Synergetic Relationship between Urban and Rural Water Poverty: Evidence from Northwest China
Abstract
:1. Introduction
2. Water Issues in the Study Area
3. Methods
3.1. Water Poverty Index, and Its Indicators
3.2. Kernel Density Estimation
3.3. Synergistic Theory
3.4. Assigning Weights to the Indicators
3.5. Symbiosis Mechanism of Urban and Rural Areas
4. Results and Analysis
4.1. Urban and Rural Water Poverty Changes in Northwest China
4.2. Synergistic Types and Stages of Urban and Rural Areas in Northwest China
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
R | A | C | U | E | Weight | |
---|---|---|---|---|---|---|
R | 1 | 1 | 1 | 1 | 1 | 0.2 |
A | 1 | 1 | 1 | 1 | 1 | 0.2 |
C | 1 | 1 | 1 | 1 | 1 | 0.2 |
U | 1 | 1 | 1 | 1 | 1 | 0.2 |
E | 1 | 1 | 1 | 1 | 1 | 0.2 |
R1 | R2 | Weight | |
---|---|---|---|
R1 | 1 | 1/2 | 0.333 |
R2 | 2 | 1 | 0.667 |
A1 | A2 | A3 | Weight | |
---|---|---|---|---|
A1 | 1 | 1/2 | 2 | 0.311 |
A2 | 2 | 1 | 2 | 0.493 |
A3 | 1/2 | 1/2 | 1 | 0.196 |
C1 | C2 | C3 | Weight | |
---|---|---|---|---|
C1 | 1 | 2 | 1 | 0.413 |
C2 | 1/2 | 1 | 1 | 0.260 |
C3 | 1 | 1 | 1 | 0.327 |
U1 | U2 | Weight | |
---|---|---|---|
U1 | 1 | 2 | 0.667 |
U2 | 1/2 | 1 | 0.333 |
E1 | E2 | E3 | Weight | |
---|---|---|---|---|
E1 | 1 | 2 | 1/2 | 0.311 |
E2 | 1/2 | 1 | 1/2 | 0.196 |
E3 | 2 | 2 | 1 | 0.493 |
R | A | C | U | E | Weight | |
---|---|---|---|---|---|---|
R | 1 | 1 | 1 | 1 | 1 | 0.2 |
A | 1 | 1 | 1 | 1 | 1 | 0.2 |
C | 1 | 1 | 1 | 1 | 1 | 0.2 |
U | 1 | 1 | 1 | 1 | 1 | 0.2 |
E | 1 | 1 | 1 | 1 | 1 | 0.2 |
R1 | R2 | Weight | |
---|---|---|---|
R1 | 1 | 2 | 0.667 |
R2 | 1/2 | 1 | 0.333 |
A1 | A2 | A3 | Weight | |
---|---|---|---|---|
A1 | 1 | 2 | 3 | 0.528 |
A2 | 1/2 | 1 | 3 | 0.333 |
A3 | 1/3 | 1/3 | 1 | 0.239 |
C1 | C2 | C3 | Weight | |
---|---|---|---|---|
C1 | 1 | 2 | 2 | 0.500 |
C2 | 1/2 | 1 | 1 | 0.250 |
C3 | 1/2 | 1 | 1 | 0.250 |
U1 | U2 | Weight | |
---|---|---|---|
U1 | 1 | 1/2 | 0.333 |
U2 | 2 | 1 | 0.667 |
E1 | E2 | E3 | Weight | |
---|---|---|---|---|
E1 | 1 | 2 | 2 | 0.493 |
E2 | 1/2 | 1 | 1/2 | 0.196 |
E3 | 1/2 | 2 | 1 | 0.311 |
U/R | 2000 | 2004 | 2008 | 2012 | 2017 | Mean |
---|---|---|---|---|---|---|
Xian | 0.302/0.268 | 0.329/0.266 | 0.363/0.272 | 0.417/0.279 | 0.443/0.308 | 0.377/0.281 |
Tongchuan | 0.255/0.248 | 0.271/0.237 | 0.3/0.243 | 0.349/0.265 | 0.346/0.273 | 0.309/0.255 |
Baoji | 0.257/0.263 | 0.299/0.257 | 0.334/0.267 | 0.339/0.27 | 0.371/0.306 | 0.323/0.275 |
Xianyang | 0.281/0.266 | 0.298/0.267 | 0.341/0.27 | 0.364/0.273 | 0.393/0.302 | 0.338/0.278 |
Weinan | 0.264/0.277 | 0.284/0.272 | 0.313/0.279 | 0.327/0.286 | 0.356/0.309 | 0.309/0.288 |
Yanan | 0.209/0.288 | 0.243/0.29 | 0.29/0.263 | 0.322/0.315 | 0.359/0.343 | 0.293/0.31 |
Hanzhong | 0.213/0.255 | 0.26/0.267 | 0.31/0.315 | 0.336/0.296 | 0.354/0.326 | 0.295/0.284 |
Yulin | 0.254/0.293 | 0.272/0.28 | 0.314/0.314 | 0.328/0.302 | 0.353/0.298 | 0.307/0.297 |
Ankang | 0.275/0.309 | 0.281/0.278 | 0.319/0.31 | 0.337/0.302 | 0.376/0.314 | 0.317/0.303 |
Shangluo | 0.231/0.304 | 0.243/0.286 | 0.259/0.269 | 0.301/0.288 | 0.333/0.315 | 0.278/0.302 |
Lanzhou | 0.313/0.241 | 0.262/0.241 | 0.293/0.248 | 0.314/0.264 | 0.356/0.275 | 0.299/0.255 |
Jiayuguan | 0.396/0.25 | 0.438/0.279 | 0.417/0.281 | 0.377/0.292 | 0.382/0.301 | 0.39/0.275 |
