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Abstract: As an important feature, deformation analysis is of great significance to ensure the safety
and stability of arch dam operation. In this paper, Jinping-I arch dam with a height of 305 m, which is
the highest dam in the world, is taken as the research object. The deformation data representation
method is analyzed, and the processing method of deformation spatiotemporal data is discussed.
A deformation hybrid model is established, in which the hydraulic component is calculated by the
finite element method, and other components are still calculated by the statistical model method. Since
the relationship among the measuring points is not taken into account and the overall situation cannot
be fully reflected in the hybrid model, a spatiotemporal hybrid model is proposed. The measured
values and coordinates of all the typical points with pendulums of the arch dam are included in one
spatiotemporal hybrid model, which is feasible, convenient, and accurate. The model can predict the
deformation of any position on the arch dam. This is of great significance for real-time monitoring of
deformation and stability of Jinping-I arch dam and ensuring its operation safety.

Keywords: deformation analysis; data representation; spatiotemporal hybrid model; hydraulic
component; finite element method

1. Introduction

In order to understand the operation state of Jinping-I arch dam, a large number of monitoring
points are set up. The monitoring data of dam environmental quantity, such as deformation and
temperature, is acquired regularly, so as to build the dam monitoring system. As an important feature,
deformation data analysis is particularly important [1–5]. In fact, the deformation data of arch dam
comes from the monitoring points with different spatial coordinates. Then the data not only has
the time property, but also has spatial property, which is typical spatiotemporal data. In addition,
because of the integrity of the dam structure in different degrees, the operational behaviors of the
adjacent monitoring points affect and correlate with each other. At present, a lot of analysis is
carried out on the characteristics of dam deformation on time [6–8], but there is little research on its
time–space characteristics.

More and more attention has been paid to the representation methods which are specially aimed
at the characteristics and requirements of spatiotemporal data [9–15], such as panel data, spatial panel
data, and other emerging methods. Many scholars have conducted a lot of research in this regard. As a
kind of typical spatiotemporal data [16–20], the deformation of Jinping-I arch dam is characterized by
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time, space, complexity, and uncertainty. In order to improve the quality of the spatiotemporal data
mined in Jinping-I arch dam, it is necessary to preprocess the polluted spatiotemporal data.

According to the prototype monitoring data, the dam safety monitoring model is established by
means of mathematics, mechanics, and information science [21]. The main task of the model is to
establish the mathematical monitoring model based on the measured deformation data and monitor
the arch dam operation status.

According to the different methods, the safety monitoring model can be summarized as: statistical
model, grey system model, fuzzy mathematical model, etc. [22–25]. The basic characteristic of these
models is to use the measured data, take the monitoring deformation as random variable, and apply
the mentioned methods to establish various mathematical models. In essence, they are empirical
models. The following problems may exist: (1) When the monitoring data does not include extreme
load or the data series are short, the mathematical models established by these data will be difficult to
be used for monitoring; (2) These models mainly rely on mathematical processing and the structural
state of the dam and the dam foundation are not connected with this. Therefore, the dam working
state cannot be explained essentially from the mechanical concept. However, the above problems can
be better solved in the hybrid model [26].

In general, in view of the above data processing and safety monitoring model, this paper will do
the following research:

(1) Taking Jinping-I arch dam as the object, this paper explores the data representation methods,
which are suitable for monitoring deformation spatiotemporal data analysis, analyzes the category
and source of monitoring deformation spatiotemporal data pollution, and studies the processing
method of data missing [27], so as to improve the data quality.

(2) Combined with the actual working behavior of the dam and dam foundation, aiming at the clear
relationship between the water depth and the dam deformation, the finite element method is
used to calculate the effect field (such as displacement field and stress field) under the action of
water pressure load [28], and the deterministic relationship between the water depth and dam
deformation is established. Then, other components are still obtained by a statistical model [29].
The model is optimized and fitted with the measured data to obtain the adjustment parameters
so as to establish the dam deformation safety monitoring hybrid prediction model [30–34].

(3) The hybrid model of single measuring point does not consider the relationship among measuring
points, which cannot fully reflect the overall situation. Also, there will be too many hybrid
models for each measuring point. It is difficult to predict the deformation of dam position
without measuring points. Therefore, this paper establishes the deformation spatiotemporal
hybrid model [35,36], in which the multiple measuring points in space are used and the spatial
coordinate variables of points are introduced. One spatiotemporal hybrid model is used to
estimate the deformation of the dam at any position by including the measured values of all
typical measuring points.

The research is of great significance for real-time monitoring of deformation and stability of a
concrete arch dam and ensuring its operation safety [37–40].

2. Deformation Data Analysis of Jinping–I Arch Dam

2.1. Deformation Data Representation Methods

As one of the important indexes of monitoring data for Jinping-I arch dam, the representation
method of deformation data is developing and evolving. In the following, several data representation
methods are discussed.
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(1) Time series representation

Time series representation is the most common method in the traditional dam deformation
analysis. Generally, for a certain measuring point in the monitoring system, the deformation value and
the acquisition time point correspond one by one. Typical time series data is shown in Figure 1.
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The data structure of time series is shown in Table 1.

