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Abstract: Background: Hand, foot, and mouth disease (HFMD) is a common infectious disease among
children. Guangdong Province is one of the most severely affected provinces in south China. This
study aims to identify the spatiotemporal distribution characteristics and potential predictors of
HFMD in Guangdong Province and provide a theoretical basis for the disease control and prevention.
Methods: Case-based HFMD surveillance data from 2009 to 2012 was obtained from the China
Center for Disease Control and Prevention (China CDC). The Bayesian spatiotemporal model was
used to evaluate the spatiotemporal variations of HFMD and identify the potential association with
meteorological and socioeconomic factors. Results: Spatially, areas with higher relative risk (RR) of
HFMD tended to be clustered around the Pearl River Delta region (the mid-east of the province).
Temporally, we observed that the risk of HFMD peaked from April to July and October to December
each year and detected an upward trend between 2009 and 2012. There was positive nonlinear
enhancement between spatial and temporal effects, and the distribution of relative risk in space
was not fixed, which had an irregular fluctuating trend in each month. The risk of HFMD was
significantly associated with monthly average relative humidity (RR: 1.015, 95% CI: 1.006–1.024),
monthly average temperature (RR: 1.045, 95% CI: 1.021–1.069), and monthly average rainfall (RR:
1.004, 95% CI: 1.001–1.008), but not significantly associated with average GDP. Conclusions: The risk
of HFMD in Guangdong showed significant spatiotemporal heterogeneity. There was spatiotemporal
interaction in the relative risk of HFMD. Adding a spatiotemporal interaction term could well explain
the change of spatial effect with time, thus increasing the goodness of fit of the model. Meteorological
factors, such as monthly average relative humidity, monthly average temperature, and monthly
average rainfall, might be the driving factors of HFMD.
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1. Introduction

Hand, foot, and mouth disease (HFMD), primarily caused by Enterovirus 71 (EV71) and
Coxsackievirus A16 (Cox A16) [1], is a common infectious disease among children [2]. HFMD
is typically characterized by fever, skin eruptions on hands, feet, buttocks, and vesicles/ulcers in
the mouth. It can be transmitted through various routes, including direct contact with fluid from
blisters, and inhaling the virus through the respiratory tract [3]. HFMD epidemics have been reported
worldwide, such as in Singapore [4], Vietnam [5], Hong Kong [6], and Japan [7]. China is one
of the most severely affected countries. The overview of the national notifiable infectious disease
epidemic in China showed that the HFMD incidence in 2017 ranked the first, followed by hepatitis
and tuberculosis [8]. Through 2008 to 2012, at least 6.5 million pediatric cases of HFMD were recorded,
of which more than 2000 died [9]. The situation seems worse in Guangdong Province where the
provincial incidence was 3–4 times higher than the national average [10,11]. Although the EV 71
vaccine has been available since 2016, the HFMD epidemic remains urgent.

Previous studies have demonstrated geographical and temporal variations of HFMD across China.
In China, the incidence of HFMD varies in different provinces. In 2013, the incidence was reported to
be 67.90/100,000 in Sichuan Province [12], while it was 100/100,000 in Chongqing city [3]. Even in the
same province, the incidence rate also varied across counties [13,14]. Different seasonality of HFMD
appears. In Hong Kong, a seasonal peak was detected in the warmer months (May–July), along with a
smaller winter peak (October–December) [15]. Whereas in Beijing, the seasonal peak occurred in May
to July every year [13]. The peaks had slight differences among different regions.

Prior studies suggested that meteorological factors such as temperature and relative humidity
might be important predictors for HFMD, with higher temperature or higher relative humidity
associated with higher risk of HFMD [12,13,16]. In addition, other meteorological factors, such as
rainfall, wind speed, and sunshine duration, also appeared to influence HFMD transmission [13,17].
Socioeconomic variables may also be associated with HFMD incidence. A study in Sichuan showed
that HFMD incidence was higher in urban areas compared to rural areas and per capita gross domestic
product (GDP) was a risk factor associated with HFMD incidence [12]. Although the potential
associations between the risk of HFMD and meteorological/socioeconomic factors were reported
previously, the findings might be not applicable to Guangdong due to the spatial differential.