Jinchang | 0.274/0.225 | 0.29/0.228 | 0.321/0.239 | 0.288/0.246 | 0.322/0.245 | 0.302/0.235 |
Baiyin | 0.265/0.233 | 0.229/0.228 | 0.263/0.237 | 0.302/0.246 | 0.296/0.243 | 0.267/0.237 |
Tianshui | 0.266/0.234 | 0.231/0.229 | 0.25/0.241 | 0.295/0.249 | 0.316/0.252 | 0.271/0.244 |
Wuwei | 0.209/0.237 | 0.222/0.247 | 0.255/0.259 | 0.286/0.262 | 0.286/0.272 | 0.251/0.253 |
Zhangye | 0.232/0.234 | 0.242/0.245 | 0.241/0.262 | 0.268/0.265 | 0.288/0.287 | 0.258/0.255 |
Pingliang | 0.178/0.246 | 0.21/0.245 | 0.251/0.256 | 0.299/0.26 | 0.307/0.268 | 0.265/0.259 |
Jiuquan | 0.118/0.256 | 0.235/0.247 | 0.246/0.25 | 0.297/0.266 | 0.298/0.277 | 0.246/0.258 |
Qingyang | 0.2/0.276 | 0.21/0.259 | 0.222/0.25 | 0.298/0.271 | 0.299/0.284 | 0.255/0.274 |
Dingxi | 0.194/0.224 | 0.199/0.226 | 0.241/0.233 | 0.279/0.239 | 0.28/0.244 | 0.241/0.232 |
Longnan | 0.215/0.236 | 0.2/0.233 | 0.217/0.241 | 0.267/0.247 | 0.287/0.267 | 0.243/0.245 |
Linxia | 0.204/0.23 | 0.22/0.232 | 0.237/0.242 | 0.259/0.244 | 0.266/0.246 | 0.238/0.237 |
Gannan | 0.207/0.243 | 0.225/0.243 | 0.246/0.247 | 0.265/0.257 | 0.265/0.258 | 0.246/0.249 |
Yinchuan | 0.25/0.223 | 0.273/0.227 | 0.313/0.241 | 0.324/0.256 | 0.347/0.269 | 0.294/0.243 |
Shizuishan | 0.227/0.233 | 0.253/0.239 | 0.288/0.255 | 0.335/0.262 | 0.336/0.268 | 0.288/0.25 |
Wuzhong | 0.201/0.238 | 0.249/0.234 | 0.248/0.254 | 0.28/0.258 | 0.293/0.272 | 0.253/0.249 |
Guyuan | 0.206/0.242 | 0.241/0.239 | 0.271/0.251 | 0.292/0.257 | 0.302/0.268 | 0.267/0.253 |
Zhongwei | 0.195/0.256 | 0.221/0.238 | 0.227/0.241 | 0.273/0.259 | 0.281/0.268 | 0.243/0.256 |
Xining | 0.233/0.278 | 0.274/0.272 | 0.282/0.171 | 0.32/0.276 | 0.316/0.29 | 0.284/0.257 |
Haidong | 0.259/0.223 | 0.311/0.232 | 0.309/0.232 | 0.267/0.238 | 0.267/0.23 | 0.284/0.231 |
Haibei | 0.256/0.242 | 0.282/0.24 | 0.293/0.246 | 0.309/0.257 | 0.333/0.262 | 0.295/0.253 |
Huangnan | 0.278/0.224 | 0.304/0.226 | 0.312/0.238 | 0.32/0.241 | 0.334/0.25 | 0.305/0.235 |
Hainan | 0.23/0.252 | 0.253/0.254 | 0.252/0.256 | 0.271/0.256 | 0.303/0.273 | 0.26/0.255 |
Guoluo | 0.316/0.255 | 0.34/0.253 | 0.359/0.274 | 0.397/0.274 | 0.399/0.285 | 0.359/0.264 |
Yushu | 0.359/0.241 | 0.357/0.239 | 0.37/0.26 | 0.33/0.264 | 0.398/0.276 | 0.363/0.252 |
Haixi | 0.193/0.259 | 0.26/0.247 | 0.289/0.256 | 0.323/0.287 | 0.334/0.301 | 0.291/0.276 |
Urumqi | 0.29/0.222 | 0.3/0.23 | 0.31/0.228 | 0.364/0.248 | 0.418/0.27 | 0.333/0.241 |
Karamay | 0.317/0.252 | 0.332/0.253 | 0.329/0.238 | 0.363/0.262 | 0.406/0.283 | 0.345/0.259 |
Shihezi | 0.173/0.288 | 0.203/0.271 | 0.241/0.256 | 0.258/0.263 | 0.349/0.29 | 0.247/0.272 |
Turpan | 0.248/0.213 | 0.262/0.221 | 0.298/0.216 | 0.327/0.218 | 0.349/0.229 | 0.302/0.222 |
Hami | 0.217/0.22 | 0.229/0.217 | 0.23/0.222 | 0.285/0.228 | 0.303/0.243 | 0.259/0.225 |
Changji | 0.237/0.254 | 0.245/0.259 | 0.246/0.26 | 0.27/0.283 | 0.319/0.32 | 0.265/0.281 |
Ili | 0.246/0.267 | 0.253/0.283 | 0.255/0.273 | 0.277/0.3 | 0.304/0.318 | 0.268/0.289 |
Tacheng | 0.239/0.268 | 0.224/0.268 | 0.229/0.259 | 0.249/0.277 | 0.278/0.309 | 0.249/0.284 |
Altay | 0.219/0.249 | 0.213/0.235 | 0.247/0.234 | 0.209/0.25 | 0.297/0.277 | 0.244/0.25 |
Bortala | 0.226/0.229 | 0.222/0.231 | 0.255/0.226 | 0.278/0.24 | 0.35/0.268 | 0.266/0.243 |
