Accelerometry-Based External Load Indicators in Sport: Too Many Options, Same Practical Outcome?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample and Participants
2.2. Instruments and Procedures
2.3. Accelerometry-Based External Load Indicators (ABELI)
- a(t) (developing companies: ActiGraph LLC and GENEActiv; units: g force, g) [22,23]: Square root of the sum of the accelerations in the three accelerometer orthogonal axes (x, y and z), measuring the combination of gravity and changes in vertical, medio-lateral and anterior–posterior motions of a body segment to which the accelerometer is attached (Equation (1)).
- Player LoadRT (developing company: RealTrack Systems; units: arbitrary units, a.u.) [25]: Vector sum of the four accelerometer data points in its three axes of movement (vertical, anteroposterior and lateral). It is represented in arbitrary units (a.u.) and is calculated from the following equation where PLRT is the player load calculated in the current moment; Xn, Yn and Zn are the values of BodyX, BodyY and BodyZ in the current moment; and Xn–1, Yn–1 and Zn–1 are the values of BodyX, BodyY and BodyZ in the previous moment. Then, the sum of PLRT during the session is calculated and multiplied by 0.01 as a scale factor (Equation (2)).
- PlayerLoadTM (developing company: Catapult Sports; units: arbitrary units, a.u.) [11]: Vector sum of the changes in acceleration in the anterior–posterior (forward) medio-lateral (side) and vertical (up) planes (Equation (3)).
- Impulse Load (developing company: ZephyrTM; units: newtons per second, N/s) [26]: A cumulative sum of the forces in x = g forces in the medio-lateral (“side-to-side”) plane, y = g forces in the anterior–posterior (“forwards and backwards”) plane, and z = g forces in the vertical (“up and down”) planes of movement. This is then scaled by gravity (Equation (4)).
- Player LoadRE (developing company: ZXY SportTracking; units: arbitrary units, a.u.) [17]: The player load is calculated and presented as a downscaled (i.e., divided by 800) value of the square sum of the accelerometer values for the respective axes (x, y, and z). Thus, the load value is the downscaled square of the player’s absolute acceleration. The downscaling was used for practical reasons (Equation (5)).
- Total Load (developing company: StatSports; units: arbitrary units, a.u.) [28]: Total accumulated accelerations of the player based on accelerometer data, where aca is acceleration along the anterior–posterior axis, acl is acceleration along the lateral axis and acv is acceleration along the vertical axis, i is current time and t is time. This is then scaled by 1000 (Equation (6)).
2.4. Statistical Analysis
3. Results
3.1. Descriptive Analysis
3.2. Agreement of ABELIs’ Measures
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Akenhead, R.; Nassis, G.P. Training Load and Player Monitoring in High-Level Football: Current Practice and Perceptions. Int. J. Sports Physiol. Perform. 2016, 11, 587–593. [Google Scholar] [CrossRef]
