Hypospadias Risk from Maternal Residential Exposure to Heavy Metal Hazardous Air Pollutants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Environmental Exposure Assessment
2.3. Potential Confounders
2.4. Statistical Analysis
2.5. Reporting Guidelines
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Carmichael, S.L.; Shaw, G.M.; Lammer, E.J. Environmental and genetic contributors to hypospadias: a review of the epidemiologic evidence. Birth Defects Res. A Clin. Mol. Teratol. 2012, 94, 499–510. [Google Scholar] [CrossRef] [PubMed]
- De Graaf, P.; van der Linde, E.M.; Rosier, P.; Izeta, A.; Sievert, K.D.; Bosch, J.; de Kort, L.M.O. Systematic Review to Compare Urothelium Differentiation with Urethral Epithelium Differentiation in Fetal Development, as a Basis for Tissue Engineering of the Male Urethra. Tissue Eng. Part B Rev. 2017, 23, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Yamada, G.; Suzuki, K.; Haraguchi, R.; Miyagawa, S.; Satoh, Y.; Kamimura, M.; Nakagata, N.; Kataoka, H.; Kuroiwa, A.; Chen, Y. Molecular genetic cascades for external genitalia formation: An emerging organogenesis program. Dev. Dyn. 2006, 235, 1738–1752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chul Kim, S.; Kyoung Kwon, S.; Pyo Hong, Y. Trends in the incidence of cryptorchidism and hypospadias of registry-based data in Korea: A comparison between industrialized areas of petrochemical estates and a non-industrialized area. Asian J. Androl. 2011, 13, 715–718. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.K.; Lamichhane, D.K.; Kim, H.C.; Leem, J.H. Trends in the Prevalences of Selected Birth Defects in Korea (2008–2014). Int. J. Environ. Res. Public Health 2018, 15, 923. [Google Scholar] [CrossRef]
- Springer, A.; van den Heijkant, M.; Baumann, S. Worldwide prevalence of hypospadias. J. Pediatr. Urol. 2016, 12, 152.e1–152.e7. [Google Scholar] [CrossRef]
- Paulozzi, L.J.; Erickson, J.D.; Jackson, R.J. Hypospadias trends in two US surveillance systems. Pediatrics 1997, 100, 831–834. [Google Scholar] [CrossRef] [PubMed]
- Paulozzi, L.J. International trends in rates of hypospadias and cryptorchidism. Environ. Health Perspect. 1999, 107, 297–302. [Google Scholar] [CrossRef]
- Elliott, C.S.; Halpern, M.S.; Paik, J.; Maldonado, Y.; Shortliffe, L.D. Epidemiologic trends in penile anomalies and hypospadias in the state of California, 1985–2006. J. Pediatr. Urol. 2011, 7, 294–298. [Google Scholar] [CrossRef]
- Fernandez, N.; Perez, J.; Monterrey, P.; Poletta, F.A.; Bagli, D.J.; Lorenzo, A.J.; Zarante, I. ECLAMC Study: Prevalence patterns of hypospadias in South America: Multi-national analysis over a 24-year period. Int. Braz. J. Urol. 2017, 43, 325–334. [Google Scholar] [CrossRef]
- Ren, S.; Haynes, E.; Hall, E.; Hossain, M.; Chen, A.; Muglia, L.; Lu, L.; DeFranco, E. Periconception Exposure to Air Pollution and Risk of Congenital Malformations. J. Pediatr. 2018, 193, 76–84.e6. [Google Scholar] [CrossRef] [PubMed]
- Bonde, J.P.; Flachs, E.M.; Rimborg, S.; Glazer, C.H.; Giwercman, A.; Ramlau-Hansen, C.H.; Hougaard, K.S.; Hoyer, B.B.; Haervig, K.K.; Petersen, S.B.; et al. The epidemiologic evidence linking prenatal and postnatal exposure to endocrine disrupting chemicals with male reproductive disorders: A systematic review and meta-analysis. Hum. Reprod. Update 2016, 23, 104–125. [Google Scholar] [CrossRef] [PubMed]
- Bouty, A.; Ayers, K.L.; Pask, A.; Heloury, Y.; Sinclair, A.H. The Genetic and Environmental Factors Underlying Hypospadias. Sex. Dev. 2015, 9, 239–259. [Google Scholar] [CrossRef] [Green Version]
- Carbone, P.; Giordano, F.; Nori, F.; Mantovani, A.; Taruscio, D.; Lauria, L.; Figa-Talamanca, I. The possible role of endocrine disrupting chemicals in the aetiology of cryptorchidism and hypospadias: A population-based case-control study in rural Sicily. Int. J. Androl. 2007, 30, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Cordier, S.; Garlantezec, R.; Labat, L.; Rouget, F.; Monfort, C.; Bonvallot, N.; Roig, B.; Pulkkinen, J.; Chevrier, C.; Multigner, L. Exposure during pregnancy to glycol ethers and chlorinated solvents and the risk of congenital malformations. Epidemiology 2012, 23, 806–812. [Google Scholar] [CrossRef]