It is necessary to conduct a comprehensive analysis of HFMD, including the effects of space-time
and potential predictors. However, most of the prior studies only focused on the potential predictors
or the cluster analysis [3,18–20]. Few studies can be conducted in the perspective of spatiotemporal
interaction, taking into account the potential predictors, as well as the spatiotemporal dynamic change
of HFMD.

The Bayesian spatiotemporal model we used includes the spatiotemporal effects to the generalized
additive model to identify spatiotemporal variations and the effects of potential predictors at the same
time [21]. This approach can also control uncertainties resulted from residual confounding, i.e.,
confounding that is not included in the model, by incorporating spatial and temporal random terms.

Therefore, this study aims to analyze the spatiotemporal distribution and potential predictors of
HFMD in Guangdong Province after controlling multiple factors, including spatial effect, temporal
effect, spatiotemporal interaction effect, and potential predictors, and provide information and
theoretical basis for the disease control and prevention.

2. Materials and Methods

2.1. Study Area

Guangdong Province, a large coastal province in south China, has an area of 179,800 km2 and a
population of 106 million (from the 2013 China Statistical Yearbook). There were 21 administrative
districts, comprising of 123 counties in Guangdong Province. We used the county level division as the
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geographical unit for this spatiotemporal analysis because the county administrative level was often
used for governmental statistics.

According to the characteristics of the natural landscape and economic development, Guangdong
Province can be divided into two or four parts: the Pearl River Delta region (including the capital city
Guangzhou) and the non-Pearl River Delta region; or the Pearl River Delta region, eastern Guangdong
region, western Guangdong region, and northern Guangdong, as shown in Figure 1. The Pearl River
Delta region has a much higher level of socioeconomic development, accounting for 80% GDP of the
whole province with less than 50% population [10].
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Figure 1. The four parts of Guangdong Province and cumulative incidence of hand, foot, and mouth
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2.2. Surveillance Data of HFMD

Case-based HFMD surveillance data from 2009 to 2012 was obtained from the China Center for
Disease Control and Prevention (China CDC). It was confidential data; raw data cannot be published
due to state law and ethics. The clinical criteria for diagnosis of HFMD cases was provided in a
guidebook published by the Ministry of Health of China in 2008 [22], in which patients were defined
as HFMD with the occurrence of the following symptoms: fever, papules and herpetic lesions on the
hands or feet, rashes on the buttocks or knees, inflammatory flushing around the rashes and little fluid
in the blisters, sparse herpetic lesions on oral mucosa.

2.3. Potential Predictors Data

Monthly average relative humidity, the monthly average temperature, monthly average rainfall,
monthly average wind speed, and monthly sunshine duration data were obtained from the China
Meteorological Data Sharing Service System (http://data.cma.cn/). The monthly county-level
meteorological variables were estimated using ordinary spatial kriging methods based on 26
meteorological surveillance stations within Guangdong Province. The 26 meteorological surveillance
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stations are mapped in Figure 2. In addition, we obtained population and socioeconomic data, i.e.,
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2.4. Statistical Methods

2.4.1. Bayesian Spatiotemporal Model

The Bayesian spatiotemporal model was used to analyze the relative risk (RR) of HFMD from
2009 to 2012. The form of the model was specified as the following:

Yij ∼ Poisson(λij)

E(Yij) = λij = eij × θij

log(θij) = b0 + ∑
p

βpXpij + µi + υi + γj + ϕj + δij

(1)