Bayangol | 0.252/0.277 | 0.255/0.226 | 0.269/0.243 | 0.298/0.283 | 0.339/0.289 | 0.281/0.258 |
Aksu | 0.23/0.23 | 0.233/0.237 | 0.251/0.248 | 0.271/0.262 | 0.291/0.284 | 0.258/0.256 |
Kizilsu | 0.214/0.311 | 0.191/0.299 | 0.276/0.258 | 0.315/0.287 | 0.41/0.232 | 0.28/0.268 |
Kashgar | 0.197/0.253 | 0.204/0.260 | 0.249/0.264 | 0.262/0.273 | 0.29/0.299 | 0.246/0.276 |
Hotan | 0.168/0.225 | 0.174/0.222 | 0.216/0.223 | 0.248/0.238 | 0.266/0.269 | 0.22/0.234 |
a | a1 | b1 | b | a2 | b2 | HZ | JZ | |
---|---|---|---|---|---|---|---|---|
Xian | 0.4066 | 0.7033 | 0.2967 | 0.2362 | 0.6181 | 0.3819 | 0.6607 | 0.3393 |
Tongchuan | −0.0266 | 0.4867 | 0.5133 | 0.1740 | 0.5870 | 0.4130 | 0.53685 | 0.46315 |
Baoji | −0.0222 | 0.4889 | 0.5111 | 0.6310 | 0.8155 | 0.1845 | 0.6522 | 0.3478 |
Xianyang | −0.2010 | 0.3995 | 0.6005 | 0.9110 | 0.9555 | 0.0445 | 0.6775 | 0.3225 |
Weinan | 0.0647 | 0.5324 | 0.4676 | −0.5202 | 0.2399 | 0.7601 | 0.38615 | 0.61385 |
Yanan | −0.5559 | 0.2221 | 0.7779 | −0.3371 | 0.3314 | 0.6686 | 0.27675 | 0.72325 |
Hanzhong | −0.7572 | 0.1214 | 0.8786 | 0.4039 | 0.7019 | 0.2981 | 0.41165 | 0.58835 |
Yulin | 0.3540 | 0.6770 | 0.3230 | −0.0416 | 0.4792 | 0.5208 | 0.5781 | 0.4219 |
Ankang | −0.5200 | 0.2400 | 0.7600 | −0.4080 | 0.2960 | 0.7040 | 0.268 | 0.732 |
Shangluo | −0.0316 | 0.4842 | 0.5158 | −0.7454 | 0.1273 | 0.8727 | 0.30575 | 0.69425 |
Lanzhou | −0.0345 | 0.4827 | 0.5173 | −0.7182 | 0.1409 | 0.8591 | 0.3118 | 0.6882 |
Jiayuguan | 0.2275 | 0.6138 | 0.3862 | 0.3949 | 0.6974 | 0.3026 | 0.6556 | 0.3444 |
Jinchang | −0.1112 | 0.4444 | 0.5556 | −0.5714 | 0.2143 | 0.7857 | 0.32935 | 0.67065 |
Baiyin | 0.1134 | 0.5567 | 0.4433 | −0.9623 | 0.0188 | 0.9812 | 0.28775 | 0.71225 |
Tianshui | 0.2234 | 0.6117 | 0.3883 | −0.1199 | 0.4401 | 0.5599 | 0.5259 | 0.4741 |
Wuwei | 0.9206 | 0.9603 | 0.0397 | 0.1516 | 0.5758 | 0.4242 | 0.76805 | 0.23195 |
Zhangye | −0.8940 | 0.0530 | 0.9470 | 0.0708 | 0.5354 | 0.4646 | 0.2942 | 0.7058 |
Pingliang | −0.7174 | 0.1413 | 0.8587 | 0.6299 | 0.8150 | 0.1850 | 0.47815 | 0.52185 |
Jiuquan | −0.0372 | 0.4814 | 0.5186 | −0.6828 | 0.1598 | 0.8426 | 0.3206 | 0.6806 |
Qingyang | −0.2990 | 0.3190 | 0.6180 | −0.1779 | 0.4111 | 0.5889 | 0.36505 | 0.60345 |
Dingxi | 0.3546 | 0.6773 | 0.3227 | 0.1412 | 0.5706 | 0.4294 | 0.62395 | 0.37605 |
Longnan | −0.4084 | 0.2958 | 0.7042 | 0.6692 | 0.8342 | 0.1650 | 0.565 | 0.4346 |
Linxia | 0.4258 | 0.7129 | 0.2871 | −0.0680 | 0.4660 | 0.5340 | 0.58945 | 0.41055 |
Gannan | −0.6326 | 0.1837 | 0.8163 | −0.2246 | 0.3877 | 0.6123 | 0.2857 | 0.7143 |
Yinchuan | −0.5346 | 0.2327 | 0.7673 | −0.0053 | 0.4974 | 0.5026 | 0.36505 | 0.63495 |
Shizuishan | −0.4810 | 0.2595 | 0.7405 | −0.6925 | 0.1537 | 0.8463 | 0.2066 | 0.7934 |
Wuzhong | −0.7742 | 0.1129 | 0.8871 | −0.5301 | 0.2349 | 0.7651 | 0.1739 | 0.8261 |
Guyuan | −0.5178 | 0.2411 | 0.7589 | 0.3284 | 0.6642 | 0.3358 | 0.45265 | 0.54735 |
Zhongwei | 0.1417 | 0.5709 | 0.4291 | 0.2793 | 0.6397 | 0.3603 | 0.6053 | 0.3947 |
Xining | 0.207 | 0.6035 | 0.3965 | −0.088 | 0.4560 | 0.544 | 0.52975 | 0.47025 |
Haidong | −0.0554 | 0.4723 | 0.5277 | 0.19 | 0.5950 | 0.405 | 0.53365 | 0.46635 |
Haibei | −0.2088 | 0.3956 | 0.6044 | 0.3144 | 0.6572 | 0.3428 | 0.5264 | 0.4736 |
Huangnan | 0.3966 | 0.6983 | 0.3017 | 0.6642 | 0.8321 | 0.1679 | 0.7652 | 0.2348 |
