Association of Circulating Irisin Concentrations with Weight Loss after Roux-en-Y Gastric Bypass Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Subjects
2.2. Clinical Assessment and Collection of Research Samples
2.3. Assessment of Circulating Irisin
2.4. Statistical Analysis
3. Results
3.1. Longitudinal Changes in Clinical Characteristics
3.2. Longitudinal Changes in Circulating Irisin Levels
3.3. Changes in Irisin Levels and Weight Reduction
3.4. Association of Preoperative Irisin Levels with Weight Reduction after RYGBP
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Obesity. World Obesity Federation. Available online: http://www.worldobesity.org/aboutobesity/ (accessed on 22 February 2019).
- Kopelma, P.G. Obesity as a medical problem. Nature 2000, 404, 634–643. [Google Scholar]
- Antuna-Puente, B.; Feve, B.; Fellahi, S.; Bastard, J.P. Adipokines: The missing link between insulin resistance and obesity. Diabetes Metab. 2008, 34, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Proenca, R.; Maffei, M.; Barone, M.; Leopold, L.; Friedman, J.M. Positional cloning of the mouse obese gene and its human homologue. Nature 1994, 372, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Seale, P.; Bjork, B.; Yang, W.; Kajimura, S.; Chin, S.; Kuang, S.; Scime, A.; Devarakonda, S.; Conroe, H.M.; Erdjument-Bromage, H.; et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 2008, 454, 961–967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.H.; Petkova, A.P.; Mottillo, E.P.; Granneman, J.G. In vivo identification of bipotential adipocyte progenitors recruited by b3-adrenoceptor activation and high-fat feeding. Cell Metab. 2012, 15, 480–491. [Google Scholar] [CrossRef] [PubMed]
- Berry, R.; Rodeheffer, M.S. Characterization of the adipocyte cellular lineage in vivo. Nat. Cell Biol. 2013, 15, 302–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cereijo, R.; Giralt, M.; Villarroya, F. Thermogenic brown and beige/brite adipogenesis in humans. Ann. Med. 2015, 47, 169–177. [Google Scholar] [CrossRef] [PubMed]
- De Naeyer, H.; Ouwens, D.M.; Van Nieuwenhove, Y.; Pattyn, P.; M’t Hart, L.; Kaufman, J.M.; Sell, H.; Eckel, J.; Cuvelier, C.; Taes, Y.E.; et al. Combined gene and protein expression of hormone-sensitive lipase and adipose triglyceride lipase, mitochondrial content, and adipocyte size in subcutaneous and visceral adipose tissue of morbidly obese men. Obes. Facts 2011, 4, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Dua, A.; Hennes, M.I.; Hoffmann, R.G.; Maas, D.L.; Krakower, G.R.; Sonnenberg, G.E.; Kissebah, A.H. Leptin: A significant indicator of total body fat but not of visceral fat and insulin insensitivity in African-American women. Diabetes 1996, 45, 1635–1637. [Google Scholar] [CrossRef] [PubMed]
- Enerbäck, S. Brown adipose tissue in humans. Int. J. Obes. 2010, 34, S43–S46. [Google Scholar] [CrossRef] [PubMed]