- Fox, J.L.; Scanlan, A.T.; Stanton, R. A Review of Player Monitoring Approaches in Basketball: Current Trends and Future Directions. J. Strength Cond. Res. 2017, 31, 2021–2029. [Google Scholar] [CrossRef]
- Halson, S.L. Monitoring Training Load to Understand Fatigue in Athletes. Sports Med. 2014, 44, 139–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nédélec, M.; McCall, A.; Carling, C.; Legall, F.; Berthoin, S.; Dupont, G. Recovery in Soccer: Part II—Recovery Strategies. Sports Med. 2013, 43, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Pino-Ortega, J.; Rojas-Valverde, D.; Gómez-Carmona, C.D.; Bastida-Castillo, A.; Hernández-Belmonte, A.; García-Rubio, J.; Nakamura, F.Y.; Ibáñez, S.J. Impact of Contextual Factors on External Load During a Congested-Fixture Tournament in Elite U’18 Basketball Players. Front. Psychol. 2019, 10, 1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cummins, C.; Orr, R.; O’Connor, H.; West, C. Global Positioning Systems (GPS) and Microtechnology Sensors in Team Sports: A Systematic Review. Sports Med. 2013, 43, 1025–1042. [Google Scholar] [CrossRef] [PubMed]
- Achten, J.; Jeukendrup, A.E. Heart rate monitoring. Sports Med. 2003, 33, 517–538. [Google Scholar] [CrossRef] [PubMed]
- Akenhead, R.; French, D.; Thompson, K.G.; Hayes, P.R. The acceleration dependent validity and reliability of 10Hz GPS. J. Sci. Med. Sport 2014, 17, 562–566. [Google Scholar] [CrossRef] [PubMed]
- Alberts, J.L.; Hirsch, J.R.; Koop, M.M.; Schindler, D.D.; Kana, D.E.; Linder, S.M.; Campbell, S.; Thota, A.K. Using Accelerometer and Gyroscopic Measures to Quantify Postural Stability. J. Athl. Train. 2015, 50, 578–588. [Google Scholar] [CrossRef] [Green Version]
- Bastida Castillo, A.; Gómez Carmona, C.D.; De la Cruz Sánchez, E.; Pino Ortega, J. Accuracy, intra- and inter-unit reliability, and comparison between GPS and UWB-based position-tracking systems used for time–motion analyses in soccer. Eur. J. Sport Sci. 2018, 18, 450–457. [Google Scholar] [CrossRef]
- Boyd, L.J.; Ball, K.; Aughey, R.J. The reliability of MinimaxX accelerometers for measuring physical activity in Australian football. Int. J. Sports Physiol. Perform. 2011, 6, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Crum, E.M.; O’Connor, W.J.; Van Loo, L.; Valckx, M.; Stannard, S.R. Validity and reliability of the Moxy oxygen monitor during incremental cycling exercise. Eur. J. Sport Sci. 2017, 17, 1037–1043. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Zhang, K.; Zhu, M.; Mackintosh, C.; Rice, T.; Gore, C.; Hahn, A.; Holthous, S. An Investigation of an Integrated Low-cost GPS, INS and Magnetometer System for Sport Applications. In Proceedings of the 20th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2007), Fort Worth, TX, USA, 25–28 September 2007; pp. 113–120. [Google Scholar]