- Fernandez, M.F.; Arrebola, J.P.; Jimenez-Diaz, I.; Saenz, J.M.; Molina-Molina, J.M.; Ballesteros, O.; Kortenkamp, A.; Olea, N. Bisphenol A and other phenols in human placenta from children with cryptorchidism or hypospadias. Reprod. Toxicol. 2016, 59, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.F.; Olmos, B.; Granada, A.; Lopez-Espinosa, M.J.; Molina-Molina, J.M.; Fernandez, J.M.; Cruz, M.; Olea-Serrano, F.; Olea, N. Human exposure to endocrine-disrupting chemicals and prenatal risk factors for cryptorchidism and hypospadias: A nested case-control study. Environ. Health Perspect. 2007, 115 (Suppl. 1), 8–14. [Google Scholar] [CrossRef]
- Garlantezec, R.; Monfort, C.; Rouget, F.; Cordier, S. Maternal occupational exposure to solvents and congenital malformations: A prospective study in the general population. Occup. Environ. Med. 2009, 66, 456–463. [Google Scholar] [CrossRef]
- Giordano, F.; Abballe, A.; De Felip, E.; di Domenico, A.; Ferro, F.; Grammatico, P.; Ingelido, A.M.; Marra, V.; Marrocco, G.; Vallasciani, S.; et al. Maternal exposures to endocrine disrupting chemicals and hypospadias in offspring. Birth Defects Res. A Clin. Mol. Teratol. 2010, 88, 241–250. [Google Scholar] [CrossRef]
- Kalfa, N.; Paris, F.; Philibert, P.; Orsini, M.; Broussous, S.; Fauconnet-Servant, N.; Audran, F.; Gaspari, L.; Lehors, H.; Haddad, M.; et al. Is Hypospadias Associated with Prenatal Exposure to Endocrine Disruptors? A French Collaborative Controlled Study of a Cohort of 300 Consecutive Children Without Genetic Defect. Eur. Urol. 2015, 68, 1023–1030. [Google Scholar] [CrossRef]
- Lindbohm, M.L. Effects of parental exposure to solvents on pregnancy outcome. J. Occup. Environ. Med. 1995, 37, 908–914. [Google Scholar] [CrossRef]
- Marrocco, G.; Grammatico, P.; Vallasciani, S.; Gulia, C.; Zangari, A.; Marrocco, F.; Bateni, Z.H.; Porrello, A.; Piergentili, R. Environmental, parental and gestational factors that influence the occurrence of hypospadias in male patients. J. Pediatr. Urol. 2015, 11, 12–19. [Google Scholar] [CrossRef]
- Molina-Molina, J.M.; Amaya, E.; Grimaldi, M.; Saenz, J.M.; Real, M.; Fernandez, M.F.; Balaguer, P.; Olea, N. In vitro study on the agonistic and antagonistic activities of bisphenol-S and other bisphenol-A congeners and derivatives via nuclear receptors. Toxicol. Appl. Pharmacol. 2013, 272, 127–136. [Google Scholar] [CrossRef]
- Nassar, N.; Abeywardana, P.; Barker, A.; Bower, C. Parental occupational exposure to potential endocrine disrupting chemicals and risk of hypospadias in infants. Occup. Environ. Med. 2010, 67, 585–589. [Google Scholar] [CrossRef]
- Ormond, G.; Nieuwenhuijsen, M.J.; Nelson, P.; Toledano, M.B.; Iszatt, N.; Geneletti, S.; Elliott, P. Endocrine disruptors in the workplace, hair spray, folate supplementation, and risk of hypospadias: Case-control study. Environ. Health Perspect. 2009, 117, 303–307. [Google Scholar] [CrossRef]
- Pierik, F.H.; Burdorf, A.; Deddens, J.A.; Juttmann, R.E.; Weber, R.F. Maternal and paternal risk factors for cryptorchidism and hypospadias: A case-control study in newborn boys. Environ. Health Perspect. 2004, 112, 1570–1576. [Google Scholar] [CrossRef]
- Sathyanarayana, S.; Grady, R.; Barrett, E.S.; Redmon, B.; Nguyen, R.H.; Barthold, J.S.; Bush, N.R.; Swan, S.H. First trimester phthalate exposure and male newborn genital anomalies. Environ. Res. 2016, 151, 777–782. [Google Scholar] [CrossRef]
- Vaktskjold, A.; Talykova, L.V.; Nieboer, E. Congenital anomalies in newborns to women employed in jobs with frequent exposure to organic solvents—A register-based prospective study. BMC Pregnancy Childbirth 2011, 11, 83. [Google Scholar] [CrossRef]
- Warembourg, C.; Botton, J.; Lelong, N.; Rouget, F.; Khoshnood, B.; Le Gleau, F.; Monfort, C.; Labat, L.; Pierre, F.; Heude, B.; et al. Prenatal exposure to glycol ethers and cryptorchidism and hypospadias: A nested case-control study. Occup. Environ. Med. 2018, 75, 59–65. [Google Scholar] [CrossRef]
- Winston, J.J.; Emch, M.; Meyer, R.E.; Langlois, P.; Weyer, P.; Mosley, B.; Olshan, A.F.; Band, L.E.; Luben, T.J. National Birth Defects Prevention, S. Hypospadias and maternal exposure to atrazine via drinking water in the National Birth Defects Prevention study. Environ. Health 2016, 15, 76. [Google Scholar] [CrossRef]
- EPA-450/3-92-010: Technical Background Document to Support Rulemaking Pursuant to Clean Air Act Section 112(g): Ranking of Pollutants with Respect to Human Health; U.S. Environmental Protection Agency: Research Triangle Park, NC, USA, 1994.
