Designing Electric Field Responsive Ultrafiltration Membranes by Controlled Grafting of Poly (Ionic Liquid) Brush
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Electric Responsive Membrane by Surface Initiated ATRP
2.2. Characterization
2.3. Permeate Flux Measurements
2.4. Rejection Studies
3. Results and Discussion
3.1. Synthesis of Electric Responsive Membrane
3.2. Membrane Surface Characterization
3.3. Membrane Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jacangelo, J.G.; Trussell, R.R.; Watson, M. Role of membrane technology in drinking water treatment in the United States. Desalination 1997, 113, 119–127. [Google Scholar] [CrossRef]
- Arora, M.; Maheshwari, R.C.; Jain, S.K.; Gupta, A. Use of membrane technology for potable water production. Desalination 2004, 170, 105–112. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, N.; Ranjan, R.; Kumar, S.; Bhat, Z.F.; Jeong, D.K. Perspective of Membrane Technology in Dairy Industry—A Review. Asian-Australas. J. Anim. Sci. 2013, 26, 1347–1358. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Ngo, H.H.; Li, J. A mini-review on membrane fouling. Bioresour. Technol. 2012, 122, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.Y.; She, Q.; Lay, W.C.L.; Wang, R.; Fane, A.G. Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration. J. Membr. Sci. 2010, 354, 123–133. [Google Scholar] [CrossRef]
- Kaiya, Y.; Itoh, Y.; Fujita, K.; Takizawa, S. Study on fouling materials in the membrane treatment process for potable water. Desalination 1996, 106, 71–77. [Google Scholar] [CrossRef]
- Kaur, S.; Ma, Z.; Gopal, R.; Singh, G. Plasma-induced graft copolymerization of poly (methacrylic acid) on Electrospun Poly (vinylidene fluoride) Nanofiber membrane. Langmuir 2007, 13085–13092. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, M.; Belfort, G. Surface modification of ultrafiltration membranes by low temperature plasma II. Graft polymerization onto polyacrylonitrile and polysulfone. J. Membr. Sci. 1996, 111, 193–215. [Google Scholar] [CrossRef]
- Wei, X.; Wang, R.; Li, Z.; Fane, A.G. Development of a novel electrophoresis-UV grafting technique to modify PES UF membranes used for NOM removal. J. Membr. Sci. 2006, 273, 47–57. [Google Scholar] [CrossRef]
- Ulbricht, M.; Matuschewski, H.; Oechel, A.; Hicke, H.G. Photo-induced graft polymerization surface modifications for the preparation of hydrophilic and low-protein-adsorbing ultrafiltration membranes. J. Membr. Sci. 1996, 115, 31–47. [Google Scholar] [CrossRef]
- McCloskey, B.D.; Park, H.B.; Ju, H.; Rowe, B.W.; Miller, D.J.; Freeman, B.D. A bioinspired fouling-resistant surface modification for water purification membranes. J. Membr. Sci. 2012, 413–414, 82–90. [Google Scholar] [CrossRef]
- Wandera, D.; Wickramasinghe, S.R.; Husson, S.M. Stimuli-responsive membranes. J. Membr. Sci. 2010, 357, 6–35. [Google Scholar] [CrossRef]
- Tokarev, I.; Gopishetty, V.; Zhou, J.; Pita, M.; Motornov, M.; Katz, E.; Minko, S. Stimuli-responsive hydrogel membranes coupled with biocatalytic processes. ACS Appl. Mater. Interfaces 2009, 1, 532–536. [Google Scholar] [CrossRef] [PubMed]
- Darvishmanesh, S.; Qian, X.; Wickramasinghe, S.R. Responsive membranes for advanced separations. Curr. Opin. Chem. Eng. 2015, 8, 98–104. [Google Scholar] [CrossRef]
- Himstedt, H.H.; Yang, Q.; Dasi, L.P.; Qian, X.; Wickramasinghe, S.R.; Ulbricht, M. Magnetically activated micromixers for separation membranes. Langmuir 2011, 27, 5574–5581. [Google Scholar] [CrossRef]
- Lin, X.; Huang, R.; Ulbricht, M. Novel magneto-responsive membrane for remote control switchable molecular sieving. J. Mater. Chem. B 2015, 4, 867–879. [Google Scholar] [CrossRef] [Green Version]
- Song, G.; Sengupta, A.; Qian, X.; Wickramasinghe, S.R. Investigation on suppression of fouling by magnetically responsive nanofiltration membranes. Sep. Purif. Technol. 2018, 205, 94–104. [Google Scholar] [CrossRef]
