Health-Associated Nutrition and Exercise Behaviors in Relation to Metabolic Risk Factors Stratified by Body Mass Index
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Study Population
2.3. Assessment of Nutrition and Exercise Behaviors
2.4. Definition of Different BMI Levels
2.5. Measurements of MRFs
2.6. Statistical Analysis
3. Results
3.1. Descriptive Statistics of the Participants’ Personal Characteristics by BMI Levels
3.2. Relationships between BMI Levels and Metabolic Risk Factors
3.3. Crude Correlations of Metabolic Risk Factors and Health Behavior
3.4. Metabolic Risk Factors in Relation to Nutrition and Exercise Health Behavior According to Different BMI Levels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Han, T.S.; Lean, M.E. A clinical perspective of obesity, metabolic syndrome and cardiovascular disease. JRSM Cardiovasc. Dis. 2016, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramezankhani, A.; Azizi, F.; Hadaegh, F.; Eskandari, F. Sex-specific clustering of metabolic risk factors and their association with incident cardiovascular diseases: A population-based prospective study. Atherosclerosis 2017, 263, 249–256. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Fact Sheet: Cardiovascular Diseases (CVDs). Updated: May 2017. Available online: http://www.who.int/mediacentre/factsheets/fs317/en/. (accessed on 15 April 2018).
- Taiwan Ministry of Health and Welfare. 2016 Statistics of Causes of Death. Created: 19 June 2017. Last Updated: 31 March 2018. Available online: https://www.mohw.gov.tw/cp-3327-33592-2.html (accessed on 28 April 2018).
- Young, C.H.; Yang, C.F.; Kuo, C.Y. Causes of death in workers from 2003 to 2008. J. Occup. Saf. Health 2014, 22, 169–178. [Google Scholar]
- Zhang, X.E.; Cheng, B.; Wang, Q.; Wan, J.J. Association of gender-specific risk factors in metabolic and cardiovascular diseases: An NHANES-based cross-sectional study. J. Investig. Med. 2017, 66, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Fazeli Moghadam, E.; Tadevosyan, A.; Fallahi, E.; Goodarzi, R. Nutritional factors and metabolic variables in relation to the risk of coronary heart disease: A case control study in Armenian adults. Diabetes Metab Syndr. 2017, 11, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Liu, J.; Ning, G. Active smoking and risk of metabolic syndrome: A meta-analysis of prospective studies. PLoS ONE 2012, 7, e47791. [Google Scholar] [CrossRef]
- Sia, H.K.; Su, Y.C.; Tang, F.C. Workplace health promotion in practice for metabolic syndrome. Ind. Saf. Hyg. 2012, 276, 38–42. (In Chinese) [Google Scholar]
- Groeneveld, I.F.; Proper, K.I.; van der Beek, A.J.; Hildebrandt, V.H.; van Mechelen, W. Lifestyle-focused interventions at the workplace to reduce the risk of cardiovascular disease—A systematic review. Scand. J. Work Environ. Health 2010, 36, 202–215. [Google Scholar] [CrossRef]
- Winkvist, A.; Klingberg, S.; Nilsson, L.M.; Wennberg, M.; Renstrom, F.; Hallmans, G.; Boman, K.; Johansson, I. Longitudinal 10-year changes in dietary intake and associations with cardio-metabolic risk factors in the Northern Sweden Health and Disease Study. Nutr. J. 2017, 16, 20. [Google Scholar] [CrossRef]
- Lutsey, P.L.; Steffen, L.M.; Stevens, J. Dietary intake and the development of the metabolic syndrome: The Atherosclerosis Risk in Communities study. Circulation 2008, 117, 754–761. [Google Scholar] [CrossRef]
- Wang, X.; Ouyang, Y.; Liu, J.; Zhu, M.; Zhao, G.; Bao, W.; Hu, F.B. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2014, 349, g4490. [Google Scholar] [CrossRef] [PubMed]
- Hooper, L.; Martin, N.; Abdelhamid, A.; Davey Smith, G. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst. Rev. 2015, 6, CD011737. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, I.A.; Wanders, A.J.; Katan, M.B. Trans fatty acids and cardiovascular health: Research completed? Eur. J. Clin. Nutr. 2013, 67, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Booker, C.S.; Mann, J.I. Trans fatty acids and cardiovascular health: Translation of the evidence base. Nutr. Met. Cardiovasc. Dis. 2008, 18, 448–456. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, H.; Kim, K.; Park, J.H.; Kim, S.; Oh, J. A higher salt intake leads to a lower rate of adequate blood pressure control. J. Korean Med. Sci. 2014, 29 (Suppl. S2), S103–S108. [Google Scholar] [CrossRef] [PubMed]
- Mendis, S.; Puska, P.; Norrving, B. World Health Organization. Global Atlas on Cardiovascular Disease Prevention and Control. World Health Organization in collaboration with the World Heart Federation and the World Stroke Organization. 2011, pp. 3–18. Available online: https://apps.who.int/iris/handle/10665/44701 (accessed on 21 February 2018).