- Rosenbaum, A.S.; Axelrad, D.A.; Woodruff, T.J.; Wei, Y.H.; Ligocki, M.P.; Cohen, J.P. National estimates of outdoor air toxics concentrations. J. Air Waste Manag. Assoc. 1999, 49, 1138–1152. [Google Scholar] [CrossRef] [PubMed]
- Texas Department of State Health Services. E58-14123: Texas Birth Defects Epidemiology and Surveillance; Texas Department of State Health Services: Austin, TX, USA, 2010.
- Rasmussen, S.A.; Olney, R.S.; Holmes, L.B.; Lin, A.E.; Keppler-Noreuil, K.M.; Moore, C.A.; National Birth Defects Prevention, S. Guidelines for case classification for the National Birth Defects Prevention Study. Birth Defects Res. A Clin. Mol. Teratol. 2003, 67, 193–201. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency. 2011 National Air Toxics Assessment; United States Environmental Protection Agency: Washington, DC, USA, 2015.
- Ozkaynak, H.; Palma, T.; Touma, J.S.; Thurman, J. Modeling population exposures to outdoor sources of hazardous air pollutants. J. Expo. Sci. Environ. Epidemiol. 2008, 18, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Padula, A.M.; Yang, W.; Carmichael, S.L.; Lurmann, F.; Balmes, J.; Hammond, S.K.; Shaw, G.M. Air pollution, neighborhood acculturation factors, and neural tube defects among Hispanic women in California. Birth Defects Res. 2017, 109, 403–422. [Google Scholar] [CrossRef] [PubMed]
- Stingone, J.A.; Luben, T.J.; Daniels, J.L.; Fuentes, M.; Richardson, D.B.; Aylsworth, A.S.; Herring, A.H.; Anderka, M.; Botto, L.; Correa, A.; et al. Maternal exposure to criteria air pollutants and congenital heart defects in offspring: Results from the national birth defects prevention study. Environ. Health Perspect. 2014, 122, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Wier, M.L.; Pearl, M.; Kharrazi, M. Gestational age estimation on United States livebirth certificates: A historical overview. Paediatr. Perinat. Epidemiol. 2007, 21 (Suppl. 2), 4–12. [Google Scholar] [CrossRef] [PubMed]
- United States Census Bureau. 2005 U.S. Census Bureau Data Sets Summary File 3; United States Census Bureau: Suitland, MD, USA, 2010.
- Canon, S.; Mosley, B.; Chipollini, J.; Purifoy, J.A.; Hobbs, C. Epidemiological assessment of hypospadias by degree of severity. J. Urol. 2012, 188, 2362–2366. [Google Scholar] [CrossRef] [PubMed]
- Sheth, K.R.; Kovar, E.; White, J.T.; Chambers, T.M.; Peckham-Gregory, E.C.; O’Neill, M.; Langlois, P.H.; Seth, A.; Scheurer, M.E.; Lupo, P.J.; et al. Hypospadias risk is increased with maternal residential exposure to hormonally active hazardous air pollutants. Birth Defects Res. 2019. [Google Scholar] [CrossRef]
- Ramakrishnan, A.; Lupo, P.J.; Agopian, A.J.; Linder, S.H.; Stock, T.H.; Langlois, P.H.; Craft, E. Evaluating the effects of maternal exposure to benzene, toluene, ethyl benzene, and xylene on oral clefts among offspring in Texas: 1999–2008. Birth Defects Res. A Clin. Mol. Teratol. 2013, 97, 532–537. [Google Scholar] [CrossRef]
- Lupo, P.J.; Symanski, E.; Waller, D.K.; Chan, W.; Langlois, P.H.; Canfield, M.A.; Mitchell, L.E. Maternal exposure to ambient levels of benzene and neural tube defects among offspring: Texas, 1999–2004. Environ. Health Perspect. 2011, 119, 397–402. [Google Scholar] [CrossRef]
- Windham, G.C.; Zhang, L.; Gunier, R.; Croen, L.A.; Grether, J.K. Autism spectrum disorders in relation to distribution of hazardous air pollutants in the san francisco bay area. Environ. Health Perspect. 2006, 114, 1438–1444. [Google Scholar] [CrossRef] [PubMed]