where Yij was the number of reported HFMD cases in region i, month j (j = 2009-01, . . . , 2012-12).
The model assumed that Yij was subject to a Poisson distribution with a mean λij = eij × θij, where
eij represented the expected number of HFMD cases, which was calculated as the product of overall
incidence of the province and the population for each county during the study period, and θij was
the RR. b0 was the intercept, Xpij was the pth meteorological or socioeconomic variable in region
i, month j, βp was the regression coefficient. We calculated the variance inflation factor (VIF) for
all candidate variables to assess the multicollinearity; variables with VIF less than 5 were selected
for inclusion in the model [23]. The Besag, York, and Mollie (BYM) model was used to model the
common spatial component [24], which consisted of two components: spatially structured random
effect µi and spatially unstructured random effect υi. µi was commonly assumed to follow a conditional
autoregressive prior structure (CAR) in infectious diseases spatial epidemiology [25–27], which showed
that county i had a similar pattern of disease incidence with the adjacent counties. υi was assumed to be
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a normal distribution, representing that county i had an independent pattern of disease incidence from
the adjacent counties. If a disease has a strong spatial autocorrelation, the spatially structured random
effect µi will have more contribution explaining the spatial variance of the disease risk; otherwise,
the component of the spatially unstructured random effect υi will have more explanatory power. The
temporal component was also consisted of two components: monthly structured random effect γj and
monthly unstructured random effect ϕj. γj and ϕj were assumed to follow a 1 order random walk
and a normal distribution, respectively [21,28,29]. δij was the spatiotemporal interaction term. The
structure matrix can be written as the Kronecker product of Rδ = Rυ ⊗ Rϕ, which assumed that the
spatially unstructured random effect υi and the monthly unstructured random effect ϕj interact with
each other [21].

We developed five different models. Model 1 only included potential predictors. Model 2 and
model 3 added a spatial component and a temporal component to model 1, respectively. Model 4 was
the combination of model 2 and model 3. Finally, model 5 included all the components, including
potential predictors, spatial, temporal, and spatiotemporal interaction components.

The models were fitted using the integrated nested Laplace approximation (INLA) method
incorporated in the R-INLA package (R version 3.4.3., R Core Team, Vienna, Austria). The model with
the smallest deviance information criterion (DIC) was considered the optimal and used for our study.

2.4.2. Geographical Detectors

In this study, the q-statistic was used to quantify the spatiotemporal heterogeneity of HFMD and
detect the interaction relationship between spatial effect and temporal effect [30,31]. The form of the
q-statistic was specified as the following:

q = 1− 1
Nσ2

L

∑
h=1

Nhσ2
h (2)

where q denotes the level of spatiotemporal heterogeneity; the value of the statistic is required to be
within [0, 1]. If the value approaches 1, it indicates a strong heterogeneity and if the value approaches
0, it indicates a random distribution. N was the number of all units, which could be divided into L
stratums. Stratum h was composed of Nh units. σ2 and σ2

h were the variance over all the units and
within stratum h (h = 1, . . . , L), respectively.

We can divide the units of observation into two stratums, space LS (LS = 1, . . . , 21) and time LT
(LT = 1, . . . , 48). If q(LS ∩ LT) > q(LS) + q(LT), there is a nonlinear enhancement of space and time, if
q(LS ∩ LT) < Min(q(LS), q(LT)), there is a nonlinear weakening of them [31].

3. Results

3.1. Descriptive Statistics

Overall, 911,640 HFMD cases were reported in Guangdong Province from 2009 to 2012, and
the annual average incidences from 2009 to 2012 were 10.36/10,000, 24.52/10,000, 28.21/10,000, and
35.26/10,000, respectively. Spatial distribution of cumulative incidence of HFMD at county level
during the study period is shown in Figure 1. Counties with a higher HFMD incidence were clustered
in the Pearl River Delta region. A descriptive summary of the meteorological and socioeconomic
variables is shown in Table 1.
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Table 1. Descriptive statistics of meteorological and socioeconomic variables.

Covariates Minimum 2.5% Percentile Median 97.5% Percentile Maximum

Average relative humidity (%) 54.10 59.25 76.53 85.83 91.56
Average temperature (◦C) 4.79 10.47 23.01 29.18 29.65

Average rainfall (mm) 0 1.66 98.76 410.11 645.50
Sunshine duration (hour) 18.91 38.05 149.18 253.48 303.47

Average wind speed (m/s) 1.25 1.53 2.10 3.38 5.33
Average GDP (yuan) 5717 9981 26,370 110,421 123,247

3.2. Model Selection

Table 2 shows the results of the multicollinearity analysis. The VIF values of all variables were
less than 5, so it could be considered that there was no multicollinearity between the variables, and all
variables were included in the model.