- He, F.J.; MacGregor, G.A. Salt and sugar: Their effects on blood pressure. Pflug. Arch. Eur. J. Physiol. 2015, 467, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Te Morenga, L.A.; Howatson, A.J.; Jones, R.M.; Mann, J. Dietary sugars and cardiometabolic risk: Systematic review and meta-analyses of randomized controlled trials of the effects on blood pressure and lipids. Am. J. Clin. Nutr. 2014, 100, 65–79. [Google Scholar] [CrossRef]
- Micha, R.; Michas, G.; Mozaffarian, D. Unprocessed red and processed meats and risk of coronary artery disease and type 2 diabetes—An updated review of the evidence. Curr. Atheroscler. Rep. 2012, 14, 515–524. [Google Scholar] [CrossRef]
- Kelley, G.A.; Kelley, K.S.; Roberts, S.; Haskell, W. Comparison of aerobic exercise, diet or both on lipids and lipoproteins in adults: A meta-analysis of randomized controlled trials. Clin. Nutr. 2012, 31, 156–167. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.H.; Cheng, F.C.; Tsai, L.C.; Lee, N.Y.; Lu, Y.F. Appropriate physical activity and dietary intake achieve optimal metabolic control in older type 2 diabetes patients. J. Diabetes Investig. 2014, 5, 418–427. [Google Scholar] [CrossRef]
- Kruger, J.; Yore, M.M.; Kohl, H.W. Physical activity levels and weight control status by body mass index, among adults—National Health and Nutrition Examination Survey 1999–2004. Int. J. Behav. Nutr. Phys. Act. 2008, 5, 25. [Google Scholar] [CrossRef] [PubMed]
- Chudyk, A.; Petrella, R.J. Effects of exercise on cardiovascular risk factors in type 2 diabetes: A meta-analysis. Diabetes Care 2011, 34, 1228–1237. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Target Heart Rate and Estimated Maximum Heart Rate. Page Last Updated: 10 August 2015. Available online: https://www.cdc.gov/physicalactivity/basics/measuring/heartrate.htm (accessed on 26 February 2018).
- American Heart Association. American Heart Association Recommendations for Physical Activity in Adults. Available online: http://www.heart.org/HEARTORG/HealthyLiving/PhysicalActivity/FitnessBasics/American-Heart-Association-Recommendations-for-Physical-Activity-in-Adults_UCM_307976_Article.jsp#.Wo_c2ehuY2w (accessed on 16 April 2018).
