Development and Validation of the Parental Smartphone Use Management Scale (PSUMS): Parents’ Perceived Self-Efficacy with Adolescents with Attention Deficit Hyperactivity Disorder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Procedure
2.2. Measures
2.2.1. Parental Smartphone Use Management Scale (PSUMS)
2.2.2. Problematic Cellular Phone Use Questionnaire (PCPU-Q)
2.2.3. ADHD Symptoms
2.3. Analysis
3. Results
3.1. Construct Validity
3.1.1. Exploratory Factor Analysis (EFA)
3.1.2. Confirmatory Factor Analysis
3.2. Criterion Validity
3.3. Reliability
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pew Research Center. A Portrait of Smartphone Ownership. Available online: http://www.pewinternet.org/2015/04/01/chapter-one-a-portrait-of-smartphone-ownership/ (accessed on 4 March 2019).
- Adestra. Consumer Adoption & Usage Study. Available online: http://www.adestra.com/resources/2016-consumer-adoption-usage-study/ (accessed on 4 March 2019).
- Taiwan Ministry of Education. 2015 Student Network Usage Survey Report. Available online: https://www.edu.tw/News_Content.aspx?n=0217161130F0B192&s=F1AA06D56E8D6B20 (accessed on 4 March 2019).
- Yang, S.Y.; Chen, M.D.; Huang, Y.C.; Lin, C.Y.; Chang, J.H. Association between smartphone use and musculoskeletal discomfort in adolescent students. J. Community Health 2017, 42, 423–430. [Google Scholar] [CrossRef]
- Chóliz, M. Mobile-phone addiction in adolescence: The Test of Mobile Phone Dependence (TMD). Prog. Health Sci. 2012, 2, 33–45. [Google Scholar]
- Steinbeis, N.; Haushofer, J.; Fehr, E.; Singer, T. Development of behavioral control and associated vmPFC–DLPFC connectivity explains children’s increased resistance to temptation in intertemporal choice. Cereb. Cortex 2014, 26, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Choa, K.-S.; Lee, J.-M. Influence of smartphone addiction proneness of young children on problematic behaviors and emotional intelligence: Mediating self-assessment effects of parents using smartphones. Comput. Hum. Behav. 2017, 66, 303–311. [Google Scholar] [CrossRef]
- Hawi, N.S.; Samaha, M. To excel or not to excel: Strong evidence on the adverse effect of smartphone addiction on academic performance. Comput. Educ. 2016, 98, 81–89. [Google Scholar] [CrossRef]
- Thomée, S.; Härenstam, A.; Hagberg, M. Mobile phone use and stress, sleep disturbances, and symptoms of depression among young adults—A prospective cohort study. BMC Public Health 2011, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- White, M.P.; Eiser, J.R.; Hagberg, M. Risk perceptions of mobile phone use while driving. Risk Anal. Int. J. 2004, 24, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Boyd, D.; Hargittai, E. Connected and concerned: Variation in parents’ online safety concerns. Policy Internet 2013, 5, 245–269. [Google Scholar] [CrossRef]
- Madden, M.; Cortesi, S.; Gasser, U.; Lenhart, A.; Duggan, M. Parents, Teens, and Online Privacy (Pew Internet & American Life Project). Available online: http://pewinternet.org/Reports/2012/Teens-and-Privacy.aspx (accessed on 19 April 2019).