Table 2. Multicollinearity evaluation results. VIF: variance inflation factor.

Covariates VIF Covariates VIF

Average relative humidity (%) 2.305 Sunshine duration (hour) 3.126
Average temperature (◦C) 3.827 Average wind speed (m/s) 1.091

Average rainfall (mm) 2.129 Average GDP (yuan) 1.025

Table 3 summarizes the DIC values for the five types of models. Model 5 was selected as the final
model as it had the lowest DIC value. Further results were all based on model 5.

Table 3. The results of model selection. DIC: deviance information criterion.

Model Component DIC

1 Non-spatiotemporal model log(θij) = b0 + ∑
p

βpXpij 1,083,638.0

2 Spatial model log(θij) = b0 + ∑
p

βpXpij + µi + υi 422,115.3

3 Temporal model log(θij) = b0 + ∑
p

βpXpij + γj + ϕj 816,474.6

4 Spatiotemporal model log(θij) = b0 + ∑
p

βpXpij + µi + υi + γj + ϕj 202,885.9

5 Spatiotemporal interaction model log(θij) = b0 + ∑
p

βpXpij + µi + υi + γj + ϕj + δij 45,036.5

3.3. Spatial Distribution

The estimated RR values of the spatial effect (µi + υi) are mapped in Figure 3. The spatial
distribution of HFMD risk exhibited explicit spatial heterogeneity, as the q-statistic was 0.669 (p < 0.001).
The RR values were relatively high in the Pearl River Delta region of Guangdong Province. This
finding implied that the counties in the Pearl River Delta region had a relatively higher HFMD risk.

If a county had a stable higher or lower risk compared with the overall level in the region, it
was classified as a hot spot or a cold spot, respectively [32]. This classification can make the spatial
distribution of RR more intuitive. Hot and cold spots can be calculated according to the posterior
probability of spatial effect—if the posterior probability P(exp(µi + υi) > 1|data) > 0.8 , then the
county i was classified as a hot spot. Similarly, if the posterior probability <0.2, then the county i was
classified as a cold spot. Figure 3 shows the distribution of hot and cold spots of HFMD in Guangdong
Province. There were 53 counties that accounted for 43% of all counties, and they were classified
as hot spots. They were mainly distributed in the Pearl River Delta region. The cold spot regions
were predominantly clustered in the east-west coast and northern mountainous counties (57 counties),
accounting for 46% of all counties.
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3.4. Temporal Distribution

The yearly and monthly numbers of cases are shown in Figure 4a,b, respectively. It was
noteworthy that the incidence of HFMD had an increasing trend. Besides, seasonal peaks were
detected around May and October.

The RR of monthly effect (γj + ϕj) is shown in Figure 4c. We detected an upward trend in RR
between 2009 and 2012. The RR of monthly effect presented significant seasonality. Semiannual
peaks were observed during the study period. The peaks occurred from April to July, and October to
December in each year, with the first peak higher than the second.

3.5. Spatiotemporal Interaction Patterns

The results of interaction detection showed that there was positive nonlinear enhancement
between spatial and temporal effects. q(LS ∩ LT)= 0.759 was greater than the sum of q(LS) = 0.373
and q(LT) = 0.132. However, in the previous studies, spatial effect was assumed to be fixed and did
not change over time [13,16], i.e., spatial and temporal effects were independent of each other. Actually,
the distribution of RR in space was not the same in each month, and there were certain changes. The
spatiotemporal interaction component δij could explain the differences in the time trend of RR for
different areas. The results are listed in Figure 5. From the figure, we can see the variations of spatial
effect during each month. The results of heterogeneity detection are listed in Table 4. There were 33
months that had no spatial heterogeneity in the distribution of the changed RR. Therefore, most of the
variations of spatial effect during each month were irregular.
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Table 4. Heterogeneity detection with q-statistic.