- Mooney, S.J.; Baecker, A.; Rundle, A.G. Comparison of anthropometric and body composition measures as predictors of components of the metabolic syndrome in a clinical setting. Obes. Res. Clin. Pract. 2013, 7, e55–e66. [Google Scholar] [CrossRef]
- Mandviwala, T.; Khalid, U.; Deswal, A. Obesity and Cardiovascular Disease: A Risk Factor or a Risk Marker? Curr. Atheroscler. Rep. 2016, 18, 21. [Google Scholar] [CrossRef] [PubMed]
- Van der Heijden, D.J.; van Leeuwen, M.A.H.; Janssens, G.N.; Lenzen, M.J.; van de Ven, P.M.; Eringa, E.C.; van Royen, N. Body Mass Index Is Associated with Microvascular Endothelial Dysfunction in Patients With Treated Metabolic Risk Factors and Suspected Coronary Artery Disease. J. Am. Heart Assoc. 2017, 6, e006082. [Google Scholar] [CrossRef]
- Crowe, C.; Gibson, I.; Cunningham, K.; Kerins, C.; Costello, C.; Windle, J.; Paula, M.O.; Hynes, M.; McGuire, B.; Kilkelly, K.; et al. Effects of an eight-week supervised, structured lifestyle modification programme on anthropometric, metabolic and cardiovascular risk factors in severely obese adults. BMC Endocr. Disord. 2015, 15, 37. [Google Scholar] [CrossRef]
- Liu, R.H.; Wharton, S.; Sharma, A.M.; Ardern, C.I.; Kuk, J.L. Influence of a clinical lifestyle-based weight loss program on the metabolic risk profile of metabolically normal and abnormal obese adults. Obesity 2013, 21, 1533–1539. [Google Scholar] [CrossRef] [Green Version]
- Villareal, D.T.; Miller, B.V.; Banks, M.; Fontana, L.; Sinacore, D.R.; Klein, S. Effect of lifestyle intervention on metabolic coronary heart disease risk factors in obese older adults. Am. J. Clin. Nutr. 2006, 84, 1317–1323. [Google Scholar] [CrossRef] [Green Version]
- Ritti-Dias, R.M.; Cucato, G.G.; do Prado, W.L.; Conceicao, R.D.; Santos, R.D.; Bittencourt, M.S. Self-initiated changes in physical activity levels improve cardiometabolic profiles: A longitudinal follow-up study. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 48–53. [Google Scholar] [CrossRef]
- Hasan, H.; Attlee, A.; Jan Bin Jan Mohamed, H.; Aris, N.; Bin Wan Muda, W.A.M. Counting Footsteps with a Pedometer to Improve HMW Adiponectin and Metabolic Syndrome among Young Female Adults in the United Arab Emirates. J. Obes. 2018, 2018, 1597840. [Google Scholar] [CrossRef]
- Huang, J.H.; Huang, S.L.; Li, R.H.; Wang, L.H.; Chen, Y.L.; Tang, F.C. Effects of nutrition and exercise health behaviors on predicted risk of cardiovascular disease among workers with different body mass index levels. Int. J. Environ. Res. Public Health 2014, 11, 4664–4675. [Google Scholar] [CrossRef] [PubMed]
- Walker, S.N.; Sechrist, K.R.; Pender, N.J. The Health-Promoting Lifestyle Profile: Development and psychometric characteristics. Nurs. Res. 1987, 36, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Walker, S.N.; Sechrist, K.R.; Pender, N.J. Health Promotion Model—Instruments to Measure Health Promoting Lifestyle: Health-Promoting Lifestyle Profile [HPLP II] (Adult Version). 1995. Available online: https://deepblue.lib.umich.edu/handle/2027.42/85349 (accessed on 16 March 2017).
- Hulmem, P.A.; Walker, S.N.; Effle, K.J.; Jorgensen, L.; McGowan, M.G.; Nelson, J.D.; Pratt, E.N. Health-promoting lifestyle behaviors of Spanish-speaking Hispanic adults. J. Transcult Nurs. 2003, 14, 244–254. [Google Scholar] [CrossRef]
- Pinar, R.; Celik, R.; Bahcecik, N. Reliability and construct validity of the Health-Promoting Lifestyle Profile II in an adult Turkish population. Nurs Res. 2009, 58, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Meihan, L.; Chung-Ngok, W. Validation of the psychometric properties of the health-promoting lifestyle profile in a sample of Taiwanese women. Qual. Life Res. 2011, 20, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Taiwan Health Promotion Administration, Ministry of Health and Welfare. BMI Measurements. Available online: http://health99.hpa.gov.tw/OnlinkHealth/Onlink_BMI.aspx (accessed on 24 February 2018).