- George, M.J.; Odgers, C.L. Seven fears and the science of how mobile technologies may be influencing adolescents in the digital age. Perspect. Psychol. Sci. 2015, 10, 832–851. [Google Scholar] [CrossRef] [Green Version]
- Gámez-Guadix, M.; Orue, I.; Smith, P.K.; Calvete, E. Longitudinal and reciprocal relations of cyberbullying with depression, substance use, and problematic internet use among adolescents. J. Adolesc. Health 2013, 53, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Gordon-Messer, D.; Arturo Bauermeister, J.; Grodzinski, A.; Zimmerman, M. Sexting among young adults. J. Adolesc. Health 2012, 52, 301–306. [Google Scholar] [CrossRef] [Green Version]
- Curnutt, H. Flashing your phone: Sexting and the remediation of teen sexuality. Commun. Q. 2012, 60, 353–369. [Google Scholar] [CrossRef]
- Gini, G.; Espelage, D.L. Peer victimization, cyberbullying, and suicide risk in children and adolescents. JAMA 2014, 312, 545–546. [Google Scholar] [CrossRef] [PubMed]
- Subrahmanyam, K.; Greenfield, P.M.; Tynes, B. Constructing sexuality and identity in an online teen chat room. J. Appl. Dev. Psychol. 2004, 25, 651–666. [Google Scholar] [CrossRef]
- Subrahmanyam, K.; Smahel, D.; Greenfield, P. Connecting developmental constructions to the Internet: Identity presentation and sexual exploration in online teen chat rooms. Dev. Psychol. 2006, 42, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Cupach, W.R.; Spitzberg, B.H. The Dark Side of Relationship Pursuit: From Attraction to Obsession and Stalking; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2014. [Google Scholar]
- Bozkurt, H.; Coskun, M.; Ayaydin, H.; Adak, I.; Zoroglu, S.S. Prevalence and patterns of psychiatric disorders in referred adolescents with Internet addiction. Psychiatry Clin. Neurosci. 2013, 67, 352–359. [Google Scholar] [CrossRef] [Green Version]
- Yen, J.Y.; Ko, C.H.; Yen, C.F.; Wu, H.Y.; Yang, M.J. The comorbid psychiatric symptoms of Internet addiction: Attention deficit and hyperactivity disorder (ADHD), depression, social phobia, and hostility. J. Adolesc. Health 2007, 41, 93–98. [Google Scholar] [CrossRef]
- Chen, Y.L.; Chen, S.H.; Gau, S.S.F. ADHD and autistic traits, family function, parenting style, and social adjustment for Internet addiction among children and adolescents in Taiwan: A longitudinal study. Res. Dev. Disabil. 2015, 39, 20–31. [Google Scholar] [CrossRef]
- Ko, C.H.; Yen, J.Y.; Yen, C.F.; Chen, C.S.; Chen, C.C. The association between Internet addiction and psychiatric disorder: A review of the literature. Eur. Psychiatry 2012, 27, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Edwards, G.; Barkley, R.A.; Laneri, M.; Fletcher, K.; Metevia, L. Parent–adolescent conflict in teenagers with ADHD and ODD. J. Abnorm. Child Psychol 2001, 29, 557–572. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®); American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Gau, S.S.F.; Shang, C.Y.; Liu, S.K.; Lin, C.H.; Swanson, J.M.; Liu, Y.C.; Tu, C.L. Psychometric properties of the Chinese version of the Swanson, Nolan, and Pelham, version IV scale–parent form. Int. J. Methods Psychiatr. Res. 2008, 17, 35–44. [Google Scholar] [CrossRef]
- Swanson, J.M.; Kraemer, H.C.; Hinshaw, S.P.; Arnold, L.E.; Conners, C.K.; Abikoff, H.B.; Clevenger, W.; Davies, M.; Elliott, G.R.; Greenhill, L.L.; et al. Clinical relevance of the primary findings of the MTA: Success rates based on severity of ADHD and ODD symptoms at the end of treatment. J. Am. Acad. Child Adolesc. Psychiatry 2001, 40, 168–179. [Google Scholar] [CrossRef] [PubMed]