Data q p Data q p Data q p Data q p

2009-01 0.122 0.856 2010-01 0.179 0.663 2011-01 0.145 0.771 2012-01 0.321 0.013 *
2009-02 0.292 0.095 2010-02 0.296 0.221 2011-02 0.238 0.302 2011-02 0.191 0.507
2009-03 0.336 0.022 * 2010-03 0.366 0.058 2011-03 0.089 0.980 2011-03 0.409 <0.001 *
2009-04 0.301 0.038 * 2010-04 0.251 0.184 2011-04 0.215 0.534 2011-04 0.379 0.004 *
2009-05 0.229 0.257 2010-05 0.190 0.507 2011-05 0.292 0.207 2011-05 0.465 <0.001 *
2009-06 0.265 0.362 2010-06 0.315 0.038 * 2011-06 0.274 0.112 2011-06 0.341 0.019 *
2009-07 0.287 0.202 2010-07 0.403 0.002 * 2011-07 0.498 <0.001 * 2011-07 0.325 0.033 *
2009-08 0.402 0.013 * 2010-08 0.458 <0.001 * 2011-08 0.299 0.069 2011-08 0.319 0.037 *
2009-09 0.254 0.198 2010-09 0.221 0.541 2011-09 0.260 0.203 2011-09 0.573 <0.001 *
2009-10 0.246 0.243 2010-10 0.281 0.265 2011-10 0.259 0.267 2011-10 0.290 0.101
2009-11 0.266 0.264 2010-11 0.179 0.710 2011-11 0.153 0.763 2011-11 0.158 0.715
2009-12 0.129 0.916 2010-12 0.174 0.589 2011-12 0.239 0.149 2011-12 0.264 0.096

* Indicated spatial heterogeneity.
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3.6. Potential Predictors

The estimated results of regression coefficients of meteorological variables and socioeconomic
variables (βp) are shown in Table 5. There was a positive association between meteorological variables
and relative risk. The increasing of one unit in the monthly average relative humidity, monthly
average temperature, and monthly average rainfall was associated with the increase of 1.5% (95% CI:
0.6%–2.4%), 4.5% (95% CI: 2.1%–6.9%), and 0.4% (95% CI: 0.1%–0.8%) in the RR of HFMD, respectively.
Among these variables, the monthly average temperature had the greatest impact on the HFMD.
However, monthly sunshine duration, monthly average wind speed, and average GDP were not
significantly associated with the risk of HFMD in this study.

Table 5. Posterior means and confidence intervals of potential predictors.

Covariates Unstandardized
Coefficients (95% CI)

Standardized
Coefficients (95% CI)

Intercept 0.054 (0.021, 0.138) 0.397 (0.359, 0.439)
Average relative humidity (%) 1.015 (1.006, 1.024) 1.102 (1.042, 1.166)

Average temperature (◦C) 1.045 (1.021, 1.069) 1.291 (1.128, 1.476)
Average rainfall (cm) 1.004 (1.001, 1.008) 1.050 (1.008, 1.094)

Sunshine duration (10 h) 0.997 (0.985, 1.009) 0.982 (0.915, 1.054)
Average wind speed (dm/s) 0.998 (0.990, 1.007) 0.991 (0.951, 1.032)

Average GDP (1000 yuan) 0.999 (0.994, 1.003) 0.961 (0.835, 1.105)
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Figure 6 shows the county-level estimated RR values of associated potential predictors, which
were the product terms of the regression coefficients of potential predictors and the average of the
standardization values of potential predictors in each region. They represented the RR of HFMD
caused by potential predictors to each region. The western coast of Guangdong Province had a higher
average relative humidity level, resulting in a higher RR, as shown in Figure 6a. The southern regions
with higher temperatures and the southwestern regions with higher rainfall also had greater RR, as
shown in Figure 6b,c.
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4. Discussion

The present study explored the spatiotemporal distribution of HFMD and its associations with
potential predictors. The results revealed that the counties with high relative risk were mainly in
the Pearl River Delta, which is the economic center of Guangdong. This finding was consistent with
previous studies [3,17]. A study of Beijing–Tianjin–Hebei found that high risk regions were mainly
located in large cities, such as Beijing, Tianjin, Shijiazhuang, and their neighboring regions [17]. In
addition, a study in Chongqing found that cluster centers were in nine main urban districts [3].