- Aroganam, G.; Manivannan, N.; Harrison, D. Review on Wearable Technology Sensors Used in Consumer Sport Applications. Sensors 2019, 19, 1983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.T.; Kling, S.R.; Salata, M.J.; Cupp, S.A.; Sheehan, J.; Voos, J.E. Wearable Performance Devices in Sports Medicine. Sports Health 2016, 8, 74–78. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.-C.; Hsu, Y.-L. A Review of Accelerometry-Based Wearable Motion Detectors for Physical Activity Monitoring. Sensors 2010, 10, 7772–7788. [Google Scholar] [CrossRef]
- Dalen, T.; Jørgen, I.; Gertjan, E.; Havard, H.G.; Ulrik, W. Player load, acceleration, and deceleration during forty-five competitive matches of elite soccer. J. Strength Cond. Res. 2016, 30, 351–359. [Google Scholar] [CrossRef]
- Malone, J.J.; Lovell, R.; Varley, M.C.; Coutts, A.J. Unpacking the Black Box: Applications and Considerations for Using GPS Devices in Sport. Int. J. Sports Physiol. Perform. 2017, 12, S2–S18. [Google Scholar] [CrossRef] [Green Version]
- Barreira, P.; Robinson, M.A.; Drust, B.; Nedergaard, N.; Raja Azidin, R.M.F.; Vanrenterghem, J. Mechanical Player Load using trunk-mounted accelerometry in football: Is it a reliable, task- and player-specific observation? J. Sports Sci. 2017, 35, 1674–1681. [Google Scholar] [CrossRef]
- Barrett, S.; Midgley, A.; Lovell, R. PlayerLoadTM: Reliability, Convergent Validity, and Influence of Unit Position during Treadmill Running. Int. J. Sports Physiol. Perform. 2014, 9, 945–952. [Google Scholar] [CrossRef]
- Casamichana, D.; Castellano, J.; Calleja-Gonzalez, J.; San Román, J.; Castagna, C. Relationship Between Indicators of Training Load in Soccer Players. J. Strength Cond. Res. 2013, 27, 369–374. [Google Scholar] [CrossRef]
- Rowlands, A.V.; Fraysse, F.; Catt, M.; Stiles, V.H.; Stanley, R.M.; Eston, R.G.; Olds, T.S. Comparability of Measured Acceleration from Accelerometry-Based Activity Monitors. Med. Sci. Sports Exerc. 2015, 47, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Staunton, C.; Wundersitz, D.; Gordon, B.; Kingsley, M. Accelerometry-Derived Relative Exercise Intensities in Elite Women’s Basketball. Int. J. Sports Med. 2018, 39, 822–827. [Google Scholar] [CrossRef] [PubMed]
- Staunton, C.; Wundersitz, D.; Gordon, B.; Kingsley, M. Construct Validity of Accelerometry-Derived Force to Quantify Basketball Movement Patterns. Int. J. Sports Med. 2017, 38, 1090–1096. [Google Scholar] [CrossRef] [PubMed]
- Reche-Soto, P.; Cardona-Nieto, D.; Diaz-Suarez, A.; Bastida-Castillo, A.; Gomez-Carmona, C.; Garcia-Rubio, J.; Pino-Ortega, J. Player Load and Metabolic Power Dynamics as Load Quantifiers in Soccer. J. Hum. Kinet. 2019, 69, 259–269. [Google Scholar] [CrossRef] [Green Version]
- Gentles, J.; Coniglio, C.; Besemer, M.; Morgan, J.; Mahnken, M. The Demands of a Women’s College Soccer Season. Sports 2018, 6, 16. [Google Scholar] [CrossRef] [Green Version]
- Cunniffe, B.; Proctor, W.; Baker, J.S.; Davies, B. An evaluation of the physiological demands of elite rugby union using global positioning system tracking software. J. Strength Cond. Res. 2009, 23, 1195–1203. [Google Scholar] [CrossRef] [Green Version]