- Yen, C.F.; Tang, T.C.; Yen, J.Y.; Lin, H.C.; Huang, C.F.; Liu, S.C.; Ko, C.H. Symptoms of problematic cellular phone use, functional impairment and its association with depression among adolescents in Southern Taiwan. J. Adolesc. 2009, 32, 863–873. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th ed.; American Psychiatric Association: Washington, DC, USA, 2000. [Google Scholar]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 5th ed.; Allyn and Bacon: New York, NY, USA, 2007. [Google Scholar]
- Hardy, M.; Bryman, A. Handbook of Data Analysis; Sage: Thousand Oaks, CA, USA, 2004. [Google Scholar]
- Rosseel, Y. lavaan: An R Package for Structural Equation Modeling. J. Stat. Softw. 2012, 48, 1–36. Available online: http://www.jstatsoft.org/v48/i02/ (accessed on 6 April 2019). [CrossRef]
- Hu, L.T.; Bentler, P.M. Fit indices in covariance structure modeling: Sensitivity to under-parameterized model misspecification. Psychol. Methods 1998, 3, 424–453. [Google Scholar] [CrossRef]
- Chang, C.-C.; Su, J.-A.; Chang, K.-C.; Lin, C.-Y.; Koschorke, M.; Thornicroft, G. Perceived stigma of caregivers: Psychometric evaluation for Devaluation of Consumer Families Scale. Int. J. Clin. Health Psychol 2018, 18, 170–178. [Google Scholar] [CrossRef] [PubMed]
- MacCallum, R.C.; Browne, M.W.; Sugawara, H.M. Power analysis and determination of sample size for covariance structure modeling. Psychol. Methods 1996, 1, 130–149. [Google Scholar] [CrossRef]
- Wu, T.-H.; Chang, C.-C.; Chen, C.-Y.; Wang, J.-D.; Lin, C.-Y. Further psychometric evaluation of the Self-Stigma Scale-Short: Measurement invariance across mental illness and gender. PLoS ONE 2015, 10, e0117592. [Google Scholar] [CrossRef] [PubMed]
- Bentler, P.M.; Bonnet, D.C. Significance Tests and Goodness of Fit in the Analysis of Covariance Structures. Psychol. Bull. 1980, 88, 588–606. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Luh, W.-M.; Cheng, C.-P.; Yang, A.-L.; Ma, H.-I. Evaluating the wording effect and psychometric properties of the Kid-KINDL: Using the multitrait-multimethod approach. Eur. J. Psychol. Assess. 2014, 30, 100–109. [Google Scholar] [CrossRef]
- Wheaton, B.; Muthen, B.; Alwin, D.F.; Summers, G. Assessing Reliability and Stability in Panel Models. Sociol. Methodol. 1977, 8, 84–136. [Google Scholar] [CrossRef]
- Furstenberg, F.F.; Cook, T.D.; Eccles, J.; Elder, G.H.; Sameroff, A.; Ardelt, M.; Bartko, W.T.; Chan, W.S.; Geitz, L.M.; Harper, C.; et al. Managing to Make It: Urban Families and Adolescent Success; University of Chicago Press: Chicago, IL, USA, 1999. [Google Scholar]
- Galambos, N.L.; Barker, E.T.; Almeida, D.M. Parents do matter: Trajectories of change in externalizing and internalizing problems in early adolescence. Child Dev. 2003, 74, 578–594. [Google Scholar] [CrossRef]
- Vandewater, E.A.; Park, S.E.; Huang, X.; Wartella, E.A. “No—you can’t watch that” parental rules and young children’s media use. Am. Behav. Sci. 2005, 48, 608–623. [Google Scholar] [CrossRef]
- Padilla-Walker, L.M.; Carlo, G.; Christensen, K.J.; Yorgason, J.B. Bidirectional relations between authoritative parenting and adolescents’ prosocial behaviors. J. Res. Adolesc. 2012, 22, 400–408. [Google Scholar] [CrossRef]
- Pinquart, M. Associations of parenting dimensions and styles with externalizing problems of children and adolescents: An updated meta-analysis. Dev. Psychol. 2017, 53, 873–932. [Google Scholar] [CrossRef]
- Steinberg, L.; Lamborn, S.D.; Dornbusch, S.M.; Darling, N. Impact of parenting practices on adolescent achievement: Authoritative parenting, school involvement, and encouragement to succeed. Child Dev. 1992, 63, 1266–1281. [Google Scholar] [CrossRef] [PubMed]