- Whitworth, K.W.; Symanski, E.; Coker, A.L. Childhood lymphohematopoietic cancer incidence and hazardous air pollutants in southeast Texas, 1995–2004. Environ. Health Perspect. 2008, 116, 1576–1580. [Google Scholar] [CrossRef] [PubMed]
- Machiela, M.J.; Hsiung, C.A.; Shu, X.O.; Seow, W.J.; Wang, Z.; Matsuo, K.; Hong, Y.C.; Seow, A.; Wu, C.; Hosgood, H.D., 3rd; et al. Genetic variants associated with longer telomere length are associated with increased lung cancer risk among never-smoking women in Asia: A report from the female lung cancer consortium in Asia. Int. J. Cancer 2015, 137, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.; Vandenbroucke, J.P.; Initiative, S. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Agopian, A.J.; Lupo, P.J.; Canfield, M.A.; Langlois, P.H. Case-control study of maternal residential atrazine exposure and male genital malformations. Am. J. Med. Genet. A 2013, 161A, 977–982. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; Singh, S.; Siddiqi, N.J. Biomedical implications of heavy metals induced imbalances in redox systems. Biomed. Res. Int. 2014, 2014, 640754. [Google Scholar] [CrossRef]
- Van Tongeren, M.; Nieuwenhuijsen, M.J.; Gardiner, K.; Armstrong, B.; Vrijheid, M.; Dolk, H.; Botting, B. A job-exposure matrix for potential endocrine-disrupting chemicals developed for a study into the association between maternal occupational exposure and hypospadias. Ann. Occup. Hyg. 2002, 46, 465–477. [Google Scholar]
- Morales-Suarez-Varela, M.M.; Toft, G.V.; Jensen, M.S.; Ramlau-Hansen, C.; Kaerlev, L.; Thulstrup, A.M.; Llopis-Gonzalez, A.; Olsen, J.; Bonde, J.P. Parental occupational exposure to endocrine disrupting chemicals and male genital malformations: A study in the Danish National Birth Cohort study. Environ. Health 2011, 10, 3. [Google Scholar] [CrossRef]
- Agopian, A.J.; Langlois, P.H.; Ramakrishnan, A.; Canfield, M.A. Epidemiologic features of male genital malformations and subtypes in Texas. Am. J. Med. Genet. A 2014, 164A, 943–949. [Google Scholar] [CrossRef]
- Woud, S.G.; van Rooij, I.A.; van Gelder, M.M.; Olney, R.S.; Carmichael, S.L.; Roeleveld, N.; Reefhuis, J.; National Birth Defects Prevention, S. Differences in risk factors for second and third degree hypospadias in the national birth defects prevention study. Birth Defects Res. A Clin. Mol. Teratol. 2014, 100, 703–711. [Google Scholar] [CrossRef]
- Danysh, H.E.; Mitchell, L.E.; Zhang, K.; Scheurer, M.E.; Lupo, P.J. Traffic-related air pollution and the incidence of childhood central nervous system tumors: Texas, 2001–2009. Pediatr. Blood Cancer 2015, 62, 1572–1578. [Google Scholar] [CrossRef]
- Vaktskjold, A.; Talykova, L.V.; Chashchin, V.P.; Nieboer, E.; Thomassen, Y.; Odland, J.O. Genital malformations in newborns of female nickel-refinery workers. Scand. J. Work Environ. Health 2006, 32, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Oppermann, M.; Borisch, C.; Schaefer, C. Hip arthroplasty with high chromium and cobalt blood levels—Case report of a patient followed during pregnancy and lactation period. Reprod. Toxicol. 2015, 53, 51–53. [Google Scholar] [CrossRef]
- Lupo, P.J.; Symanski, E.; Chan, W.; Mitchell, L.E.; Waller, D.K.; Canfield, M.A.; Langlois, P.H. Differences in exposure assignment between conception and delivery: The impact of maternal mobility. Paediatr. Perinat. Epidemiol. 2010, 24, 200–208. [Google Scholar] [CrossRef]
- Amiri, A.; Pryor, E.; Rice, M.; Downs, C.A.; Turner-Henson, A.; Fanucchi, M.V. Formaldehyde exposure during pregnancy. MCN Am. J. Matern. Child Nurs. 2015, 40, 180–185. [Google Scholar] [CrossRef]