Hainan | −0.7336 | 0.1332 | 0.8668 | 0.0652 | 0.5326 | 0.4674 | 0.3329 | 0.6671 |
Guoluo | 0.7872 | 0.8936 | 0.1064 | −0.538 | 0.2310 | 0.769 | 0.5623 | 0.4377 |
Yushu | 0.3266 | 0.6633 | 0.3367 | 0.469 | 0.7345 | 0.2655 | 0.6989 | 0.3011 |
Haixi | −0.4914 | 0.2543 | 0.7457 | 0.7252 | 0.8626 | 0.1374 | 0.55845 | 0.44155 |
Urumqi | −0.4024 | 0.2988 | 0.7012 | 0.308 | 0.6540 | 0.346 | 0.4764 | 0.5236 |
Karamay | −0.3676 | 0.3162 | 0.6838 | 0.6052 | 0.8026 | 0.1974 | 0.5594 | 0.4406 |
Shihezi | 0.072 | 0.536 | 0.464 | 0.3908 | 0.6954 | 0.3046 | 0.6157 | 0.3843 |
Turpan | 0.3484 | 0.6742 | 0.3258 | −0.093 | 0.4535 | 0.5465 | 0.56385 | 0.43615 |
Hami | −0.5894 | 0.2053 | 0.7947 | 0.8086 | 0.9043 | 0.0957 | 0.5548 | 0.4452 |
Changji | −0.7928 | 0.1036 | 0.8964 | −0.3976 | 0.3012 | 0.6988 | 0.2024 | 0.7976 |
Ili | 0.2738 | 0.6369 | 0.3631 | −0.553 | 0.2235 | 0.7765 | 0.4302 | 0.5698 |
Tacheng | 0.2006 | 0.6003 | 0.3997 | −0.6812 | 0.1594 | 0.8406 | 0.37985 | 0.62015 |
Altay | −0.9136 | 0.0432 | 0.9568 | −0.1266 | 0.4367 | 0.5633 | 0.23995 | 0.76005 |
Bortala | −0.2914 | 0.3543 | 0.6457 | −0.929 | 0.0355 | 0.9645 | 0.1949 | 0.8051 |
Bayangol | 0.133 | 0.5665 | 0.4335 | −0.8876 | 0.0562 | 0.9438 | 0.31135 | 0.68865 |
Aksu | −0.7934 | 0.1033 | 0.8967 | 0.374 | 0.6870 | 0.313 | 0.39515 | 0.60485 |
Kizilsu | −0.7346 | 0.1327 | 0.8673 | −0.0128 | 0.4936 | 0.5064 | 0.31315 | 0.68685 |
Kashgar | −0.3754 | 0.3123 | 0.6877 | −0.4844 | 0.2578 | 0.7422 | 0.28505 | 0.71495 |
Hotan | −0.7386 | 0.1307 | 0.8693 | −0.6958 | 0.1521 | 0.8479 | 0.1414 | 0.8586 |
References
- Masoumeh, F.; Ezatollah, K.; Mansour, Z.; Hossein, Z. Agricultural Water Poverty Index for a Sustainable World. Agric. Rev. 2012, 10, 127–155. [Google Scholar] [CrossRef]
- United Nations Educational, Scientific and Cultural Organization (UNESCO)—WWAP. Water a Shared Responsibility; The United Nations World Water Development Report 2; UNESCO: Paris, France, 2006. [Google Scholar]
- Sujata, M.; Vishnu, P.P.; Futaba, K. Application of Water Poverty Index (WPI) in Nepalese Context: A Case Study of Kali Gandaki River Basin (KGRB). Water Resour. Manag. 2012, 26, 89–107. [Google Scholar] [CrossRef]
- Alasdair, C.; Caroline, A.S. Water and poverty in rural China Developing an instrument to assess the multiple dimensions of and poverty. Ecol. Econ. 2010, 69, 999–1009. [Google Scholar]
- Chen, J.; Shi, H.Y.; Bellie, S.; Mervyn, R.P. Population, water, food, energy and dams. Renew. Sustain. Energy Rev. 2016, 56, 18–28. [Google Scholar] [CrossRef]
- Josephine, T.; Alan, M.; Lorraine, C.; Roger, C.C. Household water use, poverty and seasonality: Wealth effects, labour constraints, and minimal consumption in Ethiopia. Water Resour. Rural Dev. 2014, 3, 27–47. [Google Scholar]
- Sullivan, C.A.; Hatem, J. Toward Understanding Water Conflicts in MENA Region: A Comparative Analysis Using Water Poverty Index. In The Economic Research Forum (ERF); The Economic Research Forum: Giza, Egypt, 2014. [Google Scholar]
- Yokwe, S. Water productivity in smallholder irrigation schemes in South Africa. Agric. Water Manag. 2009, 96, 1223–1228. [Google Scholar] [CrossRef]
- Sullivan, C.A. The potential for calculating a meaningful Water Poverty Index. Water Int. 2001, 26, 471–480. [Google Scholar] [CrossRef]