- Uji, M.; Sakamoto, A.; Adachi, K.; Kitamura, T. The impact of authoritative, authoritarian, and permissive parenting styles on children’s later mental health in Japan: Focusing on parent and child gender. J. Child Fam. Stud. 2014, 23, 293–302. [Google Scholar] [CrossRef]
- Dishion, T.J.; McMahon, R.J. Parental monitoring and the prevention of child and adolescent problem behavior: A conceptual and empirical formulation. Clin. Child Fam. Psychol. Rev. 1998, 1, 61–75. [Google Scholar] [CrossRef] [PubMed]
- Dodge, K.A.; Malone, P.S.; Lansford, J.E.; Miller, S.; Pettit, G.S.; Bates, J.E. A dynamic cascade model of the development of substance-use onset. Monogr. Soc. Res. Child Dev. 2009, 74, vii-119. [Google Scholar] [CrossRef]
- Kopak, A.M.; Ayers, S.; Lopez, V.; Stevenson, P. Parental monitoring, alcohol, and marijuana use among Hispanic and non-Hispanic White adolescents: Findings from the Arizona Youth Survey. J. Drug Issues 2011, 41, 461–485. [Google Scholar] [CrossRef]
- Epstein, J.A. Factors related to adolescent computer use and electronic game use. ISRN Public Health 2011, 2012, 1–6. [Google Scholar] [CrossRef]
- Gorusch, R.L. Factor Analysis, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1983; p. 332. [Google Scholar]
- Iacobucci, D. Structural equations modeling: Fit indices, sample size, and advanced topics. J. Consum. Psychol. 2010, 20, 90–98. [Google Scholar] [CrossRef]
- Anderson, J.C.; Gerbing, D.W. The effect of sampling error on convergence, improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory factor analysis. Psychometrika 1984, 49, 155–173. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling; Guilford: New York, NY, USA, 1998. [Google Scholar]
- Su, C.-T.; Ng, H.-S.; Yang, A.-L.; Lin, C.-Y. Psychometric evaluation of the Short Form 36 Health Survey (SF-36) and the World Health Organization Quality of Life Scale Brief Version (WHOQOL-BREF) for patients with schizophrenia. Psychol. Assess. 2014, 26, 980–989. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.A.; Preacher, K.J. Calculation for the Test of the Difference between Two Dependent Correlations with One Variable in Common [Computer Software]. Available online: http://quantpsy.org (accessed on 7 April 2019).
Variables | n (%) | Mean (SD) | Range |
---|---|---|---|
Sex of parents | |||
Female | 175 (82.9%) | ||
Male | 36 (17.1%) | ||
Sex of adolescents | |||
Female | 28 (13.3%) | ||
Male | 183 (86.7%) | ||
Age of parents (years) | 43.5 (5.9) | 32–64 | |
Age of adolescents (years) | 13.7 (1.8) | 11–18 | |
Marriage status of parents | |||
Intact | 170 (80.6%) | ||
Not intact | 41 (19.4%) | ||
Education duration of parents (years) | 13.6 (2.8) | 6–28 | |
SNAP-IV symptoms of adolescents | |||
Inattention | 12.8 (6.1) | 0–27 | |
Hyperactivity/impulsivity | 8.9 (6.0) | 0–27 | |
Oppositional defiant | 9.9 (5.7) | 0–24 | |
PCPU-Q | |||
Smartphone addiction | 40 (19%) | ||
No smartphone addiction | 171 (81%) |
Items | Mean (SD) (n = 211) | EFA n = 103 | CFA n = 108 |
---|---|---|---|
Reactive Management (α = 0.93) | |||
I manage my child’s smartphone use to prevent it from negatively affecting his/her daily life | 4.35 (1.43) | 0.73 | 0.89 |
I manage how and to what extent my child spends money on his/her smartphone | 4.64 (1.44) | 0.66 | 0.81 |
I don’t allow my child to use a smartphone while doing homework | 4.42 (1.48) | 0.59 | 0.86 |
I manage my child’s smartphone use outside of the house | 3.74 (1.76) | 0.59 | 0.80 |