- Bowen, L.; Gross, A.S.; Gimpel, M.; Li, F.-X. Accumulated workloads and the acute:chronic workload ratio relate to injury risk in elite youth football players. Br. J. Sports Med. 2017, 51, 452–459. [Google Scholar] [CrossRef] [Green Version]
- Buchheit, M.; Haddad, H.A.; Simpson, B.M.; Palazzi, D.; Bourdon, P.C.; Salvo, V.D.; Mendez-Villanueva, A. Monitoring Accelerations with GPS in Football: Time to Slow Down? Int. J. Sports Physiol. Perform. 2014, 9, 442–445. [Google Scholar] [CrossRef]
- Michalsik, L.B.; Aagaard, P. Physical demands in elite team handball: Comparisons between male and female players. J. Sports Med. Phys. Fitness 2015, 55, 878–891. [Google Scholar]
- Naser, N.; Ali, A.; Macadam, P. Physical and physiological demands of futsal. J. Exerc. Sci. Fit. 2017, 15, 76–80. [Google Scholar] [CrossRef]
- Vázquez-Guerrero, J.; Suarez-Arrones, L.; Casamichana Gómez, D.; Rodas, G. Comparing external total load, acceleration and deceleration outputs in elite basketball players across positions during match play. Kinesiology 2018, 50, 228–234. [Google Scholar] [CrossRef] [Green Version]
- Camomilla, V.; Bergamini, E.; Fantozzi, S.; Vannozzi, G. Trends Supporting the In-Field Use of Wearable Inertial Sensors for Sport Performance Evaluation: A Systematic Review. Sensors 2018, 18, 873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schelling, X.; Torres, L. Accelerometer Load Profiles for Basketball-Specific Drills in Elite Players. J. Sports Sci. Med. 2016, 15, 585–591. [Google Scholar] [PubMed]
- Carling, C.; Dupont, G. Are declines in physical performance associated with a reduction in skill-related performance during professional soccer match-play? J. Sports Sci. 2011, 29, 63–71. [Google Scholar] [CrossRef]
- Chambers, R.; Gabbett, T.J.; Cole, M.H.; Beard, A. The Use of Wearable Microsensors to Quantify Sport-Specific Movements. Sports Med. 2015, 45, 1065–1081. [Google Scholar] [CrossRef]
- White, A.; Hills, S.P.; Cooke, C.B.; Batten, T.; Kilduff, L.P.; Cook, C.J.; Roberts, C.; Russell, M. Match-Play and Performance Test Responses of Soccer Goalkeepers: A Review of Current Literature. Sports Med. 2018, 48, 2497–2516. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Carmona, C.D.; Bastida-Castillo, A.; García-Rubio, J.; Ibáñez, S.J.; Pino-Ortega, J. Static and dynamic reliability of WIMU PROTM accelerometers according to anatomical placement. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2019, 233, 238–248. [Google Scholar]
- Field, A. Discovering Statistics Using IBM SPSS Statistics, 4th ed.; SAGE: London, UK, 2013; ISBN 978-1-4462-4917-8. [Google Scholar]
- Milligan, G.W.; Cooper, M.C. A study of standardization of variables in cluster analysis. J. Classif. 1988, 5, 181–204. [Google Scholar] [CrossRef]
- Kottner, J.; Streiner, D.L. The difference between reliability and agreement. J. Clin. Epidemiol. 2011, 64, 701–702. [Google Scholar] [CrossRef]
- Zaki, R.; Bulgiba, A.; Ismail, R.; Ismail, N.A. Statistical methods used to test for agreement of medical instruments measuring continuous variables in method comparison studies: A systematic review. PLoS ONE 2012, 7, e37908. [Google Scholar] [CrossRef] [Green Version]