- Lidell, M.E.; Enerbäck, S. Brown adipose tissue—A new role in humans. Nat. Rev. Endocrinol. 2010, 6, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Villarroya, F.; Vidal-Puig, A. Beyond the sympathetic tone: The new brown fat activators. Cell Metab. 2013, 17, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Boström, P.; Wu, J.; Jedrychowski, M.P.; Korde, A.; Ye, L.; Lo, J.C.; Rasbach, K.A.; Boström, E.A.; Choi, J.H.; Long, J.Z.; et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012, 481, 463–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaughan, R.A.; Gannon, N.P.; Barberena, M.A.; Garcia-Smith, R.; Bisoffi, M.; Mermier, C.M.; Conn, C.A.; Trujillo, K.A. Characterization of the metabolic effects of irisin on skeletal muscle in vitro. Diabetes Obes. Metab. 2014, 16, 711–718. [Google Scholar] [CrossRef] [PubMed]
- Handschin, C.; Spiegelman, B.M. The role of exercise and PGC1alpha in inflammation and chronic disease. Nature 2008, 454, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, B.K. Exercise-induced myokines and their role in chronic diseases. Brain Behav. Immun. 2011, 25, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Keipert, S.; Ost, M.; Johann, K.; Imber, F.; Jastroch, M.; Van Schothorst, E.M.; Keijer, J.; Klaus, S. Skeletal muscle mitochondrial uncoupling drives endocrine cross-talk through the induction of FGF21 as a myokine. Am. J. Physiol. Endocrinol. Metab. 2014, 306, E469–E482. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.; Linderman, J.D.; Smith, S.; Brychta, R.J.; Wang, J.; Idelson, C.; Perron, R.M.; Werner, C.D.; Phan, G.Q.; Kammula, U.S.; et al. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab. 2014, 19, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Sanchis-Gomar, F.; Lippi, G.; Mayero, S.; Perez-Quilis, C.; Garcia-Gimenez, J.L. Irisin: A new potential hormonal target for the treatment of obesity and type 2 diabetes. J. Diabetes 2012, 4, 196. [Google Scholar] [CrossRef] [PubMed]
- Boström, P.; Fernández-Real, J.M.; Mantzoros, C. Irisin in humans: Recent advances and questions for future research. Metabolism 2014, 63, 178–180. [Google Scholar] [CrossRef] [PubMed]
- Raschke, S.; Elsen, M.; Gassenhuber, H.; Sommerfeld, M.; Schwahn, U.; Brockmann, B.; Jung, R.; Wisløff, U.; Tjønna, A.E.; Raastad, T.; et al. Evidence against a benefical effect of irisin in humans. PLoS ONE 2013, 8, e73680. [Google Scholar] [CrossRef] [PubMed]
- Kurdiova, T.; Balaz, M.; Vician, M.; Maderova, D.; Vlcek, M.; Valkovic, L.; Srbecky, M.; Imrich, R.; Kyselovicova, O.; Belan, V.; et al. Effect of obesity, diabetes and exercise on Fndc5 gene expression and irisin release in human skeletal muscle and adipose tissue: In vivo and in vitro studies. J. Physyol. 2014, 592, 1091–1107. [Google Scholar]
- Elsen, M.; Raschke, S.; Eckel, J. Browning of white fat: Does irisin play a role in humans? J. Endocrinol. 2014, 222, R25–R38. [Google Scholar] [CrossRef] [PubMed]
- Sjöström, L. Review of the key results from the Swedish obese subjects (SOS) trial—A prospective controlled intervention study of bariatric surgery. J. Intern. Med. 2013, 273, 219–234. [Google Scholar] [CrossRef] [PubMed]
- Ionut, V.; Burch, M.; Youdim, A.; Bergman, R.N. Gastrointestinal hormones and bariatric surgery-induced weight loss. Obesity 2013, 21, 1093–1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koshy, A.A.; Bobe, A.M.; Brady, M.J. Potential mechanisms by which bariatric surgery improves systemic metabolism. Transl. Res. 2013, 161, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Sott, W.R.; Batterham, R.L. Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy: Understanding weight loss and improvements in type 2 diabetes after bariatric surgery. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 301, R15–R27. [Google Scholar]