During the four-year study period from 2009 to 2012, an increasing trend of relative risk was
detected. HFMD showed semiannual seasonality in Guangdong, which was also commonly observed
in other southern provinces and regions in China, such as Jiangsu (peaks period: April to June, and
November to December) [33], Chongqing (April to July, and October to December) [3], and Hong Kong
(May to July, and October to December) [15]. Meanwhile, a single peak has been shown to appear in
northern China, such as Beijing (May to July) [13] and Shandong Province (April and August) [34].
Different climates and living habits can be potential reasons for the different peak months. For instance,
the climate is warm and humid in southern China, while cold and dry in the north.

Temperature and relative humidity were associated with the relative risk of HFMD, with increased
relative risk of the disease following higher temperature and relative humidity. This was consistent
with the previous findings in Guangdong [10,35], Beijing [13], and Hong Kong [36]. Average rainfall
was also an important influence on HFMD transmission. It was generally consistent with other studies
conducted in Beijing and Henan [13,27]. According to previous studies, there are two potential ways
that meteorological factors influence HFMD—one is by affecting the survival and reproductive capacity
of enteroviruses [17], and another is by altering patterns of human behavior [37]. For example, Huang
et al. found that in hot and humid summers, outdoor activities were reduced, and people tended to
spend more time indoors in air-conditioned houses, thereby providing more opportunities for contact
with each other [35].

The confounders were controlled by adding the spatial and temporal components, which had
both effects on the number of reported HFMD cases and meteorological or socioeconomic variables.
Spatiotemporal effects represented the residual caused by latent variables that were not included in
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the model, such as medical conditions and the capacity for HFMD prevention and control in different
counties and different periods, which are easier to control than meteorological factors. Thus, areas
and months with high relative risk should be paid more attention through the strategies including
strengthening the education and supervision of kindergartens.

Major prior studies used traditional models such as spatial autocorrelation and spatiotemporal
scan statistics [38]. Spatial autocorrelation cannot detect trends in the time, but just performs spatial
analysis. Spatiotemporal scan statistics is a simple and easy method, and it has been widely used
in public health. However, covariates cannot be included in the model and it is not suitable for a
risk region with an irregular shape. A Bayesian spatiotemporal model is more flexible in modelling
spatiotemporal components than the above models with some limitations.

This was a comprehensive study of HFMD in terms of spatiotemporal effects and meteorological
variables. We incorporated spatiotemporal effects in the regression that controlled uncertainties
resulting from residual confounding, which made the estimation of the impact of meteorological
variables more accurate. In addition, the hot spots and high-risk time of HFMD were identified.
Through the detection of spatiotemporal interaction, we found that the spatial effect of HFMD had
positive nonlinear enhancement with the temporal effect. After adding the spatiotemporal interaction
component to the model, the goodness of fit of the model was significantly increased. Compared with
the model without the interaction term (model 4), the DIC value was reduced by 77.8% to 45,036.5.
Therefore, adding the interaction component can improve the accuracy of the model—this has not
been considered in many previous related studies.

The present study has some limitations. First, we used the annual average GDP for each county
as the monthly data. Second, there were only 26 meteorological surveillance stations in Guangdong
Province; ordinary kriging interpolation results might not cover all variations of the meteorological
variables at the county level. However, this was more accurate than using the same meteorological
data to all counties in each city. Third, we estimated spatiotemporal variations in HFMD at the scale of
counties and months; we did not include the factors at an individual and pathogenic level, such as
personal hygiene, educational background, incomes of the children’s parents, living conditions, and
composition of major pathogens. Further studies should consider the potential impacts of these factors.

5. Conclusions

The risk of HFMD in Guangdong showed significant spatial heterogeneity, with higher relative
risk counties mainly gathered in the Pearl River Delta region. The relative risk of HFMD exhibited
an increasing trend and semiannual seasonality from 2009 to 2012. High relative risk areas and
months should be the focus of greater attention in the prevention and control of HFMD. There was
spatiotemporal interaction between HFMD relative risk. Adding a spatiotemporal interaction term
could well explain the change of spatial effect with time, thus increasing the goodness of fit of the model.
Meteorological factors, such as monthly average relative humidity, monthly average temperature, and
monthly average rainfall, might be the driving factors of HFMD.
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