- Sullivan, C.A. Calculating a water poverty index. World Dev. 2002, 30, 1195–1210. [Google Scholar] [CrossRef]
- Sun, C.Z.; Liu, W.X.; Zou, W. Water Poverty in Urban and Rural China Considered Through the Harmonious and Developmental Ability Model. Water Resour. Manag. 2016. [Google Scholar] [CrossRef]
- Satterthwaite, D. The links between poverty and the environment in urban areas of Africa, Asia, and Latin America. Ann. Am. Acad. Pol. Soc. Sci. 2003, 590, 73–92. [Google Scholar] [CrossRef]
- Nene, M.T.; Alioune, K.; Jean, F.N.; Vincent, T.; Valentin, N.; Gabriel, L. Water-poverty relationships in the coastal town of Mbour (Senegal): Relevance of GIS for decision support. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 33–39. [Google Scholar]
- Caroline, S.; Jeremy, M.; Peter, L. Application of the Water Poverty Index at Different Scales: A Cautionary Tale. Water Int. 2006, 31, 412–426. [Google Scholar]
- Guppy, L. The Water Poverty Index in rural Cambodia and Viet Nam: A holistic snapshot to improve water management planning. Nat. Resour. Forum 2014, 38, 203–219. [Google Scholar] [CrossRef]
- Agustí, P.F.; Ricard, G. Analyzing Water Poverty in Basins. Water Resour. Manag. 2011, 25, 3395–3612. [Google Scholar] [CrossRef]
- Vishnu, P.P.; Sujata, M.; Futaba, K. Water Poverty Situation of Medium-sized River Basins in Nepal. Water Resour. Manag. 2012, 26, 2475–2489. [Google Scholar]
- Tran, V.T.; Kengo, S.; Yutaka, L.; Satoru, O. Evaluation of the state of water resources using Modified Water Poverty Index: A case study in the Srepok River basin, Vietnam—Cambodia. Int. J. River Basin Manag. 2010, 8, 305–317. [Google Scholar]
- Lawrence, P.R.; Meigh, J.; Sullivan, C.A. The Water Poverty Index an International Comparison; Keele Economics Research Papers; Keele University: Staffordshire, UK, 2003. [Google Scholar]
- Wenxin, L.; Minjuan, Z.; Wei, H.; Yu, C. Spatial-temporal variations of water poverty in rural China considered through the KDE and ESDA models. Nat. Resour. Forum 2018, 42, 254–268. [Google Scholar] [CrossRef]
- Wilk, J.; Jonsson, A.C. From water poverty to water prosperity—A more participatory approach to studying local water resources management. Water Resour. Manag. 2013, 27, 695–713. [Google Scholar] [CrossRef]
- Liu, W.X.; Zhao, M.J.; Xu, T. Water poverty in rural communities of arid areas in China. Water 2018, 10, 505. [Google Scholar] [CrossRef]
- Komnenic, V.; Ahlers, R.; Vander, Z.P. Assessing the usefulness of the water poverty index by applying it to a special case: Can one be water poor with high levels of access? Phys. Chem. Earth 2009, 34, 219–224. [Google Scholar] [CrossRef]
- Sullivan, C.A.; Meigh, J.R.; Giacomello, A.M.; Fediw, T.; Lawrence, P.; Samad, M.; Mlote, S.; Hutton, C.; Allan, J.A.; Schulze, R.E.; et al. The Water Poverty Index: Development and Application at the Community Scale. Nat. Resour. Forum 2003, 27, 189–199. [Google Scholar] [CrossRef]
- Danny, I.C.; Tomson, O.; Christopher, O. Simplifying the Water Poverty Index. Soc. Indic. Res. 2010, 97, 257–267. [Google Scholar]
- Claudia, H. Development and Evaluation of a Regional Water Poverty Index for BENIN; International Food Policy Research Institute: Washington, DC, USA, 2006. [Google Scholar]