- Qian, X.; Yang, Q.; Vu, A.; Wickramasinghe, S.R. Localized heat generation from magnetically responsive membranes. Ind. Eng. Chem. Res. 2016, 55, 9015–9027. [Google Scholar] [CrossRef]
- Venault, A.; Wei, T.C.; Shih, H.L.; Yeh, C.C.; Chinnathambi, A.; Alharbi, S.A.; Carretier, S.; Aimar, P.; Lai, J.Y.; Chang, Y. Antifouling pseudo-zwitterionic poly(vinylidene fluoride) membranes with efficient mixed-charge surface grafting via glow dielectric barrier discharge plasma-induced copolymerization. J. Membr. Sci. 2016, 516, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Meng, J.Q.; Chen, C.L.; Huang, L.P.; Du, Q.Y.; Zhang, Z.F. Surface modification of PVDF membrane via AGET ATRP directly from the membrane surface. Appl. Surf. Sci. 2011, 257, 6282–6290. [Google Scholar] [CrossRef]
- Bhut, B.V.; Conrad, K.A.; Husson, S.M. Preparation of high-performance membrane adsorbers by surface-initiated AGET ATRP in the presence of dissolved oxygen and low catalyst concentration. J. Membr. Sci. 2012, 390–391, 43–47. [Google Scholar] [CrossRef]
- Carter, B.M.; Sengupta, A.; Qian, X.; Ulbricht, M.; Wickramasinghe, S.R. Controlling external versus internal pore modification of ultrafiltration membranes using surface-initiated AGET-ATRP. J. Membr. Sci. 2018, 554, 109–116. [Google Scholar] [CrossRef]
- Priya, S.; Sengupta, A.; Jayabun, S.K. Understanding the extraction/complexation of uranium using structurally modified sulphoxides in room temperature ionic liquid: Speciation, kinetics, radiolytic stability, stripping and luminescence investigation. J. Radioanal. Nucl. Chem. 2016, 310, 1049–1059. [Google Scholar] [CrossRef]
- Ghazali-Esfahani, S.; Song, H.; Pǎunescu, E.; Bobbink, F.D.; Liu, H.; Fei, Z.; Laurenczy, G.; Bagherzadeh, M.; Yan, N.; Dyson, P.J. Cycloaddition of CO2 to epoxides catalyzed by imidazolium-based polymeric ionic liquids. Green Chem. 2013, 15, 1584–1589. [Google Scholar] [CrossRef]
- Yuan, J.; Schlaad, H.; Giordano, C.; Antonietti, M. Double hydrophilic diblock copolymers containing a poly (ionic liquid) segment: Controlled synthesis, solution property, and application as carbon precursor. Eur. Polym. J. 2011, 47, 772–781. [Google Scholar] [CrossRef]
- Leoncini, A.; Mohapatra, P.K.; Bhattacharyya, A.; Raut, D.R.; Sengupta, A.; Verma, P.K.; Tiwari, N.; Bhattacharyya, D.; Jha, S.; Wouda, A.M.; et al. Unique selectivity reversal in Am3+-Eu3+ extraction in a tripodal TREN-based diglycolamide in ionic liquid: Extraction, luminescence, complexation and structural studies. Dalton Trans. 2016, 45, 2476–2484. [Google Scholar] [CrossRef]
- Gupta, N.K.; Sengupta, A.; Biswas, S. Quaternary ammonium based task specific ionic liquid for the efficient and selective extraction of neptunium. Radiochim. Acta 2017, 105, 689–697. [Google Scholar] [CrossRef]
- Mohapatra, P.K.; Sengupta, A.; Iqbal, M.; Huskens, J.; Verboom, W. Highly efficient diglycolamide-based task-specific ionic liquids: Synthesis, unusual extraction behaviour, irradiation, and fluorescence studies. Chem. Eur. J. 2013, 19, 3230–3238. [Google Scholar] [CrossRef]
- Sengupta, A.; Mohapatra, P.K.; Kadam, R.M.; Manna, D.; Ghanty, T.K.; Iqbal, M.; Huskens, J.; Verboom, W. Diglycolamide-functionalized task specific ionic liquids for nuclear waste remediation: Extraction, luminescence, theoretical and EPR investigations. RSC Adv. 2014, 4, 46613–46623. [Google Scholar] [CrossRef] [Green Version]
- Ethirajan, S.K.; Sengupta, A.; Jebur, M.; Kamaz, M.; Qian, X.; Wickramasinghe, S.R. Single-step synthesis of novel polyionic liquids having antibacterial activity and showing π-electron mediated selectivity in separation of aromatics. ChemistrySelect 2018, 3, 4959–4968. [Google Scholar] [CrossRef]
- Yuan, J.; Antonietti, M. Poly (ionic liquid) s: Polymers expanding classical property profiles. Polymer 2011, 52, 1469–1482. [Google Scholar] [CrossRef] [Green Version]
- Jebur, M.; Sengupta, A.; Chiao, Y.-H.; Kamaz, M.; Qian, X.; Wickramasinghe, S.R. Pi electron cloud mediated separation of aromatics using supported ionic liquid (SIL) membrane having antibacterial activity. J. Membr. Sci. 2018, 556, 1–11. [Google Scholar] [CrossRef]