I effectively manage when my child can and cannot use a smartphone | 4.18 (1.61) | 0.57 | 0.88 |
I manage my child’s activities to prevent him/her from breaking laws | 4.30 (1.49) | 0.53 | 0.83 |
When my child is spending too much time on a smartphone, I manage his/her smartphone use effectively | 4.38 (1.40) | 0.52 | 0.90 |
Proactive Management (α = 0.95) | |||
I don’t distress my child when communicating with him/her about smartphone use | 3.72 (1.58) | 0.93 | 0.91 |
I don’t create family tension as a result of enforcing smartphone use guidelines for my child | 3.81 (1.55) | 0.82 | 0.93 |
I discuss and reason with my child | 4.11 (1.37) | 0.80 | 0.93 |
I don’t get angry when I manage my child’s smartphone use | 3.53 (1.61) | 0.72 | 0.83 |
I communicate with my child effectively and explain why I manage his/her smartphone use | 4.22 (1.33) | 0.70 | 0.93 |
I actively learn new information and skills to manage my child’s smartphone use | 4.14 (1.44) | 0.55 | 0.82 |
Monitoring (α = 0.93) | |||
I know who my child talks with and what they talk about when using a smartphone | 3.81 (1.69) | 0.91 | 0.96 |
I know what my child does on the smartphone | 3.86 (1.64) | 0.84 | 0.95 |
I monitor which apps my child uses | 3.79 (1.69) | 0.72 | 0.88 |
I restrict the type of websites my child is allowed to visit on the smartphone | 3.91 (1.69) | 0.63 | 0.85 |
PSUMS Dimensions | Reactive Management | Proactive Management | Monitoring |
---|---|---|---|
Reactive management | - | ||
Proactive management | 0.79 ** | - | |
Monitoring | 0.77 ** | 0.68 ** | - |
PSUMS Dimensions | Have Smartphone Addiction (n = 40) Mean (SD) | No Smartphone Addiction (n = 171) Mean (SD) | t | p |
---|---|---|---|---|
Reactive management | 3.30 (1.46) | 4.52 (1.14) | 4.93 | <0.001 |
Proactive management | 2.90 (1.39) | 4.11 (1.27) | 5.34 | <0.001 |
Monitoring | 2.94 (1.56) | 4.05 (1.47) | 4.25 | <0.001 |
PCPU-Q Dimensions | Parental Smartphone Use Management (PSUMS) | ||
---|---|---|---|
Reactive Management | Proactive Management | Monitoring | |
r | r | r | |
Smartphone addiction symptoms | −0.35 ** | −0.40 ** | −0.33 ** |
Functional impairments | −0.37 ** | −0.33 ** | −0.26 ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsieh, Y.-P.; Yen, C.-F.; Chou, W.-J. Development and Validation of the Parental Smartphone Use Management Scale (PSUMS): Parents’ Perceived Self-Efficacy with Adolescents with Attention Deficit Hyperactivity Disorder. Int. J. Environ. Res. Public Health 2019, 16, 1423. https://doi.org/10.3390/ijerph16081423
Hsieh Y-P, Yen C-F, Chou W-J. Development and Validation of the Parental Smartphone Use Management Scale (PSUMS): Parents’ Perceived Self-Efficacy with Adolescents with Attention Deficit Hyperactivity Disorder. International Journal of Environmental Research and Public Health. 2019; 16(8):1423. https://doi.org/10.3390/ijerph16081423
Chicago/Turabian StyleHsieh, Yi-Ping, Cheng-Fang Yen, and Wen-Jiun Chou. 2019. "Development and Validation of the Parental Smartphone Use Management Scale (PSUMS): Parents’ Perceived Self-Efficacy with Adolescents with Attention Deficit Hyperactivity Disorder" International Journal of Environmental Research and Public Health 16, no. 8: 1423. https://doi.org/10.3390/ijerph16081423
APA StyleHsieh, Y. -P., Yen, C. -F., & Chou, W. -J. (2019). Development and Validation of the Parental Smartphone Use Management Scale (PSUMS): Parents’ Perceived Self-Efficacy with Adolescents with Attention Deficit Hyperactivity Disorder. International Journal of Environmental Research and Public Health, 16(8), 1423. https://doi.org/10.3390/ijerph16081423