- Cao, Q.; Liu, R. Assessment of water poverty in Ganjiang basin based on WPI model. Resour. Sci. 2012, 34, 1306–1311. [Google Scholar]
- Dale, V.H.; Beyeler, S.C. Challenges in the Development and Use of Ecological Indicators. Ecol. Indic. 2001, 1, 3–10. [Google Scholar] [CrossRef]
- Liu, W.X.; Sun, C.Z.; Zhao, M.J.; Wu, Y.J. Application of a DPSIR Modeling Framework to Assess Spatial-Temporal Differences of Water Poverty in China. J. Am. Water Resour. Assoc. 2019, 55, 259–273. [Google Scholar] [CrossRef]
- Li, N.; Sun, C.Z.; Fan, F. The Coupling Relation Analysis between Urbanization and Water Resources in Liaoning Coastal Economic Zone. Areal Res. Dev. 2010, 29, 47–51. [Google Scholar]
- Sun, C.Z.; Chen, L.; Zhao, L.S.; Zou, W. Spatial-Temporal Coupling Between Rural Water Poverty and Economic Poverty in China. Resour. Sci. 2013, 35, 1991–2002. [Google Scholar]
- Liu, Y.S.; Yan, B.; Wang, Y.F. Urban-rural development problems and transformation countermeasures in the new period in China. Econ. Geogr. 2016, 36, 1–8. [Google Scholar]
- Liu, Y.S. Rural transformation development and new countryside construction in eastern coastal area of China. Acta Geogr. Sin. 2007, 62, 563–570. [Google Scholar]
- National Bureau of Statistics (NBS), Ministry of Environmental Protection (MEP). China Statistical Yearbook on Environment; China Statistic Press: Beijing, China, 1997–2018.
- Zhang, J.Y.; He, R.M.; Qi, J.; Liu, C.S.; Wang, G.Q.; Jin, J.L. A new perspective on water issues in North China. Adv. Water Sci. 2013, 24, 303–310. [Google Scholar] [CrossRef]
- Bao, C.; Fang, C.L.; Liu, W.H. Water Utilization Modes Linked with Urban and Rural Arid Areas Restricted by Eco-environments—A Case Study of Zhang ye City in the He xi Corridor. J. Nat. Resour. 2010, 25, 1949–1959. [Google Scholar]
- Bao, C.; Fang, C.L. Impact of water resources exploitation and utilization one co-environment in arid area: Progress and prospect. Prog. Geogr. 2008, 26, 38–46. [Google Scholar]
- Xia, W.; Zhou, W.B.; Li, W.Y.; He, Q.Y. Analysis of coupling effect between water resources benefits and the integration of urban and rural water supply development: A case study of Luochuan County. J. Water Resour. Water Eng. 2018, 29, 39–44. [Google Scholar]
- Zheng, X.Y. Urban and rural water footprints for food consumption in China and governing factor analysis. J. Arid Land Resour. Environ. 2019, 33, 17–22. [Google Scholar]
- Liu, X.R.; Shen, Y.J.; Guo, Y.; Li, S.; Guo, B. Modeling demand/supply of water resources in the arid region of northwestern China during the late 1980s to 2010. J. Geogr. Sci. 2015, 25, 573–591. [Google Scholar] [CrossRef]
- Wang, H.J.; Chen, Y.N.; Xun, S. Changes in daily climate extremes in the arid area of northwestern China. Theor. Appl. Climatol. 2013, 112, 15–28. [Google Scholar] [CrossRef]
- Ji, X.B.; Kang, E.S.; Chen, R.S.; Zhao, W.Z.; Xiao, S.C.; Jin, B.W. Analysis of water resources supply and demand and security of water resources development in irrigation regions of the middle reaches of the Heihe River Basin, Northwest China. Agric. Sci. China 2006, 5, 130–140. [Google Scholar] [CrossRef]
- National Bureau of Statistics (NBS). China Statistical Yearbook; China Statistic Press: Beijing, China, 1997–2018.