- Bland, J.M.; Altman, D.G. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988; ISBN 978-0-8058-0283-2. [Google Scholar]
- Kramer, M.S.; Feinstein, A.R. Clinical biostatistics. LIV. The biostatistics of concordance. Clin. Pharmacol. Ther. 1981, 29, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beenham, M.; Barron, D.J.; Fry, J.; Hurst, H.H.; Figueirdo, A.; Atkins, S. A Comparison of GPS Workload Demands in Match Play and Small-Sided Games by the Positional Role in Youth Soccer. J. Hum. Kinet. 2017, 57, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Barron, D.J.; Atkins, S.; Edmundson, C.; Fewtrell, D. Accelerometer derived load according to playing position in competitive youth soccer. Int. J. Perform. Anal. Sport 2014, 14, 734–743. [Google Scholar] [CrossRef]
- Trewin, J.; Meylan, C.; Varley, M.C.; Cronin, J. The match-to-match variation of match-running in elite female soccer. J. Sci. Med. Sport 2018, 21, 196–201. [Google Scholar] [CrossRef]
- Folgado, H.; Gonçalves, B.; Sampaio, J. Positional synchronization affects physical and physiological responses to preseason in professional football (soccer). Res. Sports Med. 2018, 26, 51–63. [Google Scholar] [CrossRef]
- Paul, D.J.; Bradley, P.S.; Nassis, G.P. Factors Affecting Match Running Performance of Elite Soccer Players: Shedding Some Light on the Complexity. Int. J. Sports Physiol. Perform. 2015, 10, 516–519. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Carmona, C.; Gamonales, J.; Pino-Ortega, J.; Ibáñez, S. Comparative Analysis of Load Profile between Small-Sided Games and Official Matches in Youth Soccer Players. Sports 2018, 6, 173. [Google Scholar] [CrossRef] [Green Version]
- Rago, V.; Rebelo, A.; Krustrup, P.; Mohr, M. Contextual Variables and Training Load Throughout a Competitive Period in a Top-Level Male Soccer Team. J. Strength Cond. Res. 2019. [Google Scholar] [CrossRef]
- Andrzejewski, M.; Chmura, P.; Konefał, M.; Kowalczuk, E.; Chmura, J. Match outcome and sprinting activities in match play by elite German soccer players. J. Sports Med. Phys. Fitness 2018. [Google Scholar] [CrossRef]
- Abade, E.A.; Gonçalves, B.V.; Leite, N.M.; Sampaio, J.E. Time-Motion and Physiological Profile of Football Training Sessions Performed by Under-15, Under-17, and Under-19 Elite Portuguese Players. Int. J. Sports Physiol. Perform. 2014, 9, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Nedergaard, N.J.; Robinson, M.A.; Eusterwiemann, E.; Drust, B.; Lisboa, P.J.; Vanrenterghem, J. The Relationship Between Whole-Body External Loading and Body-Worn Accelerometry During Team-Sport Movements. Int. J. Sports Physiol. Perform. 2017, 12, 18–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojas-Valverde, D.; Sánchez-Ureña, B.; Pino-Ortega, J.; Gómez-Carmona, C.; Gutiérrez-Vargas, R.; Timón, R.; Olcina, G. External Workload Indicators of Muscle and Kidney Mechanical Injury in Endurance Trail Running. Int. J. Environ. Res. Public Health 2019, 16, 3909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, S.; Midgley, A.; Reeves, M.; Joel, T.; Franklin, E.; Heyworth, R.; Garret, A.; Lovell, R. The within-match patterns of locomotor efficiency during Professional Soccer match play: Implications for Injury risk? J. Sci. Med. Sport 2016, 19, 810–815. [Google Scholar] [CrossRef]