- Aschengrau, A.; Weinberg, J.M.; Janulewicz, P.A.; Gallagher, L.G.; Winter, M.R.; Vieira, V.M.; Webster, T.F.; Ozonoff, D.M. Prenatal exposure to tetrachloroethylene-contaminated drinking water and the risk of congenital anomalies: A retrospective cohort study. Environ. Health 2009, 8, 44. [Google Scholar] [CrossRef]
- Brender, J.D.; Shinde, M.U.; Zhan, F.B.; Gong, X.; Langlois, P.H. Maternal residential proximity to chlorinated solvent emissions and birth defects in offspring: A case-control study. Environ. Health 2014, 13, 96. [Google Scholar] [CrossRef]
- Geschwind, S.A.; Stolwijk, J.A.; Bracken, M.; Fitzgerald, E.; Stark, A.; Olsen, C.; Melius, J. Risk of congenital malformations associated with proximity to hazardous waste sites. Am. J. Epidemiol. 1992, 135, 1197–1207. [Google Scholar] [CrossRef]
- Hjortebjerg, D.; Andersen, A.M.; Garne, E.; Raaschou-Nielsen, O.; Sorensen, M. Non-occupational exposure to paint fumes during pregnancy and risk of congenital anomalies: A cohort study. Environ. Health 2012, 11, 54. [Google Scholar] [CrossRef]
- Iszatt, N.; Nieuwenhuijsen, M.J.; Nelson, P.; Elliott, P.; Toledano, M.B. Water consumption and use, trihalomethane exposure, and the risk of hypospadias. Pediatrics 2011, 127, e389–e397. [Google Scholar] [CrossRef]
- Pedersen, M.; Garne, E.; Hansen-Nord, N.; Hjortebjerg, D.; Ketzel, M.; Raaschou-Nielsen, O.; Nybo Andersen, A.M.; Sorensen, M. Exposure to air pollution and noise from road traffic and risk of congenital anomalies in the Danish National Birth Cohort. Environ. Res. 2017, 159, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Robert, E.; Harris, J.A.; Robert, O.; Selvin, S. Case-control study on maternal residential proximity to high voltage power lines and congenital anomalies in France. Paediatr. Perinat. Epidemiol. 1996, 10, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Benoff, S.; Jacob, A.; Hurley, I.R. Male infertility and environmental exposure to lead and cadmium. Hum. Reprod. Update 2000, 6, 107–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cleveland, L.M.; Minter, M.L.; Cobb, K.A.; Scott, A.A.; German, V.F. Lead hazards for pregnant women and children: Part 2: More can still be done to reduce the chance of exposure to lead in at-risk populations. Am. J. Nurs. 2008, 108, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Cleveland, L.M.; Minter, M.L.; Cobb, K.A.; Scott, A.A.; German, V.F. Lead hazards for pregnant women and children: Part 1: Immigrants and the poor shoulder most of the burden of lead exposure in this country. Part 1 of a two-part article details how exposure happens, whom it affects, and the harm it can do. Am. J. Nurs. 2008, 108, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Thulstrup, A.M.; Bonde, J.P. Maternal occupational exposure and risk of specific birth defects. Occup. Med. (Lond.) 2006, 56, 532–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisch, H.; Golden, R.J.; Libersen, G.L.; Hyun, G.S.; Madsen, P.; New, M.I.; Hensle, T.W. Maternal age as a risk factor for hypospadias. J. Urol. 2001, 165, 934–936. [Google Scholar] [CrossRef]
- Brouwers, M.M.; Feitz, W.F.; Roelofs, L.A.; Kiemeney, L.A.; de Gier, R.P.; Roeleveld, N. Risk factors for hypospadias. Eur. J. Pediatr. 2007, 166, 671–678. [Google Scholar] [CrossRef]
- Fredell, L.; Lichtenstein, P.; Pedersen, N.L.; Svensson, J.; Nordenskjold, A. Hypospadias is related to birth weight in discordant monozygotic twins. J. Urol. 1998, 160, 2197–2199. [Google Scholar] [CrossRef]
- Van Rooij, I.A.; van der Zanden, L.F.; Brouwers, M.M.; Knoers, N.V.; Feitz, W.F.; Roeleveld, N. Risk factors for different phenotypes of hypospadias: Results from a Dutch case-control study. BJU Int. 2013, 112, 121–128. [Google Scholar] [CrossRef]