- Alexander, C.M.; Landsman, P.B.; Teutsch, S.M.; Haffner, S.M. NCEP-defined metabolic syndrome, diabetes, and prevalence of coronary heart disease among NHANES III participants age 50 years and older. Diabetes 2003, 52, 1210–1214. [Google Scholar] [CrossRef] [PubMed]
- Hwang, L.C.; Bai, C.H.; Chen, C.J. Prevalence of obesity and metabolic syndrome in Taiwan. J. Formos. Med. Assoc. 2006, 105, 626–635. [Google Scholar] [CrossRef]
- Marfell-Jones, M.J.; Stewart, A.D.; de Ridder, J.H. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Wellington, New Zealand, 2012. [Google Scholar]
- McGuire, S. U.S. Department of Agriculture and U.S. Department of Health and Human Services, Dietary Guidelines for Americans, 2010. 7th Edition, Washington, DC: U.S. Government Printing Office, January 2011. Adv. Nutr. 2011, 2, 293–294. [Google Scholar] [CrossRef] [Green Version]
- Taiwan Health Promotion Administration, Ministry of Health and Welfare. Dietary Guidelines for Taiwan. 2018. Available online: https://www.hpa.gov.tw/Pages/EBook.aspx?nodeid=1208 (accessed on 10 June 2018). (In Chinese)
- Colberg, S.R.; Sigal, R.J.; Fernhall, B.; Regensteiner, J.G.; Blissmer, B.J.; Rubin, R.R.; Chasan-Taber, L.; Albright, A.L.; Braun, B.; American College of Sports Medicine; et al. Exercise and type 2 diabetes: American College of Sports Medicine and the American Diabetes Association: Joint position statement. Exercise and type 2 diabetes. Med. Sci. Sports Exerc. 2010, 42, 2282–2303. [Google Scholar]
- Yang, T.J.; Wu, C.L.; Chiu, C.H. High-Intensity Intermittent Exercise Increases Fat Oxidation Rate and Reduces Postprandial Triglyceride Concentrations. Nutrients 2018, 10, 492. [Google Scholar] [CrossRef]
- Ostman, C.; Smart, N.A.; Morcos, D.; Duller, A.; Ridley, W.; Jewiss, D. The effect of exercise training on clinical outcomes in patients with the metabolic syndrome: A systematic review and meta-analysis. Cardiovasc. Diabetol. 2017, 16, 110. [Google Scholar] [CrossRef] [PubMed]
- Preethi, B.L.; Jaisri, J. Risk stratification of body mass index. NJMR 2014, 4, 1–6. [Google Scholar]
- Pearson, T.A.; Mensah, G.A.; Alexander, R.W.; Anderson, J.L.; Cannon, R.O., III; Criqui, M.; Fadl, Y.Y.; Fortmann, S.P.; Hong, Y.; Myers, G.L.; et al. Markers of inflammation and cardiovascular disease: Application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 2003, 107, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Punia, S.; Kulandaivelan, S.; Singh, V.; Punia, V. Effect of Aerobic Exercise Training on Blood Pressure in Indians: Systematic Review. Int. J. Chronic Dis. 2016, 2016, 1370148. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.; Wang, L. Reducing effect of aerobic exercise on blood pressure of essential hypertensive patients: A meta-analysis. Medicine 2017, 96, e6150. [Google Scholar] [CrossRef] [PubMed]
- Kelley, G.A.; Kelley, K.S. Progressive resistance exercise and resting blood pressure: A meta-analysis of randomized controlled trials. Hypertension 2000, 35, 838–843. [Google Scholar] [CrossRef] [PubMed]
- Ashley, E.A.; Niebauer, J. Cardiology Explained. Chapter 6 Hypertension; Remedica: London, UK, 2004. Available online: https://www.ncbi.nlm.nih.gov/books/NBK2217/ (accessed on 16 June 2018).