- Guo, J.; Xu, Q.; Zheng, Z.; Zhou, S.; Mao, H.; Wang, B.; Yan, F. Intrinsically antibacterial poly(ionic liquid) membranes: The synergistic effect of anions. ACS Macro Lett. 2015, 4, 1094–1098. [Google Scholar] [CrossRef]
- Sengupta, A.; Jayabun, S.K.; Pius, I.C.; Thulasidas, S.K. Synthesis, characterization and application of metal oxides impregnated silica for the sorption of thorium. J. Radioanal. Nucl. Chem. 2016, 309, 841–852. [Google Scholar] [CrossRef]
- Anari, Z.; Sengupta, A.; Wickramasinghe, S.R. Surface oxidation of ethylenechlorotrifluoroethylene (ECTFE) membrane for the treatment of real produced water by membrane distillation. Int. J. Environ. Res. Public Health 2018, 15, 1561. [Google Scholar] [CrossRef] [Green Version]
- Gamage, T.; Sengupta, A.; Wickramasinghe, S.R. Surface modified polypropylene membranes for treating hydraulic fracturing produced waters by membrane distillation. Sep. Sci. Technol. 2019, 54, 2921–2932. [Google Scholar] [CrossRef]
- Chiao, Y.-H.; Sengupta, A.; Chen, S.-T.; Huang, S.-H.; Hu, C.-C.; Hung, W.-S.; Chang, Y.; Qian, X.; Wickramasinghe, S.R.; Lee, K.-R.; et al. Zwitterion augmented polyamide membrane for improved forward osmosis performance with significant antifouling characteristics. Sep. Purif. Technol. 2019, 212, 316–325. [Google Scholar] [CrossRef]
- Kamaz, M.; Rocha, P.; Sengupta, A.; Qian, X.; Wickramasinghe, S.R. Efficient removal of chemically toxic dyes using microorganism from activated sludge: Understanding sorption mechanism, kinetics and associated thermodynamics. Sep. Sci. Technol. 2018, 53, 1760–1776. [Google Scholar] [CrossRef]
- Sengupta, A.; Wickramasinghe, S.R. Control in grafting location of Glycidyl methacrylate on Regenerated Cellulose Ultrafiltration Membrane in AGET-ATRP. J. Membr. Sci. Res. 2020, 6, 90–98. [Google Scholar]
- Sengupta, A.; Qian, X.; Wickramasinghe, S.R. Magnetically responsive membrane. Smart Membr. 2019, 83–124. [Google Scholar] [CrossRef]
Dextran Fraction | MW (kD) | Concentration (g/L) |
---|---|---|
T6 | 6 | 1.00 |
T40 | 40 | 0.74 |
T70 | 70 | 0.34 |
T500 | 500 | 0.27 |
Element | Base | VAIB 10 | VHIB 10 | VBIC 10 |
---|---|---|---|---|
C | 54.98 | 51.07 | 53.16 | 48.91 |
O | 45.02 | 14.26 | 10.71 | 19.71 |
N | 18.23 | 23.47 | 15.47 | |
Br | 16.44 | 12.66 | − | |
Cl | − | − | 15.91 |
Membranes | 0 Hz | 20 Hz | 1 kHz | 0 Hz |
---|---|---|---|---|
Base | 304 | 304 | 302 | 300 |
VAIB 5 | 239 | 202 | 188 | 234 |
VAIB 10 | 233 | 199 | 186 | 237 |
VHIB 5 | 246 | 216 | 190 | 241 |
VHIB 10 | 222 | 187 | 171 | 216 |
VBIC 5 | 214 | 190 | 173 | 209 |
VBIC 10 | 216 | 200 | 184 | 214 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tripathi, T.; Kamaz, M.; Wickramasinghe, S.R.; Sengupta, A. Designing Electric Field Responsive Ultrafiltration Membranes by Controlled Grafting of Poly (Ionic Liquid) Brush. Int. J. Environ. Res. Public Health 2020, 17, 271. https://doi.org/10.3390/ijerph17010271
Tripathi T, Kamaz M, Wickramasinghe SR, Sengupta A. Designing Electric Field Responsive Ultrafiltration Membranes by Controlled Grafting of Poly (Ionic Liquid) Brush. International Journal of Environmental Research and Public Health. 2020; 17(1):271. https://doi.org/10.3390/ijerph17010271
Chicago/Turabian StyleTripathi, Tejas, Mohanad Kamaz, S. Ranil Wickramasinghe, and Arijit Sengupta. 2020. "Designing Electric Field Responsive Ultrafiltration Membranes by Controlled Grafting of Poly (Ionic Liquid) Brush" International Journal of Environmental Research and Public Health 17, no. 1: 271. https://doi.org/10.3390/ijerph17010271
APA StyleTripathi, T., Kamaz, M., Wickramasinghe, S. R., & Sengupta, A. (2020). Designing Electric Field Responsive Ultrafiltration Membranes by Controlled Grafting of Poly (Ionic Liquid) Brush. International Journal of Environmental Research and Public Health, 17(1), 271. https://doi.org/10.3390/ijerph17010271