- Porter, M.P.; Faizan, M.K.; Grady, R.W.; Mueller, B.A. Hypospadias in Washington State: Maternal risk factors and prevalence trends. Pediatrics 2005, 115, e495–e499. [Google Scholar] [CrossRef] [PubMed]
- Van der Zanden, L.F.; van Rooij, I.A.; Feitz, W.F.; Franke, B.; Knoers, N.V.; Roeleveld, N. Aetiology of hypospadias: A systematic review of genes and environment. Hum. Reprod. Update 2012, 18, 260–283. [Google Scholar] [CrossRef] [PubMed]
- Arendt, L.H.; Lindhard, M.S.; Henriksen, T.B.; Olsen, J.; Cnattingius, S.; Petersson, G.; Parner, E.T.; Ramlau-Hansen, C.H. Maternal Diabetes Mellitus and Genital Anomalies in Male Offspring: A Nationwide Cohort Study in 2 Nordic Countries. Epidemiology 2018, 29, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Aschim, E.L.; Haugen, T.B.; Tretli, S.; Daltveit, A.K.; Grotmol, T. Risk factors for hypospadias in Norwegian boys—Association with testicular dysgenesis syndrome? Int. J. Androl. 2004, 27, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Becerra, J.E.; Khoury, M.J.; Cordero, J.F.; Erickson, J.D. Diabetes mellitus during pregnancy and the risks for specific birth defects: A population-based case-control study. Pediatrics 1990, 85, 1–9. [Google Scholar]
- Becerra, M.B.; Allen, N.L.; Becerra, B.J. Food insecurity and low self-efficacy are associated with increased healthcare utilization among adults with type II diabetes mellitus. J. Diabetes Complicat. 2016, 30, 1488–1493. [Google Scholar] [CrossRef]
- Carmichael, S.L.; Ma, C.; Shaw, G.M.; National Birth Defects Prevention, S. Maternal Smoking, Alcohol, and Caffeine Exposures and Risk of Hypospadias. Birth Defects Res. 2017, 109, 1127–1133. [Google Scholar] [CrossRef]
- Correa, A.; Gilboa, S.M.; Besser, L.M.; Botto, L.D.; Moore, C.A.; Hobbs, C.A.; Cleves, M.A.; Riehle-Colarusso, T.J.; Waller, D.K.; Reece, E.A. Diabetes mellitus and birth defects. Am. J. Obstet. Gynecol. 2008, 199, 237.e1–237.e9. [Google Scholar] [CrossRef]
- Hakonsen, L.B.; Ernst, A.; Ramlau-Hansen, C.H. Maternal cigarette smoking during pregnancy and reproductive health in children: A review of epidemiological studies. Asian J. Androl. 2014, 16, 39–49. [Google Scholar] [CrossRef]
- Kallen, K. Role of maternal smoking and maternal reproductive history in the etiology of hypospadias in the offspring. Teratology 2002, 66, 185–191. [Google Scholar] [CrossRef]
- Marengo, L.; Farag, N.H.; Canfield, M. Body mass index and birth defects: Texas, 2005–2008. Matern. Child Health J. 2013, 17, 1898–1907. [Google Scholar] [CrossRef] [PubMed]
- Mavrogenis, S.; Urban, R.; Czeizel, A.E. Pregnancy complications in the mothers who delivered boys with isolated hypospadias—A population-based case-control study. J. Matern. Fetal Neonatal Med. 2015, 28, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Trabert, B.; Chodick, G.; Shalev, V.; Sella, T.; Longnecker, M.P.; McGlynn, K.A. Gestational diabetes and the risk of cryptorchidism and hypospadias. Epidemiology 2014, 25, 152–153. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Dobbie, R.; Finlayson, A.R.; Gilbert, J.; Youngson, G.; Chalmers, J.; Stone, D. Prevalence of hypospadias and other genital anomalies among singleton births, 1988–1997, in Scotland. Arch. Dis. Child Fetal Neonatal Ed. 2004, 89, F149–F151. [Google Scholar] [CrossRef] [PubMed]
- Dolk, H.; Vrijheid, M.; Armstrong, B.; Abramsky, L.; Bianchi, F.; Garne, E.; Nelen, V.; Robert, E.; Scott, J.E.; Stone, D.; et al. Risk of congenital anomalies near hazardous-waste landfill sites in Europe: The EUROHAZCON study. Lancet 1998, 352, 423–427. [Google Scholar] [CrossRef]