- Talukder, M.A.; Johnson, W.M.; Varadharaj, S.; Lian, J.; Kearns, P.N.; El-Mahdy, M.A.; Liu, X.; Zweier, J.L. Chronic cigarette smoking causes hypertension, increased oxidative stress, impaired NO bioavailability, endothelial dysfunction, and cardiac remodeling in mice. Am. J. Physiol. Heart Circ. Physiol. 2011, 300, H388–H396. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Heshka, S.; Wang, J.; Gallagher, D.; Deurenberg, P.; Chen, Z.; Heymsfield, S.B. Metabolically active portion of fat-free mass: A cellular body composition level modeling analysis. Am. J. Physiol. Endocrinol. Metab. 2007, 292, E49–E53. [Google Scholar] [CrossRef]
- Xiang, B.Y.; Huang, W.; Zhou, G.Q.; Hu, N.; Chen, H.; Chen, C. Body mass index and the risk of low bone mass-related fractures in women compared with men: A PRISMA-compliant meta-analysis of prospective cohort studies. Medicine 2017, 96, e5290. [Google Scholar] [CrossRef]
- Dobner, J.; Kaser, S. Body mass index and the risk of infection—From underweight to obesity. Clin. Microbiol. Infect. 2017, 24, 24–28. [Google Scholar] [CrossRef]
Variables † | Total | BMI (kg/m2) Levels | p | |||
---|---|---|---|---|---|---|
BMI < 18.5 (Underweight) | 18.5 ≤ BMI < 24 (Ideal Weight) | 24 ≤ BMI < 27 (Overweight) | BMI ≥ 27 (Obesity) | |||
n (%) | 4017 (100) | 112 (2.8) | 1852 (46.1) | 1287 (32.0) | 766 (19.1) | |
Gender | ||||||
Male | 3286 (81.8) | 68 (2.1) | 1412 (43.0) | 1121 (34.1) | 685 (20.8) | <0.001 |
Female | 731 (18.2) | 44 (6.0) | 440 (60.2) | 166 (22.7) | 81 (11.1) | |
Age (year) | 43.1 ± 10.0 | 41.5 ± 10.6 | 43.2 ± 10.1 | 44.0 ± 9.8 | 41.8 ± 9.6 | <0.001 |
Nutrition health behavior | 2.47 ± 0.44 | 2.51 ± 0.49 | 2.49 ± 0.45 | 2.46 ± 0.44 | 2.43 ± 0.40 | 0.007 |
Exercise health behavior | 1.96 ± 0.56 | 1.90 ± 0.47 | 1.98 ± 0.58 | 1.96 ± 0.56 | 1.91 ± 0. 53 | 0.015 |
Variables | WC (cm) | FBG (mg/dL) | SBP (mmHg) | DBP (mmHg) | HDL-C (mg/dL) | TG (mg/dL) |
---|---|---|---|---|---|---|
BMI (kg/m2) levels | ||||||
BMI < 18.5 (Underweight, UW) | 66.5 ± 5.2 [66.0] | 88.0 ± 10.2 [87.0] | 115.9 ± 15.7 [114.0] | 75.3 ± 11.0 [75.0] | 63.8 ± 12.0 [63.2] | 79.5 ± 34.0 [74.0] |
18.5 ≤ BMI < 24 (Ideal weight, IW) | 76.3 ± 6.2 [76.0] | 91.0 ± 16.2 [89.0] | 119.5 ± 14.4 [119.0] | 76.3 ± 10.2 [76.0] | 56.5 ± 12.9 [55.0] | 111.5 ± 81.6 [93.0] |
24 ≤ BMI < 27 (Overweight, OW) | 84.7 ± 5.4 [85.0] | 94.5 ± 19.6 [92.0] | 124.7 ± 14.6 [124.0] | 79.7 ± 11.0 [80.0] | 50.1 ± 11.0 [48.5] | 147.7 ± 105.5 [123.0] |
BMI ≥ 27 (Obesity, OB) | 93.5 ± 8.0 [93.0] | 97.9 ± 22.8 [93.0] | 130.1 ± 16.7 [129.0] | 83.4 ± 12.5 [83.0] | 46.3 ± 10.0 [45.9] | 172.0 ± 123.7 [142.0] |