- Korenkov, M.; Sauerland, S.; Junginger, T. Surgery for obesity. Curr. Opin. Gastroenterol. 2005, 21, 670–683. [Google Scholar] [CrossRef]
- Still, C.D.; Sarwer, D.B.; Blankenship, J. The ASMBS Textbook of Bariatric Surgery: Integrated Health, Volume 2, American Society for Metabolic and Bariatric Surgery, Chapter 11—Macronutrient Recommendations: Protein, Carbohydrate, and Fat; Springer Science Business Media: New York, NY, USA, 2014; pp. 101–109. [Google Scholar]
- Rothwell, N.J.; Stock, M.J. Regulation of energy balance. Annu. Rev. Nutr. 1981, 1, 235–256. [Google Scholar] [CrossRef] [PubMed]
- Bazzocchi, A.; Ponti, F.; Cariani, S.; Diano, D.; Leuratti, L.; Albisinni, U.; Marchesini, G.; Battista, G. Visceral fat and body composition changes in a femaile popupation after RYGBP: A two-year follow-up by DXA. Obes. Surg. 2015, 25, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Stengel, A.; Hofman, T.; Goebel-Stengel, M.; Elbelt, U.; Kobelt, P.; Klapp, B.F. Circulating levels of irisin in patient with anorexia nervosa and different stages of obesity-correlation with body mass index. Peptides 2013, 39, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Pardo, M.; Crujeiras, A.B.; Amil, M.; Aguera, Z.; Jimenez-Murcia, S.; Baños, R.; Botella, C.; de la Torre, R.; Estivill, X.; Fagundo, A.B.; et al. Association of irisin with fat mass, resting energy expenditure, and daily activity in conditions of extreme bodymass index. Int. J. Endocrinol. 2014, 2014, 857270. [Google Scholar]
- Huh, J.Y.; Panagiotou, G.; Mougios, V.; Brinkoetter, M.; Vamvini, M.T.; Schneider, B.E.; Mantzoros, C.S. FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. M RNA expression and circulation concentrations in response to weight loss and exercise. Metabolism 2012, 61, 1725–1738. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Repiso, C.; Garcia-Serrano, S.; Rodriguez-Pacheco, F.; Garcia-Escobar, E.; Haro-Mora, J.J.; Garcia-Arnes, J.; Valdes, S.; Gonzalo, M.; Soriguer, F.; Moreno-Ruiz, F.J.; et al. FNDC 5 could be regulated by leptin in adipose tissue. Eur. J. Clin. Investig. 2014, 44, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.J.; Wong, M.D.; Toy, W.C.; Tan, C.S.; Liu, S.; Ng, X.W.; Tavintharan, S.; Sum, C.F.; Lim, S.C. Lower circulating irisin is ssociated with type 2 diabetes mellitus. J. Diabetes Complicat. 2013, 27, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Blüher, S.; Panagiotou, G.; Petroff, D.; Markert, J.; Wagner, A.; Klemm, T.; Filippaios, A.; Keller, A.; Mantzoros, C.S. Effects of a 1-year exercise and lifestyle intervention on irisin, adipokines, and inflammatory markers in obese children. Obesity 2014, 22, 1701–1708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crujeiras, A.B.; Zulet, M.A.; Lopez-Legarrea, P.; de la Iglesia, R.; Pardo, M.; Carreira, M.C.; Martínez, J.A.; Casanueva, F.F. Association between circulating irisin levels and the promotion of insulin resistance during the weight maintenance period after a dietary weight-lowering program in obese patients. Metabolism 2014, 63, 520–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, N.; Hardin, E.; Bates, C.; Bellatorre, N.; Eisenberg, D. Preoperative change in 6-minute walk distance correlates with early weight loss after sleeve gastrectomy. JSLS 2014, 18. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, B.K. The diseasome of physical inactivity and the role of myokines in muscle–fat cross talk. J. Physiol. 2009, 587, 5559–5568. [Google Scholar] [CrossRef] [PubMed]