Table 1. Time series data structure.

Time 1 2 3 . . . t

Deformation δ1 δ2 δ3 δt

The data structure of time series is relatively simple, which can be very concise to show the process
of deformation value changing with time of measuring points. However, for each measuring point, if a
separate time series is established, the data series will be relatively complex. At the same time, because
of the simplicity of data structure, the information available for analysis is relatively limited, and the
processing ability for missing variable deviation is not strong.

(2) Cross-section data representation

In some specific cases, it is necessary to analyze the deformation of different monitoring points
at a certain time point of the arch dam. For example, the overall deformation of the arch dam on a
certain date and the distribution of the deformation value of the measuring point on the cross section,
so as to monitor the abnormal point. At a specific time point, the deformation data formed by all the
measuring points is called cross-section data. Typical cross-section data is shown in Figure 2.
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It is assumed that there are n deformation monitoring points in an arch dam. For a specific time
point, the structure of its cross-section data is shown in Table 2.

Table 2. Cross-section data structure.

Points 1 2 3 . . . n

Deformation δ1 δ2 δ3 δn

Cross-section data can only reflect the deformation value of the measuring point at a certain time,
which cannot reflect the change of deformation value with time. In addition, the time series length
of different measuring points is often different, so it is time-consuming, laborious, and inefficient to
investigate the cross-section data of a certain time point.

(3) Panel data representation

Panel data refers to the data sequence of the same group of individuals over a period of time.
Compared with the traditional time series, panel data adds cross-sectional dimension besides the time
dimension. Therefore, it is named a two-dimensional data expression mode, which can express the
deformation series of all measuring points at the same time. Typical panel data is shown in Figure 3.
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Assuming that there are n deformation monitoring points and t time points in an arch dam, the
panel data structure is shown in Table 3.

Table 3. Panel data structure.

Points 1 2 3 · · · t

1 δ11 δ12 δ13 · · · δ1t
2 δ21 δ22 δ23 · · · δ2t
3 δ31 δ32 δ33 · · · δ3t
...

...
...

...
. . .

...
n δn1 δn2 δn3 · · · δnt

Obviously, panel data has two dimensions with n and t. Panel data is composed of time series
of a group of measuring points, which combines time series and cross-section data at the same time.
The main advantages are as follows. (1) Compared with time series, it can better solve the problem of
missing variable deviation. (2) It has two dimensions of time series and cross-section at the same time,
which can provide more dynamic behavior information of individuals and more accurate estimation.
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(4) Spatial panel data representation

For the deformation monitoring data of Jinping-I arch dam, the location of the monitoring points is
also concerned, so as to determine the abnormal location. In addition, the deformation of the adjacent
measuring points in space may also affect each other. On the basis of the original panel data, the spatial
coordinates (or spatial relations) of each measuring point is further considered. It is equivalent to
adding the spatial coordinates of different points to the cross-section data in the two-dimensional panel
data (time and cross-section). The data structure of the spatial panel is shown in Table 4.

Table 4. Space panel data structure.

Points Space Coordinates 1 2 3 · · · t

1 (x1, y1, z1) δ1(x1, y1, z1) δ2(x1, y1, z1) δ3(x1, y1, z1) · · · δt(x1, y1, z1)
2 (x2, y2, z2) δ1(x2, y2, z2) δ2(x2, y2, z2) δ3(x2, y2, z2) · · · δt(x2, y2, z2)
3 (x3, y3, z3) δ1(x3, y3, z3) δ2(x3, y3, z3) δ3(x3, y3, z3) · · · δt(x3, y3, z3)
...

...
...

...
...

. . .
...

n (xn, yn, zn) δ1(xn, yn, zn) δ2(xn, yn, zn) δ3(xn, yn, zn) · · · δt(xn, yn, zn)

From time series, cross-section data and panel data to spatial panel data, it is easy to find that the
dimension of data and the capacity of samples are growing, and the information available for mining
is also increasing geometrically with the change of data representation methods. The relationship of
the several data representation methods is shown in Figure 4.

Int. J. Environ. Res. Public Health 2020, 17, x 5 of 24 

 

For the deformation monitoring data of Jinping-I arch dam, the location of the monitoring points 

is also concerned, so as to determine the abnormal location. In addition, the deformation of the 

adjacent measuring points in space may also affect each other. On the basis of the original panel data, 

the spatial coordinates (or spatial relations) of each measuring point is further considered. It is 

equivalent to adding the spatial coordinates of different points to the cross-section data in the two-

dimensional panel data (time and cross-section). The data structure of the spatial panel is shown in 

Table 4. 

Table 4. Space panel data structure. 