Title | Absolute | Relative | ||
---|---|---|---|---|
ABELI | 1st Period | 2nd Period | 1st Period | 2nd Period |
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
(95% CI, Lower to Upper) | (95% CI, Lower to Upper) | (95% CI, Lower to Upper) | (95% CI, Lower to Upper) | |
a(t) (g) | 285,989.29 ± 4595.43 | 241,933.93 ± 73,977.35 | 6975.35 ± 113.47 | 5973.68 ± 1826.60 |
(280,453.65 to 293,195.39) | (99,466.53 to 288,312.92) | (6924.78 to 7239.39) | (2455.96 to 7118.84) | |
PLRT (a.u.) | 58.17 ± 8.76 | 46.88 ± 14.99 | 1.44 ± 0.22 | 1.16 ± 0.37 |
(43.06 to 73.43) | (21.17 to 65.46) | (1.06 to 1.81) | (0.52 to 1.62) | |
PLTM (a.u.) | 579.85 ± 86.65 | 467.2 ± 148.81 | 14.32 ± 2.14 | 11.54 ± 3.67 |
(430.12 to 729.18) | (211.37 to 650.79) | (10.62 to 18.0) | (5.22 to 16.07) | |
IL (N) | 29,162.65 ± 468.59 | 24,670.26 ± 7543.55 | 720.07 ± 11.57 | 609.14 ± 186.26 |
(28,598.17 to 29,897.46) | (10,142.71 to 29,399.58) | (706.13 to 738.21) | (250.44 to 725.92) | |
PLRE (a.u.) | 556.51 ± 47.91 | 473.7 ± 152.98 | 13.74 ± 1.18 | 11.70 ± 3.78 |
(493.38 to 651.76) | (197.16 to 635.77) | (12.18 to 16.09) | (4.87 to 15.70) | |
TL (a.u.) | 57.98 ± 8.66 | 46.72 ± 14.88 | 1.43 ± 0.21 | 1.15 ± 0.37 |
(43.01 to 72.92) | (21.13 to 65.08) | (1.06 to 1.80) | (0.52 to 1.61) |
Period | ABELI | Correlation | Comparison | |||||
---|---|---|---|---|---|---|---|---|
r (p Value) | ICC | 95% CI (L; U) | Bias | 95% CI | t (p Value) | d (Rating) | ||
1st | a(t) vs. PLTM | 0.803 (<0.01) | 0.03 | −0.582; 0.621 | 285,409.4 | −273,993.1; 844,811,9 | 199.41 (<0.01) | 60.1 large |
a(t) vs. PLRT | 0.805 (<0.01) | 0.003 | −0.6; 0.604 | 285,931.1 | −274,493.9; 846,356.1 | 197.06 (<0.01) | 59.4 large | |
a(t) vs. IL | 1 (<0.01) | 0.202 | −0.456; 0.717 | 256,826.6 | −246,553.6; 760,206.8 | 196.79 (<0.01) | 59.3 large | |
a(t) vs. PLRE | 0.958 (<0.01) | 0.02 | −0.589; 0.615 | 285,432.8 | −274,015.5; 844,881 | 198.39 (<0.01) | 59.8 large | |
a(t) vs. TL | 0.803 (<0.01) | 0.665 | 0.105; 0.905 | 228,004.5 | −218,884.4; 674,893.4 | 127 (<0.01) | 38.29 large | |
PLTM vs. PLRT | 1 (<0.01) | 0.2 | −0.457; 0.716 | 521.7 | −500.8; 1544.2 | 21.18 (<0.01) | 6.4 large | |
PLTM vs. IL | 0.803 (<0.01) | 0.287 | −0.381; 0.758 | −28,582.8 | −84,605.1; 27,439.5 | −224.66 (<0.01) | 67.7 large | |
PLTM vs. PLRE | 0.861 (<0.01) | 0.729 | 0.227; 0.925 | 23.34 | −22.4; 69.1 | 1.43 (0.186) | 0.4 small | |
PLTM vs. TL | 0.805 (<0.01) | 0.02 | −0.589; 0.615 | −57,404.9 | −169,918.5; 55,108.7 | −21.16 (<0.01) | 6.4 large | |
PLRT vs. IL | 0.805 (<0.01) | 0.03 | −0.583; 0.621 | −29,104.5 | −86,149.3; 27,940.3 | −199.4 (<0.01) | 60.1 large | |
PLRT vs. PLRE | 1 (<0.01) | 0.306 | −0.363; 0.767 | -498.3 | −1475.1; 478.4 | −38.84 (<0.01) | 11.7 large | |