- Hee Park, K.; Zaichenko, L.; Brinkoetter, M.; Thakkar, B.; Sahin-Efe, A.; Joung, K.E.; Tsoukas, M.A.; Geladari, E.V.; Huh, J.Y.; Dincer, F.; et al. Circulating irisin in relation to insulin resistance and the metabolic syndrome. J. Clin. Endocrinol. Metab. 2013, 98, 4899–4907. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Sotelo, D.; Roca-Rivada, A.; Baamonde, I.; Baltar, J.; Castro, A.I.; Domínguez, E.; Collado, M.; Casanueva, F.F.; Pardo, M. Lack of adipocyte-Fndc5/Irisin expression and secretion reduced thermogenesis and enhanced adipogenesis. Sci. Rep. 2017, 7, 16289. [Google Scholar] [CrossRef] [PubMed]
Pre | 3 Months | 6 Months | 9 Months | 12 Months | p-Value a | |
---|---|---|---|---|---|---|
Weight (Kg) | 114.4 ± 18.7 | 92.8 ± 14.1 | 86.3 ±12.6 | 83.5 ± 13.2 | 80.5 ±15.0 | <0.001 |
BMI (kg/m2) | 40.6 ± 4.2 | 32.9 ± 3.3 | 30.6 ± 3.0 | 29.6 ± 3.24 | 28.1 ± 3.49 | <0.001 |
AC (cm) | 119.0 ±14.3 | 106.3 ± 12.4 | 100.4 ± 10.9 | 97.2 ± 10.3 | 94.7 ± 11.6 | <0.001 |
%EWL | NA | 52.7 ± 17.9 | 66.8 ± 16.4 | 73.1 ± 19.3 | 79.4 ± 19.6 | <0.001 |
SBP (mmHg) | 136.4 ±21.6 | 121.4 ± 6.7 | 124.6 ± 9.6 | 119.3 ± 10.0 | 117.2 ± 11.1 | 0.006 |
DBP (mmHg) | 87.2 ± 16.4 | 75.6 ± 5.7 | 77.3 ± 6.4 | 75.2 ± 8.0 | 74.4 ± 10.2 | 0.001 |
TG (mg/dL) | 181.3 ± 135.6 | 108.7 ± 52.4 | 105.3 ± 53.0 | 85.6 ± 26.7 | 84.3 ± 25.7 | <0.001 |
HDL (mg/dL) | 42.6 ± 10.1 | 41.7 ± 9.2 | 50.6 ± 11.9 | 53.7 ± 13.3 | 55.6 ± 12.8 | <0.001 |
Fasting glucose (mg/dL) | 103.7 ± 20.7 | 94.2 ± 14.4 | 93.4 ± 10.6 | 92.8 ± 11.1 | 90.3 ± 11.1 | 0.055 |
HbA1C (%) | 6.19 ± 1.04 | 5.45 ± 0.48 | 5.35 ± 0.41 | 5.39 ± 0.37 | 5.27 ± 0.38 | <0.001 |
Fasting insulin (µU/mL) | 18.2± 7.04 | 10.9 ± 3.8 | 10.7± 5.4 | 9.8± 2.8 | 10.1 ± 3.1 | 0.002 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.J.; Heo, Y.; Choi, J.-H.; Park, S.; Kim, K.K.; Shin, D.W.; Kang, J.-H. Association of Circulating Irisin Concentrations with Weight Loss after Roux-en-Y Gastric Bypass Surgery. Int. J. Environ. Res. Public Health 2019, 16, 660. https://doi.org/10.3390/ijerph16040660
Lee YJ, Heo Y, Choi J-H, Park S, Kim KK, Shin DW, Kang J-H. Association of Circulating Irisin Concentrations with Weight Loss after Roux-en-Y Gastric Bypass Surgery. International Journal of Environmental Research and Public Health. 2019; 16(4):660. https://doi.org/10.3390/ijerph16040660
Chicago/Turabian StyleLee, Yeon Ji, Yoonseok Heo, Ji-Ho Choi, Sunghyouk Park, Kyoung Kon Kim, Dong Wun Shin, and Ju-Hee Kang. 2019. "Association of Circulating Irisin Concentrations with Weight Loss after Roux-en-Y Gastric Bypass Surgery" International Journal of Environmental Research and Public Health 16, no. 4: 660. https://doi.org/10.3390/ijerph16040660
APA StyleLee, Y. J., Heo, Y., Choi, J. -H., Park, S., Kim, K. K., Shin, D. W., & Kang, J. -H. (2019). Association of Circulating Irisin Concentrations with Weight Loss after Roux-en-Y Gastric Bypass Surgery. International Journal of Environmental Research and Public Health, 16(4), 660. https://doi.org/10.3390/ijerph16040660