Points Space Coordinates 1 2 3  ⋯  t 

1  (𝑥1 , 𝑦1 , 𝑧1)   𝛿1(𝑥1, 𝑦1 , 𝑧1)   𝛿2(𝑥1, 𝑦1 , 𝑧1)   𝛿3(𝑥1, 𝑦1 , 𝑧1)   ⋯   𝛿𝑡(𝑥1, 𝑦1 , 𝑧1)  

2  (𝑥2 , 𝑦2 , 𝑧2)   𝛿1(𝑥2 , 𝑦2 , 𝑧2)   𝛿2(𝑥2, 𝑦2 , 𝑧2)   𝛿3(𝑥2, 𝑦2 , 𝑧2)   ⋯   𝛿𝑡(𝑥2, 𝑦2 , 𝑧2)  

3  (𝑥3 , 𝑦3 , 𝑧3)   𝛿1(𝑥3 , 𝑦3 , 𝑧3)   𝛿2(𝑥3, 𝑦3 , 𝑧3)   𝛿3(𝑥3, 𝑦3 , 𝑧3)   ⋯   𝛿𝑡(𝑥3, 𝑦3 , 𝑧3)  
 ⋮   ⋮   ⋮   ⋮   ⋮   ⋱   ⋮  
n  (𝑥𝑛, 𝑦𝑛 , 𝑧𝑛)   𝛿1(𝑥𝑛, 𝑦𝑛 , 𝑧𝑛)   𝛿2(𝑥𝑛, 𝑦𝑛 , 𝑧𝑛)   𝛿3(𝑥𝑛, 𝑦𝑛 , 𝑧𝑛)   ⋯   𝛿𝑡(𝑥𝑛, 𝑦𝑛 , 𝑧𝑛)  

From time series, cross-section data and panel data to spatial panel data, it is easy to find that 

the dimension of data and the capacity of samples are growing, and the information available for 

mining is also increasing geometrically with the change of data representation methods. The 

relationship of the several data representation methods is shown in Figure 4. 

Time series dataCross section data

Panel data

Space panel data

One-dimensional data:

Spatial coordinates

Two-dimensional data:

Three-dimensional data:

 

Figure 4. Relationships of several data representation methods. 

Spatial panel data considers the spatial coordinates of different measuring points, which 

facilitates the study of spatial relations of them. At the same time, the amount of information 

contained in spatial panel data is far larger than the traditional data representation method, which is 

an ideal mining object for spatiotemporal data analysis. Therefore, the content of spatiotemporal data 

analysis in this paper is based on spatial panel data. 

2.2. Preprocessing of Spatiotemporal Deformation Data 

The preprocessing of spatiotemporal deformation data is the premise of spatiotemporal data 

analysis. Spatiotemporal data analysis involves a large amount of deformation data from multiple 

monitoring points, most of which are polluted to varying degrees, resulting in a variety of errors and 

anomalies. At the same time, some deformation data is redundant, completely unrelated, or lost, 

which may interfere with the discovery of valuable spatiotemporal rules or patterns. This section will 

introduce some pretreatment methods existing in the deformation data. 

Deformation data is affected by many factors in the process of obtaining, so the problem of data 

pollution is also diverse. The spatiotemporal data pollution is an objective phenomenon, which 

cannot be completely avoided, and can only be reduced by certain means. For the dam that has been 

built, the pretreatment can be started from the following aspects: 

Figure 4. Relationships of several data representation methods.

Spatial panel data considers the spatial coordinates of different measuring points, which facilitates
the study of spatial relations of them. At the same time, the amount of information contained in spatial
panel data is far larger than the traditional data representation method, which is an ideal mining object
for spatiotemporal data analysis. Therefore, the content of spatiotemporal data analysis in this paper is
based on spatial panel data.

2.2. Preprocessing of Spatiotemporal Deformation Data

The preprocessing of spatiotemporal deformation data is the premise of spatiotemporal data
analysis. Spatiotemporal data analysis involves a large amount of deformation data from multiple
monitoring points, most of which are polluted to varying degrees, resulting in a variety of errors and
anomalies. At the same time, some deformation data is redundant, completely unrelated, or lost,
which may interfere with the discovery of valuable spatiotemporal rules or patterns. This section will
introduce some pretreatment methods existing in the deformation data.
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Deformation data is affected by many factors in the process of obtaining, so the problem of data
pollution is also diverse. The spatiotemporal data pollution is an objective phenomenon, which cannot
be completely avoided, and can only be reduced by certain means. For the dam that has been built, the
pretreatment can be started from the following aspects:

(1) During the dam operation, it is necessary to ensure the instruments maintenance to prevent the
loss or error of deformation data. For the key monitoring location, the combination of manual
monitoring and instrument monitoring is supposed to be adopted to ensure the authenticity
and integrity of the data. For the newly found abnormal deformation location, deformation
monitoring instruments is necessary to be added to track the deformation data in time.

(2) In the analysis stage of deformation data, only by fully extracting the influencing factors of dam
deformation and establishing a relatively complete and reasonable deformation analysis model
can the deformation state of dam be truly reflected to a greater extent.

In practical engineering, due to uncontrollable reasons such as human error and instrument
damage, deformation data are often missing. For the missing spatiotemporal data, there are two main
processing methods at present.