F | 1646.353 | 29.415 | 104.313 | 84.209 | 191.023 | 91.122 |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Scheffe’s post-hoc comparison | OB > OW > IW > UW | OB > OW > UW OB > OW > IW | OB > OW > UW OB > OW > IW | OB > OW > UW OB > OW > IW | UW > IW > OW > OB | OB > OW > IW > UW |
Variables | WC (cm) | FBG (mg/dL) | SBP (mmHg) | DBP (mmHg) | HDL-C (mg/dL) | TG (mg/dL) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | r | p | r | p | |
Nutrition | −0.075 | <0.001 | −0.005 | 0.763 | 0.013 | 0.425 | 0.069 | <0.001 | 0.098 | <0.001 | −0.043 | 0.007 |
Exercise | −0.054 | 0.001 | −0.015 | 0.331 | 0.086 | <0.001 | 0.098 | <0.001 | 0.092 | <0.001 | −0.043 | 0.007 |
Different BMI levels | ||||||||||||
BMI < 18.5 (Underweight) | ||||||||||||
Nutrition health behavior | −0.186 | 0.049 | 0.139 | 0.143 | 0.088 | 0.354 | 0.102 | 0.286 | 0.116 | 0.223 | 0.159 | 0.095 |
Exercise health behavior | −0.143 | 0.132 | 0.047 | 0.620 | 0.071 | 0.459 | 0.045 | 0.636 | 0.078 | 0.415 | 0.015 | 0.872 |
18.5 ≤ BMI < 24 (Ideal weight) | ||||||||||||
Nutrition health behavior | −0.077 | 0.001 | −0.002 | 0.947 | −0.005 | 0.843 | 0.061 | 0.008 | 0.094 | <0.001 | −0.019 | 0.410 |
Exercise health behavior | −0.018 | 0.427 | 0.001 | 0.957 | 0.099 † | <0.001 | 0.110 | <0.001 | 0.072 | 0.002 | −0.054 | 0.021 |
24 ≤ BMI < 27 (Overweight) | ||||||||||||
Nutrition health behavior | −0.035 | 0.207 | −0.002 | 0.956 | 0.069 | 0.013 | 0.113 | <0.001 | 0.084 | 0.003 | −0.057 | 0.040 |
Exercise health behavior | −0.036 | 0.199 | −0.015 | 0.594 | 0.086 | 0.002 | 0.102 | <0.001 | 0.121 | <0.001 | −0.019 | 0.506 |
BMI ≥ 27 (Obesity) | ||||||||||||
Nutrition health behavior | −0.007 | 0.851 | 0.010 | 0.790 | 0.031 | 0.389 | 0.091 | 0.011 | 0.047 | 0.199 | −0.021 | 0.570 |
Exercise health behavior | −0.077 | 0.034 | −0.027 | 0.458 | 0.132 | <0.001 | 0.144 | <0.001 | 0.065 | 0.074 | −0.032 | 0.370 |
Variables | WC (cm) | FBG (mg/dL) | SBP (mmHg) | DBP (mmHg) | HDL-C (mg/dL) | TG (mg/dL) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B | β | p | B | β | p | B | β | p | B | β | p | B | β | p | B | β | p | |
Different BMI levels † | ||||||||||||||||||
BMI < 18.5 (Underweight) | ||||||||||||||||||
Nutrition health behavior | 1.079 | 0.101 | 0.276 | 1.139 | 0.055 | 0.643 | 0.819 | 0.026 | 0.823 | 1.089 | 0.049 | 0.672 | −3.072 | −0.126 | 0.256 | 10.095 | 0.146 | 0.220 |
Exercise health behavior | −1.130 | −0.102 | 0.237 | −1.760 | −0.081 | 0.458 | −1.469 | −0.044 | 0.678 | −1.990 | −0.086 | 0.423 | −0.382 | −0.015 | 0.883 | −9.679 | −0.134 | 0.222 |