- Deng, M.J. Three Water Lines strategy: Its spatial patterns and effects on water resources allocation in northwest China. Acta Geogr. Sin. 2018, 73, 1189–1203. [Google Scholar]
- Deng, M.J. Prospecting development of south Xinjiang: Water strategy and problem of Tarim River Basin. Arid Land Geogr. 2016, 39, 370–390. [Google Scholar]
- Dong, W.; Yang, Y.; Zhang, Y.F. Coupling Effect and Spatio-Temporal Differentiation between Oasis City Development and Water-Land Resources. Resour. Sci. 2013, 35, 1355–1362. [Google Scholar]
- Falkenmark, M.; Widstrand, C. Population and water resources: A delicate balance. Popul. Bull. 1992, 47, 1–36. [Google Scholar]
- Saleth, R.M.; Samad, M.; Molden, D.; Hussain, I. Water, Poverty and Gender: An Overview of Issues and Policies. Water Policy 2003, 5, 385–398. [Google Scholar] [CrossRef]
- Bosch, C.; Hommann, K.; Rubio, G.M.; Sadoff, C.; Travers, L. Water, sanitation and poverty. In Poverty Reduction Strategy Sourcebook; World Bank: Washington, DC, USA, 2001. [Google Scholar]
- Roseblatt, M. Remarks on some nonparametric estimat es of a density function. Ann. Math. Stat. 1956, 27, 832–837. [Google Scholar] [CrossRef]
- Yang, Y.D.; Sun, C.Z. Assessment of Land-Sea Coordination in the Bohai Sea Ring Area and Spatial-Temporal Differences. Resour. Sci. 2014, 36, 691–701. [Google Scholar]
- Zhu, J.C. The Yangtze River Delta coordinated development based on polycentric and regional symbiosis. China Popul. Resour. Environ. 2011, 21, 150–158. [Google Scholar]
- Li, P. Theoretical basis and practical methods of regional economic synergistic development. Geogr. Geo-Inf. Sci. 2005, 21, 51–55. [Google Scholar]
- Fan, F.; Sun, C.Z. Research on the Cooperation Development of Marine and Inland Economy in Liaoning Province. Areal Res. Dev. 2011, 30, 59–63. [Google Scholar]
- Ren, J.Q.; Yang, S.J.; Qi, S.W.; Yin, Y. Case Study on Incremental Benefits of Energy—Saving in Green Building Based on Genetic Algorithms. Res. Dev. Market. 2019, 35, 452–456. [Google Scholar]
- Jin, J.L.; Yang, X.H.; Ding, J. An Improved Simple Genetic Algorithm—Accelerating Genetic Algorithm. J. Syst. Sci. Complex. 2001, 4, 8–13. [Google Scholar]
- Liu, Y.H.; Xu, Y. Geographical identification and classification of multi-dimensional poverty in rural China. Acta Geogr. Sin. 2015, 70, 993–1007. [Google Scholar]
- Hwang, C.L.; Lin, M.J. Group Decision Making under Multiple Criteria; Springer: Berlin, Germany, 1987. [Google Scholar]
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Chen, S.; Leng, Y.; Mao, B.; Liu, S. Integrated weight-based multi-criteria evaluation on transfer in large transport terminals: A case study of the Beijing South Railway Station. Transp. Res. Part A Policy Pract. 2014, 66, 13–26. [Google Scholar] [CrossRef]
System | Component (Indicators) | Variable | Data Sources and References |
---|---|---|---|
Urban | Resources 1. Variability 2. Availability | ||
(mm) variation of rainfall (+) | [4,34] | ||
(m3) Per capita water resources (+) | [9,10,34] | ||
Access | |||
3. Supply | (%) Growth rate with access to clean water supply pipeline (+) | [11,34] | |
4. Population | (%) Population with access to clean water (+) | [11,34] | |
5. Sanitation | (%) Sewage treatment (+) | [20,34] | |
Capacity | |||
6. Economic | (CNY) Urban per capita income (+) | [20,43] | |
7. Social | (%) Higher education enrolment rate (+) | [11,43] | |
8. Government | (%) Financial self-sufficiency (+) | [22,43] | |
Use | |||
9. Domestic | (L) Urban per capita domestic water uses per day (+) | [9,10,43] | |
10. Industrial | (m3) Industrial water use per 10,000 yuan (-) | [9,10,34] | |
Environment | |||
11. Stress | (m3) Volume of wastewater per 10,000 yuan (-) | [11,34] | |
12. Quality | (m2) Per capita vegetation coverage (+) (m3) Sewage treatment (+) | [21,34] [11,34] | |
Rural | Resources | ||
1. Variability | (mm) variation of rainfall (+) | [4,43] | |
2. Availability | (m3) Per capita water resources (+) | [9,10,43] | |
Access | |||