(1) Neglect method. In general, the real deformation data cannot be recovered completely, the
unreasonable estimation of the missing value may lead to errors in the analysis model, so
the missing data is neglected and not processed. To some extent, this method is reasonable
and common.

(2) Likelihood method. In some specific cases, if it is necessary to study the spatial distribution of
cross-section data at a certain time, it is still necessary to estimate the missing data and replace
the missing value with the most likely likelihood value at that time.

As a typical large-scale spatial structure, Jinping-I arch dam has certain integrity in different scales.
Thus, its deformation value distribution has certain continuity in space. Based on this assumption of
spatial continuity, this paper proposes a method to estimate some missing deformation values.

(1) Interpolation of spatial neighboring points

It is assumed that there are three monitoring points, A, B, and C, which are close to each other in
space and related to the structure of an arch dam. Among them, the data of measuring points A and C
are complete, but one section of data of measuring point B is missing, as shown in Figure 5.
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Considering the spatial proximity of measuring points A, B, and C, the missing value of measuring
point B should be related to that of measuring point A and C in the missing period. Therefore, the
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deformation sequence of measuring point B can be expressed as a function of the deformation value of
measuring point A and C. The expression is as follows:

δB = g(δA) + g(δC) + ε (1)

where g(δA) and g(δC), respectively, represent the functions related to the deformation value of the
measuring point A and C. They can be expressed by polynomials. Then,

δB = αA

KA∑
i=0

λAiδ
i
A + αC

KC∑
i=0

λCiδ
i
C + βB + ε (2)

where αA and αC are coefficients of polynomials containing δA and δC respectively; KA and KC are the
highest degree of polynomials, which can be determined by drawing the scatter diagram of correlation
between δA, δc and δB; λAi and λCi are weight coefficients respectively; βB is the translation term; ε is
the mean error.

Furthermore, if considering the more general situation, for the deformation series of any monitoring
point with missing data, it can be estimated as:

δit =
L∑

j=1

αi jg
(
δ jt

)
+ βi + ε (3)

where L represents the number of measurement points close to measurement point i (a certain critical
distance can be set to judge the proximity between different points); δ jt represents the deformation
series of measurement points close to δit; g(δ jt) represents the correlation function between δit and δ jt;
βi represents the translation term of measurement point.

According to the deformation data of δit and the adjacent measuring points, the least square
method can be used to estimate the value of αi j, so as to determine the model expression finally.

(2) Space inverse distance weighted interpolation

If the least squares estimate is not effective or the lack of data is serious, the inverse distance
weighted spatial interpolation method can be used to estimate the deformation value. That is to say,
the data of missing measuring points is the result of weighted average of adjacent measuring points.
At this time, the weight sum of deformation values of adjacent measuring points is 1, that is:

L∑
j=1

αi j = 1 (4)

δit =
K∑

j=1

αi jδ jt + ε (5)

where αi j is related to the space distance between the measuring point i and the surrounding measuring
point. According to ‘Geography First Law’, it is generally believed that the closer the space is, the
stronger the correlation between the two points is. Therefore,

αi j =

(
di j

)−γ
∑L

m=1

(
di j

)−γ (6)

di j =

√(
xi − x j

)2
+

(
yi − y j

)2
+

(
zi − z j

)2
(7)
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where αi j is the space distance between measuring point i and j; γ is generally taken as 1 or 2.
Its advantage is that the estimated value of deformation is only related to the spatial position and the
deformation value of any point can be estimated in a certain spatial range.

3. Spatiotemporal Hybrid Security Monitoring Model

According to the prototype monitoring data of the dam, the dam safety monitoring model is
established with the application of mathematics, mechanics, information science, and other methods.
The main task is to use the model to monitor the dam operation. The physical quantity obtained
from deformation or stress monitoring is very important for monitoring the operation conditions.
The deformation is intuitive and reliable, which is generally regarded as the most important monitoring
quantity at home and abroad. In order to master the real operation state of the dam, it is necessary to
analyze the measured data of each deformation and establish the prediction equation.

According to the different methods of model building, the models can be summarized as: statistical
model, grey system model, fuzzy mathematical model, analysis and calculation with finite element
method, hybrid model, etc.

Considering the lack of these models above, which is introduced in the introduction above, this
paper selects the hybrid model as the monitoring method for the dam deformation.

3.1. Principle of Hybrid Model

The deformation of Jinping-I arch dam is a comprehensive reflection of several environmental
factors. The relationships between some environmental factors (such as the water depth in front of
the dam) and the deformation are clear. Through the corresponding mathematical and mechanical
methods, the relationship between them can be established. When the relationship is not clear or it is
difficult to be established with theoretical analysis, the statistical analysis and structural calculation
will be used. Therefore, the hybrid model of dam deformation safety monitoring can be constructed.

Under the external load (water pressure, temperature, etc.), the deformation at any point can be
divided into hydraulic component, temperature component, and time effect component according to
their causes.