18.5 ≤ BMI < 24 (Ideal weight) | ||||||||||||||||||
Nutrition health behavior | 0.336 | 0.024 | 0.277 | 0.544 | 0.016 | 0.582 | −1.411 | −0.044 | 0.090 | −0.847 | −0.037 | 0.141 | −1.124 | −0.039 | 0.166 | 0.533 | 0.003 | 0.918 |
Exercise health behavior | −0.947 | −0.088 | <0.001 | −0.737 | −0.026 | 0.315 | 1.552 | 0.062 | 0.012 | 0.685 | 0.039 | 0.116 | 1.545 | 0.069 | 0.006 | −12.710 | −0.090 | 0.001 |
24 ≤ BMI < 27 (Overweight) | ||||||||||||||||||
Nutrition health behavior | 0.043 | 0.003 | 0.896 | −0.151 | −0.003 | 0.915 | 0.445 | 0.013 | 0.662 | 0.426 | 0.017 | 0.553 | −0.226 | −0.009 | 0.770 | −18.386 | −0.076 | 0.016 |
Exercise health behavior | −1.067 | −0.109 | <0.001 | −1.447 | −0.041 | 0.191 | 0.385 | 0.015 | 0.626 | −0.073 | −0.004 | 0.896 | 2.290 | 0.116 | <0.001 | −3.496 | −0.018 | 0.556 |
BMI ≥ 27 (Obesity) | ||||||||||||||||||
Nutrition health behavior | 0.734 | 0.037 | 0.344 | 0.760 | 0.013 | 0.742 | −3.158 | −0.075 | 0.050 | −1.354 | −0.043 | 0.236 | −0.789 | −0.031 | 0.419 | −2.672 | −0.009 | 0.831 |
Exercise health behavior | −2.056 | −0.137 | <0.001 | −2.261 | −0.053 | 0.194 | 2.541 | 0.081 | 0.036 | 1.076 | 0.046 | 0.211 | 0.731 | 0.039 | 0.319 | −10.712 | −0.046 | 0.255 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.-H.; Li, R.-H.; Huang, S.-L.; Sia, H.-K.; Hsu, W.-T.; Tang, F.-C. Health-Associated Nutrition and Exercise Behaviors in Relation to Metabolic Risk Factors Stratified by Body Mass Index. Int. J. Environ. Res. Public Health 2019, 16, 869. https://doi.org/10.3390/ijerph16050869
Huang J-H, Li R-H, Huang S-L, Sia H-K, Hsu W-T, Tang F-C. Health-Associated Nutrition and Exercise Behaviors in Relation to Metabolic Risk Factors Stratified by Body Mass Index. International Journal of Environmental Research and Public Health. 2019; 16(5):869. https://doi.org/10.3390/ijerph16050869
Chicago/Turabian StyleHuang, Jui-Hua, Ren-Hau Li, Shu-Ling Huang, Hon-Ke Sia, Wei-Ting Hsu, and Feng-Cheng Tang. 2019. "Health-Associated Nutrition and Exercise Behaviors in Relation to Metabolic Risk Factors Stratified by Body Mass Index" International Journal of Environmental Research and Public Health 16, no. 5: 869. https://doi.org/10.3390/ijerph16050869
APA StyleHuang, J. -H., Li, R. -H., Huang, S. -L., Sia, H. -K., Hsu, W. -T., & Tang, F. -C. (2019). Health-Associated Nutrition and Exercise Behaviors in Relation to Metabolic Risk Factors Stratified by Body Mass Index. International Journal of Environmental Research and Public Health, 16(5), 869. https://doi.org/10.3390/ijerph16050869