3. Supply | (Km2) The actual irrigation capacity (+) | [22,43] | |
4. Population | (%) Population with access to clean water | [1,43] | |
5. Sanitation | (pc) Numbers of reservoir (+) | [22,43] | |
Capacity | |||
6. Economic | (CNY) Rural per capita income (+) | [20,43] | |
7. Social | (%) Compulsory education enrolment rate | [11,43] | |
8. Residents | (pc) Numbers of doctors per ten thousand people (+) | [22,43] | |
Use | |||
9. Domestic | (L) Rural per capita domestic water use per day (+) | [9,10,34] | |
10. Agriculture | (m3) Agricultural water use per 10,000 yuan (+) | [9,10,34] | |
Environment | |||
11. Stress | (Kg) Chemical fertilizer use per hectare (-) | [22,34] | |
12. Quality | (pc) Number of toilets per 10,000 people (+) (Km2) Soil and water loss control area (+) | [22,34] [11,34] |
Type | Parameter |
---|---|
Synchronous | a1 < 0, a2 < 0 |
Urban-priority | a1 < 0, a2 > 0 |
Rural-priority | a1 > 0, a2 < 0 |
Conflicting | a1 > 0, a2 > 0 |
Type | Cooperation | Competition | Stages |
---|---|---|---|
1 | Mature | ||
2 | Growth | ||
3 | Forming | ||
4 | Infancy |
Component | Variable | AHP | PCA | Integrated |
---|---|---|---|---|
Resources (0.2) | variation of rainfall | 0.0667 | 0.076 | 0.071 |
Per capita water resources | 0.1333 | 0.074 | 0.103 | |
Access (0.2) | Growth rate with access to clean water supply pipeline | 0.0622 | 0.092 | 0.077 |
Population with access to clean water | 0.0987 | 0.098 | 0.098 | |
Sewage treatment | 0.0392 | 0.103 | 0.071 | |
Capacity (0.2) | Urban per capita income | 0.0825 | 0.063 | 0.073 |
Higher education enrolment rate | 0.0520 | 0.057 | 0.055 | |
Financial self-sufficiency | 0.0655 | 0.078 | 0.072 | |
Use (0.2) | Urban per capita domestic water use per day | 0.1333 | 0. 105 | 0.119 |
Industrial water use per 10,000 yuan | 0.0667 | 0.079 | 0.073 | |
Environment (0.2) | Volume of wastewater per 10,000 yuan | 0.0622 | 0.068 | 0.065 |
Per capita vegetation coverage | 0.0392 | 0.089 | 0.064 | |
Sewage treatment | 0.0987 | 0.017 | 0.058 | |
Resources (0.2) | variation of rainfall | 0.1333 | 0.053 | 0.093 |
Per capita water resources | 0.0667 | 0.116 | 0.092 | |
Access (0.2) | The actual irrigation capacity | 0.1056 | 0.032 | 0.069 |
Population with access to clean water | 0.0665 | 0.095 | 0.081 | |
Numbers of reservoir | 0.0279 | 0.065 | 0.047 | |
Capacity (0.2) | Rural per capita income | 0.1000 | 0.052 | 0.076 |
Elementary education enrolment rate | 0.0500 | 0.113 | 0.081 | |
Numbers of doctors per ten thousand people | 0.0500 | 0.086 | 0.068 | |
Use (0.2) | Rural per capita domestic water use per day | 0.0667 | 0.089 | 0.078 |
Agricultural water use per 10,000 yuan | 0.1333 | 0.069 | 0.101 | |
Environment (0.2) | Chemical fertilizer use per hectare | 0.0987 | 0.074 | 0.086 |
Numbers of toilets per 10,000 people Soil and water loss control area | 0.0392 0.0622 | 0.092 0.064 | 0.065 0.063 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Zhao, M.; Cai, Y.; Wang, R.; Lu, W. Synergetic Relationship between Urban and Rural Water Poverty: Evidence from Northwest China. Int. J. Environ. Res. Public Health 2019, 16, 1647. https://doi.org/10.3390/ijerph16091647
Liu W, Zhao M, Cai Y, Wang R, Lu W. Synergetic Relationship between Urban and Rural Water Poverty: Evidence from Northwest China. International Journal of Environmental Research and Public Health. 2019; 16(9):1647. https://doi.org/10.3390/ijerph16091647
Chicago/Turabian StyleLiu, Wenxin, Minjuan Zhao, Yu Cai, Rui Wang, and Weinan Lu. 2019. "Synergetic Relationship between Urban and Rural Water Poverty: Evidence from Northwest China" International Journal of Environmental Research and Public Health 16, no. 9: 1647. https://doi.org/10.3390/ijerph16091647
APA StyleLiu, W., Zhao, M., Cai, Y., Wang, R., & Lu, W. (2019). Synergetic Relationship between Urban and Rural Water Poverty: Evidence from Northwest China. International Journal of Environmental Research and Public Health, 16(9), 1647. https://doi.org/10.3390/ijerph16091647