δ = δH(t) + δT(t) + δθ(t) (8)

where δ is the measured deformation value; δH(t), δT(t), and δθ(t) are hydraulic component,
temperature component, and time effect component, respectively.

(1) Hydraulic component

The hydraulic component δH(t) is calculated by finite element method. According to the known
mechanical parameters of the dam body and dam foundation, the finite element method is used to
calculate the deformation at each point δH1, δH2 · · · , δHn under different water depth H1, H2 · · · , Hn.

δH =
4∑

i=1

ai
(
Hi
−Hi

0

)
(9)

where ai is the regression coefficient; H is the water depth in front of the dam during deformation
observation, which is the reservoir water level minus the of the dam bottom elevation.

(2) Temperature component

When the embedded thermometer of the dam body is insufficient, the internal temperature of the
dam body reaches the quasi stable temperature field. Generally, temperature loading is taken as a
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periodic (harmonic) function, which can basically meet the modeling requirements. The harmonic
factor is selected to approximate the change of temperature field of Jinping-I arch dam. That is to say:

δT =
2∑

i=1

[b1i

(
sin

2πit
365

− sin
2πit0

365

)
+ b2i

(
cos

2πit
365

− cos
2πit0

365

)
(10)

where t is the accumulated days from the monitoring date to the starting monitoring date; t0 is
accumulated days from the starting date of the data series to the first monitoring date; b1i and b2i are
the regression coefficients of temperature component.

(3) Time effect component

The reason of time effect deformation of Jinping-I dam is very complex, such as the creep and
plastic deformation of the concrete, irreversible deformation caused by dam cracks and autogenous
volume deformation. For normal operation dams, the change rule of time effect deformation is that
the initial change is sharp, and the later change is gradually stable. The time effect component of
displacement change during the normal operation can be expressed as:

δθ = c1(θ− θ0) + c2(lnθ− lnθ0) (11)

where θ = t/100,θ0 = t0/100; c1 and c2 are the regression coefficients.
In conclusion, considering the influence of the initial value, the tracking prediction and analysis

hybrid model of Jinping-I dam deformation is obtained as follows:

δ =
4∑

i=1
ai
(
Hi
−Hi

0

)
+

2∑
i=1

[
b1i

(
sin 2πit

365 − sin 2πit0
365

)
+ b2i

(
cos 2πit

365 − cos 2πit0
365

)]
+ c1(θ− θ0) + c2(lnθ− lnθ0) (12)

where a0 is a constant term, and other symbols have the same meanings in Equation (8) to Equation (11).
In this paper, the calculating deformation of the established model is evaluated with the residual

standard deviation (S) and the correlation coefficient (R).

S =

√√
1
n

n∑
t=1

(δM
t − δ

C
t )

2 (13)

R =

√√√√ n∑
t=1

δc
t −

1
n

n∑
t=1

δM
t

2/ n∑
t=1

δM
t −

1
n

n∑
t=1

δM
t

2

(14)

where δM
t and δc

t are the measured and calculated values of deformation, respectively; n is the number
of the measured values.

3.2. Spatiotemporal Hybrid Model

The above-introduced is a single point model, which does not consider the spatial relationship
among the measurement points. At the same time, the single point model does not fully reflect the
overall situation, which will affect the analysis accuracy. Also, there will be too many hybrid models
for each point. It is difficult to predict the deformation of dam position without measuring points.
In view of the above problems, this paper puts forward a deformation spatiotemporal hybrid model,
in which the multiple measuring points in space are used and the spatial coordinate variables of points
are introduced.

δ = f (H, T,θ, x, y, z) (15)

where H is the hydraulic factor; T is the temperature factor; θ is the time effect factor caused by the
creep of concrete and the rheology of bedrock; x, y, and z are the the spatial coordinate variables.
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The spatiotemporal hybrid model can timely understand the displacement field of dam body
under any load combination (H, T,θ, · · ·) at a certain time and master the situation that the displacement
of the location (x, y, z) deviates from the real displacement field due to local factors. Then, we can find
out the abnormalities as early as possible, analyze the causes, take countermeasures, and eliminate
hidden dangers. At the same time, when a certain coordinate (x, y, z) is fixed, the above model is
the hybrid model of a specific measuring point. In addition, using the above model for analysis,
the results can reflect the overall situation of the dam due to the connection of multiple measuring
points. The above-mentioned methods and theories have been successfully applied to Danjiangkou,
Longyangxia, Foziling, Three Gorges, and other dams. The following describes the principle and
calculation formula of the spatial-temporal hybrid model.

It can be seen from the previous analysis that under the action of water pressure and temperature
and considering the creep of dam concrete and the rheology of bedrock, the displacement field of dam
and dam foundation will be generated.

