. Ind. Aerodyn. 2018, 173, 53–66. [Google Scholar] [CrossRef]
- Hirata, A.; Nomura, T.; Laakso, I. Computational estimation of body temperature and sweating in the aged during passive heat exposure. Int. J. Therm. Sci. 2015, 89, 154–163. [Google Scholar] [CrossRef]
- Hirata, A.; Hasegawa, K.; Kodera, S.; Laakso, I.; Egawa, R.; Horie, Y.; Yazaki, N.; Taguchi, K.; Kashiwa, T. Risk evaluation of heat stroke with multiphysics computation and its application. IEEJ Trans. Fundam. Mater. 2018, 138, 288–294. [Google Scholar] [CrossRef]
- Kamiya, T.; Kodera, S.; Hasegawa, K.; Egawa, R.; Sasaki, H.; Hirata, A. Different thermoregulatory responses of people from tropical and temperate zones: A computational study. Build. Environ. 2019, 159, 106152. [Google Scholar] [CrossRef]
- Takahashi, K.; Onishi, R.; Baba, Y.; Kida, S.; Matsuda, K.; Goto, K.; Fuchigami, H. Challenge toward the prediction of typhoon behaviour and down pour. J. Phys. Conf. Ser. 2013, 454, 012072. [Google Scholar] [CrossRef] [Green Version]
- Onishi, R.; Takahashi, K. A warm-bin-cold-bulk hybrid cloud microphysical model. J. Atmos. Sci. 2012, 69, 1474–1497. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, W.; Onishi, R.; Fuchigami, H.; Goto, K.; Nishikawa, S.; Ishikawa, Y.; Takahashi, K. MJO simulation in a cloud-system-resolving global ocean-atmosphere coupled model. Geophys. Res. Lett. 2016, 43, 9352–9360. [Google Scholar] [CrossRef] [Green Version]
- Volume Data Visualizer for Google Earth (VDVGE). Available online: http://www.jamstec.go.jp/ceist/aeird/avcrg/vdvge.en.html (accessed on 9 December 2019).
- Nagaoka, T.; Watanabe, S.; Sakurai, K.; Kunieda, E.; Watanabe, S.; Taki, M.; Yamanaka, Y. Development of realistic high-resolution whole-body voxel models of Japanese adult males and females of average height and weight, and application of models to radio-frequency electromagnetic-field dosimetry. Phys. Med. Biol. 2004, 49, 1. [Google Scholar] [CrossRef] [PubMed]
- Nagaoka, T.; Kunieda, E.; Watanabe, S. Proportion-corrected scaled voxel models for Japanese children and their application to the numerical dosimetry of specific absorption rate for frequencies from 30 MHz to 3 GHz. Phys. Med. Biol. 2008, 53, 6695–6711. [Google Scholar] [CrossRef] [PubMed]
- Du Bois, D.; Du Bois, E.F. Clinical calorimetry: Tenth paper a formula to estimate the approximate surface area if height and weight be known. Arch. Intern. Med. 1916, 17, 863–871. [Google Scholar] [CrossRef] [Green Version]
- Fiala, D.; Havenith, G.; Bröde, P.; Kampmann, B.; Jendritzky, G. UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int. J. Biometeorol. 2012, 56, 429–441. [Google Scholar] [CrossRef] [Green Version]
- Pennes, H.H. Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1998, 85, 5–34. [Google Scholar] [CrossRef]
- Fiala, D.; Lomas, K.J.; Stohrer, M. A computer model of human thermoregulation for a wide range of environmental conditions: The passive system. J. Appl. Physiol. 1999, 87, 1957–1972. [Google Scholar] [CrossRef]
- Samaras, T.; Christ, A.; Kuster, N. Effects of geometry discretization aspects on the numerical solution of the bioheat transfer equation with the FDTD technique. Phys. Med. Biol. 2006, 51, N221–N229. [Google Scholar] [CrossRef]
- Hirata, A.; Fujiwara, O.; Shiozawa, T. Correlation between peak spatial-average SAR and temperature increase due to antennas attached to human trunk. IEEE Trans. Biomed. Eng. 2006, 53, 1658–1664. [Google Scholar] [CrossRef]
- McIntosh, R.L.; Anderson, V. Erratum: A comprehensive tissue properties database provided for the thermal assessment of a human at rest. Biophys. Rev. Lett. 2010, 5, 129–151. [Google Scholar] [CrossRef]
- Bhowmik, A.; Singh, R.; Repaka, R.; Mishra, S.C. Conventional and newly developed bioheat transport models in vascularized tissues: A review. J. Therm. Biol. 2013, 38, 107–125. [Google Scholar] [CrossRef]
- Stolwijk, J.A. A mathematical model of physiological temperature regulation in man. NASA Contract. Rep. 1971, CR-1855, 77. [Google Scholar]
- Nishi, Y.; Gagge, A.P. Moisture permeation of clothing: A factor governing thermal equilibrium and comfort. ASHRAE Trans. 1973, 76, 137–145. [Google Scholar]
- Laakso, I.; Hirata, A. Dominant factors affecting temperature rise in simulations of human thermoregulation during RF exposure. Phys. Med. Biol. 2011, 56, 7449–7471. [Google Scholar] [CrossRef] [PubMed]