PLRT vs. TL | 0.958 (<0.01) | 0.002 | −0.601; 0.603 | −579,226.6 | −171,462.6; 55,609.5 | −21.16 (<0.01) | 6.4 large | |
IL vs. PLRE | 0.958 (<0.01) | 0.194 | −0.462; 0.713 | 28,608.1 | −27,461.9; 84,674.2 | 213.91 (<0.01) | 64.5 large | |
IL vs. TL | 0.803 (<0.01) | 0.087 | −0.544; 0.655 | −28,822.1 | −85,313.5; 27,669.2 | −10.99 (<0.01) | 3.3 large | |
PLRE vs. TL | 0.861 (<0.01) | 0.01 | −0.596; 0.608 | −57,428.2 | −169,987.6; 55,131.1 | −21.06 (<0.01) | 6.3 large | |
2nd | a(t) vs. PLTM | 0.919 (<0.01) | 0.004 | −0.6; 0.604 | 241,466.7 | −231,808.1; 714,741.6 | 10.34 (<0.01) | 3.1 large |
a(t) vs. PLRT | 0.918 (<0.01) | 0.001 | −0.602; 0.602 | 241,887.1 | −232,211.5; 715,985.7 | 10.34 (<0.01) | 3.1 large | |
a(t) vs. IL | 1 (<0.01) | 0.202 | −0.456; 0.717 | 217,263.6 | −208,573.1; 643,100.5 | 10.34 (<0.01) | 3.1 large | |
a(t) vs. PLRE | 0.967 (<0.01) | 0.004 | −0.6; 0.605 | 241,460.2 | −231,801.8; 714,722.3 | 10.34 (<0.01) | 3.1 large | |
a(t) vs. TL | 0.919 (<0.01) | 0.355 | −0.314; 0.789 | 195,213.7 | −187,405.1; 577,832.5 | 10.19 (<0.01) | 3.1 large | |
PLTM vs. PLRT | 1 (<0.01) | 0.199 | −0.458; 0.716 | 420.3 | −403.5; 1244.2 | 9.93 (<0.01) | 3 large | |
PLTM vs. IL | 0.919 (<0.01) | 0.036 | −0.578; 0.625 | −24,203.1 | −71,641.1; 23,234.9 | −10.33 (<0.01) | 3.1 large | |
PLTM vs. PLRE | 0.975 (<0.01) | 0.974 | 0.901; 0.994 | −6.5 | −19.2; 6.2 | −0.601 (0.563) | 0.2 small | |
PLTM vs. TL | 1 (<0.01) | 0.02 | −0.589; 0.615 | −46,253.1 | −136,909; 44,402.9 | −9.93 (<0.01) | 3 large | |
PLRT vs. IL | 0.967 (<0.01) | 0.004 | −0.6; 0.604 | −24,623.4 | −72,885.2; 23,638.4 | −10.34 (<0.01) | 3.1 large | |
PLRT vs. PLRE | 0.919 (<0.01) | 0.189 | −0.466; 0.71 | −426.8 | −1263.4; 409.8 | −9.75 (<0.01) | 2.9 large | |
PLRT vs. TL | 0.967 (<0.01) | 0.002 | −0.601; 0.603 | −46,673.4 | −138,153.2; 44,806.4 | −9.93 (<0.01) | 3 large | |
IL vs. PLRE | 0.975 (<0.01) | 0.039 | −0.576; 0.626 | 24,196.6 | −23,228.7; 71,621.8 | 10.35 (<0.01) | 3.1 large | |
IL vs. TL | 0.918 (<0.01) | 0.741 | −0.252; 0.929 | −22,050 | −65,268; 21,168 | −8.22 (<0.01) | 2.5 large | |
PLRE vs. TL | 1 (<0.01) | 0.02 | −0.589; 0.615 | −46,246.5 | −136,889.8; 44,396.7 | −9.93 (<0.01) | 3 large |
Period | ABELI | Correlation | Comparison | |||||
---|---|---|---|---|---|---|---|---|
r (p Value) | ICC | 95% CI (L; U) | Bias | 95% CI | t (p Value) | d (Rating) | ||
1st | a(t) vs. PLTM | 0.803 (<0.01) | 0.819 | 0.415; 0.952 | 0 | 0 | 0 (1) | 0, trivial |
a(t) vs. PLRT | 0.805 (<0.01) | 0.821 | 0.42; 0.953 | 0 | 0 | 0 (1) | 0, trivial | |
a(t) vs. IL | 1 (<0.01) | 1 | 1; 1 | 0 | 0 | 0 (1) | 0, trivial | |
a(t) vs. PLRE | 0.958 (<0.01) | 0.962 | 0.856; 0.991 | 0 | 0 | 0 (1) | 0, trivial | |
a(t) vs. TL | 0.803 (<0.01) | 0.819 | 0.415; 0.952 | 0 | 0 | 0 (1) | 0, trivial | |
PLTM vs. PLRT | 1 (<0.01) | 1 | 1; 1 | 0 | 0 | 0 (1) | 0, trivial | |
PLTM vs. IL | 0.803 (<0.01) | 0.819 | 0.415; 0.952 | 0 | 0 | 0 (1) | 0, trivial | |
PLTM vs. PLRE | 0.861 (<0.01) | 0.873 | 0.564; 0.967 | 0 | 0 | 0 (1) | 0, trivial | |