(1) Calculation principle and formula of each component

As we all know, in the small deformation range, under the action of external loads (water pressure,
temperature, etc.), the deformation at any point of the dam and dam foundation can be divided into
hydraulic component, temperature component, and time effect component according to their causes,
as shown in Equation (15). It will not be described in detail here. Considering the spatial distribution,
the spatiotemporal hybrid model is established as follows:

δ = f (H, T,θ, x, y, z) = f1(H, x, y, z) + f2(T, x, y, z) + f3(θ, x, y, z)
= f1[ f (H), f (x, y, z)] + f2[ f (T), x, y, z] + f3[ f (θ), f (x, y, z)]

(16)

Combined with Equation (12), spatiotemporal hybrid model is obtained as

δ =
3(4)∑
k=0

3∑
l,m,n=0

AklmnHkxlymzn +
1∑

j,k=0

3∑
l,m,n

B jklmn
sin 2π jt

365 ·
cos 2πkt

365 xlymzn

+
1∑

j,k=0

3∑
l,m,n=0

C jklmnθ j·lnθkxlymzn
(17)

When the deflection curve of a beam is studied, the above model degenerates into:

δ =

3(4)∑
k=0

3∑
n=0

AknHkzn +
1∑

j,k=0

3∑
n

B jkn
sin 2π jt

365
·
cos 2πkt

365
zn +

1∑
j,k=0

3∑
n=0

C jknθ j·lnθkzn (18)

When a horizontal arch is studied, the above model degenerates into:

δ =

3(4)∑
k=0

3∑
l,m=0

AklmnHkxlym +
1∑

j,k=0

3∑
l,m=0

B jklm
sin 2π jt

365
·
cos 2πkt

365
xlym +

1∑
j,k=0

3∑
l,m=0

C jklmnθ j·lnθkxlym (19)

(2) Estimation of parameters (Ai, Bi, Ci) in the model

The coordinates (x, y, z) of each measuring point and the water depth H, temperature T, and time
effect θ corresponding to the measured deformation δM(H, t,θ, x, y, z) are substituted into the above
equations. The least square method is used for optimal fitting, so as to obtain the parameters in the
above model. Namely

Q =
∑[

δM(H, T,θ, x, y, z) − f (H, T,θ, x, y, z)
]2

(20)
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Take the partial derivative of Equation (20), and get:

∂Q
∂Ai

= 0,
∂Q
∂Bi

= 0,
∂Q
∂Ci

= 0 (21)

Then the parameters (Ai, Bi, Ci) in the model are obtained, that is, the spatial-temporal distribution
model of spatial displacement field is established.

4. Case Study

4.1. Project Overview

Jinping-I hydropower station is the key project of the Yalong River, which is located in Sichuan
Province. The project is mainly for power generation and also for flood control. The normal water
level of the reservoir is 1880 m, the dead water level is 1800 m, the storage capacity below the normal
water level is 7.76 billion m3, and the regulating storage capacity is 4.91 billion m3.

The main hydraulic structures of Jinping-I hydropower station are composed of concrete arch
dam, cushion, plunge pool, powerhouse intake and spillway tunnel. Figure 6 is the layout chart of the
Jinping-I hydropower station. The dam crest elevation is 1885.0 m, with the maximum dam height of
305.0 m.
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Figure 6. Layout chart of Jinping-I arch dam.

Jinping-I arch dam has a large scale and a high level of main buildings. Dam horizontal
displacements are measured by plumb lines. The specific layout of the pendulum system is shown
in Figure 7. For dam monitoring displacement, the general rule is: radial displacement is positive to
downstream, and tangential displacement is positive to left bank.
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Figure 7. Layout of the pendulum system of Jinping-I arch dam.

Figure 7 shows that the distribution of pendulum system is roughly uniform along the height
direction, the same in the left and right bank direction, which can reflect the deformation state of the
dam comprehensively. Figure 7 shows the rationality and effectiveness of the pendulum system.

4.2. Deformation Data Representation

In order to show how to use the spatial panel data representation method to express the
deformation data, radial displacements of No. 16 dam section are taken as an example. The relative
radial displacement distribution of PL16-1~PL16-5 measuring points on the dam section is shown in
Figure 8 from 1 June 2017 to 30 December 2018. It can be found that the deformation process lines of
these measuring points have a certain correlation.
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Figure 8. Relative radial displacement distribution of PL16-1~PL16-5.

In view of the possible pollution problem in the deformation data, it is necessary to preprocess
the spatiotemporal data. Here, we mainly discuss the estimation problem of the deformation missing
data. In order to verify the feasibility of the method in Section 2.2, taking the measuring point PL16-3
in Figure 8 as an example, the missing section for up to two months (January and February 2018) are
artificially constructed, as shown in Figure 9.
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The correlation between PL16-3 and other two measuring points PL16-2 and PL16-4 is expressed
in the form of correlation diagram, respectively, as shown in Figure 10.
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According to the results of Figure 10, the correlation between the measuring point PL16-3 and
the adjacent measuring point is obviously linear. For the missing section estimation, the estimated
formulas based on spatial proximal point interpolation and spatial inverse distance interpolation are:

δC
PL16−3 = 0.193δPL16−2 + 0.746δPL16−4 − 0.070 (22)

δC
PL16−3 = 0.206δPL16−2 + 0.794δPL16−4 (23)

According to Figure 11 and Table 5, it can be found that the missing value estimation method
proposed in this paper has high accuracy. The estimation effect of spatial neighbor interpolation
method is better. However, the advantage of spatial inverse distance weighted interpolation method is
that it can estimate the deformation value of any measuring point in a certain space.
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Table 5. Accuracy of the two estimation methods.