- Fiala, D.; Lomas, K.; Stohrer, M. Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. Int. J. Biometeorol. 2001, 45, 143–159. [Google Scholar] [CrossRef]
- Tsuzuki-Hayakawa, K.; Tochihara, Y.; Ohnaka, T. Thermoregulation during heat exposure of young children compared to their mothers. Eur. J. Appl. Physiol. Occup. Physiol. 1995, 72, 12–17. [Google Scholar] [CrossRef]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 1996, 41, 2271–2293. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, B. Solar heat load: Heat balance during exercise in clothed subjects. Eur. J. Appl. Physiol. Occup. Physiol. 1990, 60, 452–456. [Google Scholar] [CrossRef]
- Rose Jacobs, R. Development of gait at slow, free, and fast speeds in 3- and 5-year-old children. Phys. Ther. 1983, 63, 1251–1259. [Google Scholar] [CrossRef] [Green Version]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.N.N.M.; Strath, S.J.; Brien, W.L.O.; Bassett, D.R.; Schmitz, K.H.; Emplaincourt, P.; et al. Compendium of physical activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011, 43, 1575. [Google Scholar] [CrossRef] [Green Version]
- Saint-Maurice, P.F.; Kim, Y.; Welk, G.J.; Gaesser, G.A. Kids are not little adults: What MET threshold captures sedentary behavior in children? Eur. J. Appl. Physiol. 2016, 116, 29–38. [Google Scholar] [CrossRef]
- Kodera, S.; Nishimura, T.; Rashed, E.A.; Hasegawa, K.; Takeuchi, I.; Egawa, R.; Hirata, A. Estimation of heat-related morbidity from weather data: A computational study in three prefectures of Japan over 2013–2018. Environ. Int. 2019, 130, 104907. [Google Scholar] [CrossRef] [PubMed]
- Hirata, A.; Asano, T.; Fujiwara, O. FDTD analysis of body-core temperature elevation in children and adults for whole-body exposure. Phys. Med. Biol. 2008, 53, 5223–5238. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Li, B.; Cheng, Y.; Li, C.; Liu, H.; Yao, R. Influence of human thermal adaptation and its development on human thermal responses to warm environments. Build. Environ. 2018, 139, 134–145. [Google Scholar] [CrossRef]
- Schlader, Z.J.; Stannard, S.R.; Mündel, T. Human thermoregulatory behavior during rest and exercise—A prospective review. Physiol. Behav. 2010, 99, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Hirata, A.; Sugiyama, H.; Fujiwara, O. Estimation of core temperature elevation in humans and animals for whole-body averaged SAR. Prog. Electromagn. Res. 2009, 99, 53–70. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, S.; Horikoshi, T.; Ishii, J.; Tomita, A. The measurement of the solar absorptance of the clothed human body—The case of Japanese, college-aged male subjects. Build. Environ. 2013, 59, 492–500. [Google Scholar] [CrossRef]
- Ministry of the Environment Investigation of Relationship between Heat Stroke and Heat Island Phenomenon. Available online: https://www.env.go.jp/air/report/h23-02/01-2.pdf (accessed on 9 December 2019).
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamiya, T.; Onishi, R.; Kodera, S.; Hirata, A. Estimation of Time-Course Core Temperature and Water Loss in Realistic Adult and Child Models with Urban Micrometeorology Prediction. Int. J. Environ. Res. Public Health 2019, 16, 5097. https://doi.org/10.3390/ijerph16245097
Kamiya T, Onishi R, Kodera S, Hirata A. Estimation of Time-Course Core Temperature and Water Loss in Realistic Adult and Child Models with Urban Micrometeorology Prediction. International Journal of Environmental Research and Public Health. 2019; 16(24):5097. https://doi.org/10.3390/ijerph16245097
Chicago/Turabian StyleKamiya, Toshiki, Ryo Onishi, Sachiko Kodera, and Akimasa Hirata. 2019. "Estimation of Time-Course Core Temperature and Water Loss in Realistic Adult and Child Models with Urban Micrometeorology Prediction" International Journal of Environmental Research and Public Health 16, no. 24: 5097. https://doi.org/10.3390/ijerph16245097
APA StyleKamiya, T., Onishi, R., Kodera, S., & Hirata, A. (2019). Estimation of Time-Course Core Temperature and Water Loss in Realistic Adult and Child Models with Urban Micrometeorology Prediction. International Journal of Environmental Research and Public Health, 16(24), 5097. https://doi.org/10.3390/ijerph16245097