PLTM vs. TL | 0.805 (<0.01) | 0.861 | 0.538; 0.964 | 0 | 0 | 0 (1) | 0, trivial | |
PLRT vs. IL | 0.805 (<0.01) | 1 | 1; 1 | 0 | 0 | 0 (1) | 0, trivial | |
PLRT vs. PLRE | 1 (<0.01) | 0.865 | 0.548; 0.965 | 0 | 0 | 0 (1) | 0, trivial | |
PLRT vs. TL | 0.958 (<0.01) | 1 | 1; 1 | 0 | 0 | 0 (1) | 0, trivial | |
IL vs. PLRE | 0.958 (<0.01) | 0.958 | 0.842; 0.99 | 0 | 0 | 0 (1) | 0, trivial | |
IL vs. TL | 0.803 (<0.01) | 0.803 | 0.39; 0.947 | 0 | 0 | 0 (1) | 0, trivial | |
PLRE vs. TL | 0.861 (<0.01) | 0.861 | 0.538; 0.964 | 0 | 0 | 0 (1) | 0, trivial | |
2nd | a(t) vs. PLTM | 0.919 (<0.01) | 0.919 | 0.71; 0.979 | 0 | 0 | 0 (1) | 0, trivial |
a(t) vs. PLRT | 0.918 (<0.01) | 0.918 | 0.707; 0.979 | 0 | 0 | 0 (1) | 0, trivial | |
a(t) vs. IL | 1 (<0.01) | 1 | 1; 1 | 0 | 0 | 0 (1) | 0, trivial | |
a(t) vs. PLRE | 0.967 (<0.01) | 0.967 | 0.874; 0.992 | 0 | 0 | 0 (1) | 0, trivial | |
a(t) vs. TL | 0.919 (<0.01) | 0.919 | 0.71; 0.979 | 0 | 0 | 0 (1) | 0, trivial | |
PLTM vs. PLRT | 1 (<0.01) | 1 | 1; 1 | 0 | 0 | 0 (1) | 0, trivial | |
PLTM vs. IL | 0.919 (<0.01) | 0.919 | 0.71; 0.979 | 0 | 0 | 0 (1) | 0, trivial | |
PLTM vs. PLRE | 0.975 (<0.01) | 0.975 | 0.902; 0.994 | 0 | 0 | 0 (1) | 0, trivial | |
PLTM vs. TL | 1 (<0.01) | 1 | 1; 1 | 0 | 0 | 0 (1) | 0, trivial | |
PLRT vs. IL | 0.967 (<0.01) | 0.918 | 0.707; 0.979 | 0 | 0 | 0 (1) | 0, trivial | |
PLRT vs. PLRE | 0.919 (<0.01) | 0.974 | 0.898; 0.993 | 0 | 0 | 0 (1) | 0, trivial | |
PLRT vs. TL | 0.967 (<0.01) | 1 | 1; 1 | 0 | 0 | 0 (1) | 0, trivial | |
IL vs. PLRE | 0.975 (<0.01) | 0.967 | 0.874; 0.992 | 0 | 0 | 0 (1) | 0, trivial | |
IL vs. TL | 0.918 (<0.01) | 0.919 | 0.71; 0.979 | 0 | 0 | 0 (1) | 0, trivial | |
PLRE vs. TL | 1 (<0.01) | 0.975 | 0.902; 0.994 | 0 | 0 | 0 (1) | 0, trivial |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Carmona, C.D.; Pino-Ortega, J.; Sánchez-Ureña, B.; Ibáñez, S.J.; Rojas-Valverde, D. Accelerometry-Based External Load Indicators in Sport: Too Many Options, Same Practical Outcome? Int. J. Environ. Res. Public Health 2019, 16, 5101. https://doi.org/10.3390/ijerph16245101
Gómez-Carmona CD, Pino-Ortega J, Sánchez-Ureña B, Ibáñez SJ, Rojas-Valverde D. Accelerometry-Based External Load Indicators in Sport: Too Many Options, Same Practical Outcome? International Journal of Environmental Research and Public Health. 2019; 16(24):5101. https://doi.org/10.3390/ijerph16245101
Chicago/Turabian StyleGómez-Carmona, Carlos D., José Pino-Ortega, Braulio Sánchez-Ureña, Sergio J. Ibáñez, and Daniel Rojas-Valverde. 2019. "Accelerometry-Based External Load Indicators in Sport: Too Many Options, Same Practical Outcome?" International Journal of Environmental Research and Public Health 16, no. 24: 5101. https://doi.org/10.3390/ijerph16245101
APA StyleGómez-Carmona, C. D., Pino-Ortega, J., Sánchez-Ureña, B., Ibáñez, S. J., & Rojas-Valverde, D. (2019). Accelerometry-Based External Load Indicators in Sport: Too Many Options, Same Practical Outcome? International Journal of Environmental Research and Public Health, 16(24), 5101. https://doi.org/10.3390/ijerph16245101