Method Spatial Proximal Point
Interpolation

Spatial Inverse Distance
Interpolation

Coefficient of determination 0.998 0.987
Standard estimation error (mm) 0.046 0.053

4.3. Hybrid Model Analysis

4.3.1. Finite Element Model of Jinping-I Arch Dam

In this paper, the hybrid model of dam horizontal displacement is established by combining the
finite element numerical simulation method with the statistical method, so as to ensure the long-term
operation of Jinping-I arch dam.

Based on engineering design and geological data, a three-dimensional finite element model of
Jinping-I arch dam is established to study dam working state. The finite element is built according
to the two-dimensional engineering drawings and the simulation calculation is conducted with the
finite element software. Figure 12 shows the finite element model which consists of 923,737 elements
and 957,221 nodes, and the number of nodes and elements for the dam body is 36,079 and 29,840,
respectively. The mesh for dam body and foundation are relatively fine and coarse by progressive
meshing technique to achieve a balance between accuracy and efficiency of the simulation. Furthermore,
several models with different element sizes were established for mesh validation, which demonstrated
that the selected model satisfy the demand calculation accuracy. Figure 13 simulates the shape of the
mountain. Figure 14 shows the zoning concrete of dam body model. The arch dam body is divided
into zone A, zone B, and zone C, according to the construction manual.
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Combined with the concrete test results, the modulus of elasticity for main zones are shown in
Table 6.

Table 6. Modulus of elasticity for main zones of Jinping-I dam.

Locations Volume (m3) Modulus (GPa)

Zone A 2.23 × 106 30.7
Zone B 2.10 × 106 30.5
Zone C 5.97 × 105 28.0

Dam foundation 1.54 × 109 27.0

4.3.2. Calculation Results of the Hybrid Model

According to the radial displacement data of Jinping-I arch dam from 1 November 2013 to
31 December 2018, a hybrid model is established. The hydraulic component is determined according
to the finite element model on different water level, and the temperature component and time effect
component are determined by the statistical model. Figure 15 shows time series of several radial
displacement of some dam sections and water level. We can see that the deformation is greatly affected
by the change of water level. Therefore, in the FEM model analysis, water level is an important factor
to be considered.
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In the following, 42 typical measuring points on No. 1, No. 5, No. 9, No. 11, No. 13, No. 16,
No. 19, and No. 23 dam sections are used to establish the hybrid model. From 1 November 2013
to 31 December 2018, the upstream water level mainly changed between 1700 m and 1880 m. In the
process of determining the hydraulic component in the finite element model, the upstream water level
is selected every 5 m between 1700 m and 1880 m. A total of 37 sets of hydraulic loads are calculated
by finite element method.

According to the specific situation of Jinping-I arch dam, the finite element structural analysis
software ABAQUS is used for analysis and calculation. Temperature component and time effect
component are not considered temporarily.

According to the finite element calculation, the radial displacement of 42 typical measuring points
of the dam body under the load of 37 groups of upstream water level from 1700 m to 1880 m can be
obtained. The regression trend line can be fitted, and the functional relationship between the radial
displacement and the upstream water level can be obtained as the calculation basis of the hydraulic
component in the hybrid model.

δH = a0 + a1H + a2H2 + a3H3 + a4H4 (24)

Here, measuring point PL13-2 is selected to briefly explain the calculation process. Table 7 is the
finite element calculation table of hydraulic component of measuring point PL13-2.

In order to reduce the error of fitting function, the upstream water depth is firstly normalized.

H =
Hu −Hb

Hd
(25)

where Hb = 1580, which is dam base elevation and Hd = 305, which is the maximum dam height.
According to the relationship between the displacement calculated by the finite element method

and the normalized water level H, the fitting curve is fitted, which is shown in Figure 16. The
expression is as follows:

δH = −11.588− 67.402 H − 128.580H2
− 59.787H3 + 83.438H4 (26)
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Table 7. Correlation coefficient and residual standard deviation of deformation hybrid model of typical
measuring points.