- Nelson, C.P.; Park, J.M.; Wan, J.; Bloom, D.A.; Dunn, R.L.; Wei, J.T. The increasing incidence of congenital penile anomalies in the United States. J. Urol. 2005, 174, 1573–1576. [Google Scholar] [CrossRef] [PubMed]
Demographic Characteristic | Controls | Cases | Odds Ratio (95% CI) | p |
---|---|---|---|---|
Plurality | ||||
1 | 87,408 | 8553 | 1.00 (Ref) | |
2 | 2304 | 409 | 1.81 (1.63–2.02) | <0.001 * |
3+ | 94 | 19 | 2.07 (1.26–3.38) | 0.004 * |
Maternal Age (years) | ||||
≤25 | 43,057 | 3861 | 1.00 (Ref) | |
26–30 | 23,523 | 2456 | 1.16 (1.10–1.23) | <0.001 * |
31–35 | 15,979 | 1791 | 1.25 (1.18–1.33) | <0.001 * |
>35 | 7244 | 872 | 1.34 (1.24–1.45) | <0.001 * |
Previous Live Births | ||||
0 | 34,291 | 4099 | 1.00 (Ref) | |
1 | 27,431 | 2580 | 0.79 (0.75–0.83) | <0.001 * |
2–3 | 22,177 | 1856 | 0.70 (0.66–0.74) | <0.001 * |
4+ | 3788 | 227 | 0.50 (0.44–0.57) | <0.001 * |
Race/ethnicity | ||||
Non-Hispanic white | 32,624 | 4815 | 1.00 (Ref) | |
Non-Hispanic black | 10,076 | 1200 | 0.81 (0.75–0.86) | <0.001 * |
Hispanic | 43,403 | 2624 | 0.41 (0.39–0.43) | <0.001 * |
Other | 3565 | 328 | 0.62 (0.55–0.70) | <0.001 * |
Gestational Age (weeks) | ||||
Full term (38–42) | 68,893 | 6391 | 1.00 (Ref) | |
Early term (≤37) | 16,880 | 2255 | 1.44 (1.37–1.52) | <0.001 * |
Post-term (>42) | 3734 | 301 | 0.87 (0.77–0.98) | 0.022 * |
Birth Weight (g) | ||||
Normal (2501–3999) | 75,403 | 6911 | 1.00 (Ref) | |
Low (≤2500) | 6222 | 1422 | 2.49 (2.34–2.65) | <0.001 * |
High (>3999) | 8138 | 645 | 0.86 (0.80–0.94) | 0.001 * |
Education | ||||
Less than 12 years | 27,701 | 1812 | 1.00 (Ref) | |
12 years | 26,116 | 2611 | 1.53 (1.44–1.63) | <0.001 * |
Greater than 12 years | 35,070 | 4476 | 1.95 (1.84–2.07) | <0.001 * |
Poverty density | ||||
Low | 21,731 | 2827 | 1.00 (Ref) | |
Medium-low | 20,484 | 2092 | 0.79 (0.74–0.83) | <0.001 * |
Medium-high | 24,842 | 2350 | 0.73 (0.69–0.77) | <0.001 * |
High | 22,753 | 1712 | 0.58 (0.54–0.62) | <0.001 * |
Maternal diabetes | ||||
No | 86,765 | 8636 | 1.00 (Ref) | |
Yes | 3045 | 345 | 1.14 (1.02–1.28) | 0.025 * |
Maternal smoking | ||||
No | 84,135 | 8359 | 1.00 (Ref) | |
Yes | 5280 | 576 | 1.10 (1.00–1.20) | 0.039 * |
HMHAP Exposure | Pollutant Level (μg/m3) | Cases/Controls | Unadjusted OR (95% CI) | Adjusted OR (95% CI) a | p-Trend b |
---|---|---|---|---|---|
Arsenic | |||||
Low | 0.00013–0.00036 | 1708/16,778 | 1.00 (Ref) | 1.00 (Ref) | |
Medium-low | >0.00036–0.00042 | 1631/16,749 | 0.96 (0.89–1.03) | 1.00 (0.93–1.07) | <0.001 * |
Medium | >0.00042–0.00052 | 1747/16,798 | 1.02 (0.95–1.10) | 1.08 (1.01–1.16) | |
Medium-high | >0.00052–0.00068 | 1585/16,698 | 0.93 (0.87–1.00) | 1.01 (0.94–1.09) | |
High | >0.00068–0.0054 | 1787/16,810 | 1.04 (0.97–1.12) | 1.18 (1.10–1.27) | |
Cadmium | |||||
Low | 0.000037–0.000044 | 1506/16,761 | 1.00 (Ref) | 1.00 (Ref) | |
Medium-low | >0.000044–0.000054 | 1759/16,694 | 1.17 (1.09–1.26) | 1.04 (0.96–1.11) | 0.343 |
Medium | >0.000054–0.000067 | 1890/16,735 | 1.26 (1.17–1.35) | 1.13 (1.05–1.21) | |
Medium-high | >0.000067–0.000089 | 1821/16,887 | 1.20 (1.12–1.29) | 1.11 (1.03–1.19) | |
High | >0.000089–0.0049 | 1482/16,756 | 0.98 (0.91–1.06) | 1.00 (0.93–1.08) | |
Chromium | |||||
Low | 0.000041–0.00031 | 1632/16,734 | 1.00 (Ref) | 1.00 (Ref) | |
Medium-low | >0.00031–0.00044 | 1834/16,816 | 1.12 (1.04–1.20) | 1.08 (1.00–1.16) | 0.006 * |
Medium | >0.00044–0.00061 | 1671/16,773 | 1.02 (0.95–1.10) | 1.05 (0.97–1.12) | |
Medium-high | >0.00061–0.00080 | 1722/16,730 | 1.06 (0.98–1.13) | 1.12 (1.04–1.20) | |
High | >0.00080–0.014 | 1599/16,780 | 0.98 (0.91–1.05) | 1.10 (1.02–1.19) | |
Lead | |||||
Low | 0.00049–0.0012 | 1599/16,725 | 1.00 (Ref) | 1.00 (Ref) | |
Medium-low | >0.0012–0.0015 | 1577/16,804 | 0.98 (0.91–1.06) | 0.99 (0.92–1.07) | <0.001 * |
Medium | >0.0015–0.0019 | 1684/16,748 | 1.05 (0.98–1.13) | 1.04 (0.97–1.12) | |
Medium-high | >0.0019–0.0025 | 1753/16,794 | 1.09 (1.02–1.17) | 1.13 (1.05–1.21) | |
High | >0.0025–0.034 | 1845/16,762 | 1.15 (1.07–1.24) | 1.20 (1.11–1.28) | |
Manganese | |||||
Low | 0.00058–0.00061 | 1491/16,783 | 1.00 (Ref) | 1.00 (Ref) | |
Medium-low | >0.00061–0.00075 | 1703/16,743 | 1.14 (1.06–1.23) | 1.06 (0.98–1.14) | <0.001 * |
Medium | >0.00075–0.00094 | 1796/16,759 | 1.21 (1.12–1.30) | 1.12 (1.04–1.20) | |
Medium-high | >0.00094–0.0012 | 1813/16,782 | 1.22 (1.13–1.31) | 1.18 (1.10–1.27) | |
High | >0.0012–0.022 | 1655/16,766 | 1.11 (1.03–1.20) | 1.11 (1.03–1.20) | |
Mercury | |||||
Low | 1.69 × 10−9–6.03 × 10−6 | 1585/16,787 | 1.00 (Ref) | 1.00 (Ref) | |
Medium-low | >6.03 × 10−6–0.000020 | 1693/16,775 | 1.07 (0.99–1.15) | 1.06 (0.99–1.14) | 0.006 * |
Medium | >0.000020–0.000038 | 1895/16,745 | 1.20 (1.12–1.29) | 1.16 (1.08–1.24) | |
Medium-high | >0.000038–0.000073 | 1764/16,814 | 1.11 (1.03–1.19) | 1.14 (1.06–1.23) | |
High | >0.000073–0.0016 | 1521/16,712 | 0.96 (0.90–1.04) | 1.08 (1.00–1.16) | |
Nickel | |||||
Low | 0.000065–0.00022 | 1648/16,737 | 1.00 (Ref) | 1.00 (Ref) | |
Medium-low | >0.00022–0.00046 | 1650/16,791 | 1.00 (0.93–1.07) | 1.03 (0.95–1.10) | 0.071 |
Medium | >0.00046–0.00072 | 1838/16,759 | 1.11 (1.04–1.19) | 1.14 (1.06–1.22) | |
Medium-high | >0.00072–0.0011 | 1767/16,774 | 1.07 (1.00–1.15) | 1.09 (1.02–1.17) | |
High | >0.0011–0.029 | 1555/16,772 | 0.94 (0.88–1.01) | 1.04 (0.97–1.12) |
HMHAP-Weighted Risk | OR (95% CI) a | p-Trend b |
---|---|---|
Low | 1.00 (Ref) | |
Medium-Low | 1.05 (0.98–1.13) | <0.001 * |
Medium | 1.11 (1.03–1.19) | |
Medium-High | 1.14 (1.06–1.22) | |
High | 1.11 (1.03–1.20) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
White, J.T.; Kovar, E.; Chambers, T.M.; Sheth, K.R.; Peckham-Gregory, E.C.; O’Neill, M.; Langlois, P.H.; Jorgez, C.J.; Lupo, P.J.; Seth, A. Hypospadias Risk from Maternal Residential Exposure to Heavy Metal Hazardous Air Pollutants. Int. J. Environ. Res. Public Health 2019, 16, 930. https://doi.org/10.3390/ijerph16060930
White JT, Kovar E, Chambers TM, Sheth KR, Peckham-Gregory EC, O’Neill M, Langlois PH, Jorgez CJ, Lupo PJ, Seth A. Hypospadias Risk from Maternal Residential Exposure to Heavy Metal Hazardous Air Pollutants. International Journal of Environmental Research and Public Health. 2019; 16(6):930. https://doi.org/10.3390/ijerph16060930
Chicago/Turabian StyleWhite, Jeffrey T., Erin Kovar, Tiffany M. Chambers, Kunj R. Sheth, Erin C. Peckham-Gregory, Marisol O’Neill, Peter H. Langlois, Carolina J. Jorgez, Philip J. Lupo, and Abhishek Seth. 2019. "Hypospadias Risk from Maternal Residential Exposure to Heavy Metal Hazardous Air Pollutants" International Journal of Environmental Research and Public Health 16, no. 6: 930. https://doi.org/10.3390/ijerph16060930
APA StyleWhite, J. T., Kovar, E., Chambers, T. M., Sheth, K. R., Peckham-Gregory, E. C., O’Neill, M., Langlois, P. H., Jorgez, C. J., Lupo, P. J., & Seth, A. (2019). Hypospadias Risk from Maternal Residential Exposure to Heavy Metal Hazardous Air Pollutants. International Journal of Environmental Research and Public Health, 16(6), 930. https://doi.org/10.3390/ijerph16060930