Dam
Section Points R S (mm) Dam

Section Points R S (mm)

1#
PL1-1 0.987 0.217

13#

PL13-2 0.997 0.912
PL1-2 0.974 0.360 PL13-3 0.999 0.573
IP1-1 0.953 0.360 PL13-4 0.996 0.787

5#

PL5-1 0.997 0.599 PL13-5 0.990 0.765
PL5-2 0.998 0.423 IP13-2 0.984 0.364
PL5-3 0.997 0.395

16#

PL16-1 0.993 1.014
PL5-4 0.980 0.623 PL16-2 0.996 0.871
IP5-1 0.910 0.091 PL16-3 0.997 0.707

9#

PL9-1 0.995 1.268 PL16-4 0.994 0.837
PL9-2 0.997 0.931 PL16-5 0.990 0.703
PL9-3 0.998 0.507 IP16-1 0.980 0.477
PL9-4 0.999 0.290

19#

PL19-1 0.992 0.629
PL9-5 0.986 0.275 PL19-2 0.996 0.511
IP9-1 0.935 0.130 PL19-3 0.994 0.583

11#

PL11-1 0.998 0.964 PL19-4 0.988 0.691
PL11-2 0.998 0.840 PL19-5 0.983 0.509
PL11-3 0.998 0.674 IP19-1 0.988 0.183
PL11-4 0.997 0.667

23#

PL23-1 0.955 0.339
PL11-5 0.985 0.966 PL23-2 0.954 0.276
IP11-1 0.969 0.573 PL23-3 0.954 0.261

13# PL13-1 0.998 0.764 IP23-1 0.957 0.148

According to the Equation (26), the regression fitting displacement can be obtained and used as
the calculation basis of the hydraulic component of PL13-2 in the hybrid model.

The coefficients of the relationship curve between the calculated displacement of finite element
and the normalized water level H of all typical measuring points can be obtained.

After the function relationship between the displacement calculated by FEM and the normalized
water level H of each typical measuring point is obtained, the hydraulic component can be calculated
according to the measured water level as the hydraulic component factor in the hybrid model, and then
the temperature component and the time effect component can be calculated. Therefore, the hybrid
model can be established. According to the relationship between the fitting hydraulic component and
water level, substituting Equation (24) into Equation (12), we can get:

δ = a0 + aδH +
2∑

i=1

[
b1i

(
sin 2πit

365 − sin 2πit0
365

)
+ b2i

(
cos 2πit

365 − cos 2πit0
365

)]
+c1(θ− θ0) + c2(lnθ− lnθ0)

(27)



Int. J. Environ. Res. Public Health 2020, 17, 319 18 of 25

where the meaning of each parameter is the same as the above.
Table 7 shows the correlation coefficient R and residual standard deviation S of the hybrid model

of the typical measuring points of the pendulums of the dam body. The accuracy of the model is high.
Table 8 shows the coefficients of the hydraulic component, temperature component, time effect

component, and constant term of the hybrid model, that is, the coefficients in Equation (27).

Table 8. Deformation hybrid model coefficients of typical measuring points.

Points a0 a b11 b21 b12 b22 c1 c2

PL1-1 4.392 4.196 0.904 −0.065 −0.250 0.033 0.046 0.867
PL1-2 4.463 17.707 −0.330 −0.494 0.267 0.076 0.018 1.198
IP1-1 −0.278 −18.696 −0.249 −0.244 0.000 0.000 0.057 0.641
PL5-1 0.863 0.835 3.137 −1.786 −0.288 0.000 0.247 −1.770
PL5-2 1.135 0.880 −1.275 −1.746 0.236 −0.165 0.167 0.123
PL5-3 0.505 1.081 1.460 −0.189 −0.323 −0.045 0.152 0.506
PL5-4 0.780 2.074 1.295 −0.846 −0.466 0.061 0.179 0.792
IP5-1 0.099 −1.148 0.021 0.015 0.000 −0.022 0.030 0.000
PL9-1 −8.326 0.771 3.731 −3.361 0.000 −0.172 0.124 −4.058
PL9-2 −5.862 0.726 −1.491 −2.966 0.374 −0.096 0.052 −2.212
PL9-3 −2.818 0.755 1.653 0.690 0.000 −0.165 0.020 −1.022
PL9-4 −0.753 0.859 1.197 −0.177 −0.169 −0.085 0.055 −0.098
PL9-5 0.979 1.197 0.392 −0.246 −0.141 0.000 −0.025 0.383
IP9-1 0.409 14.357 −0.045 0.185 0.000 −0.020 0.000 0.230

PL11-1 −8.068 0.712 4.164 −2.939 −0.313 −0.137 0.231 −3.201
PL11-2 −5.984 0.692 −2.058 −3.465 0.614 −0.188 0.255 −1.764
PL11-3 −3.720 0.737 −2.389 −1.823 0.189 −0.264 0.167 0.233
PL11-4 0.074 0.778 −1.948 −0.747 0.000 −0.221 0.124 1.347
PL11-5 −1.694 0.984 1.586 −0.735 −0.412 0.000 0.244 0.897
IP11-1 −1.611 1.777 0.585 −0.336 −0.233 0.000 0.151 0.751
PL13-1 −11.022 0.772 3.021 3.952 0.000 0.000 0.000 −3.316
PL13-2 −4.555 0.659 −1.619 −3.565 0.537 −0.204 0.000 −2.540
PL13-3 −3.820 0.727 3.034 0.528 −0.271 −0.271 0.068 −1.117
PL13-4 −2.553 0.814 2.800 −0.781 −0.600 −0.076 0.095 −0.282
PL13-5 −0.619 0.905 1.736 −0.895 −0.597 0.000 0.070 0.564
IP13-2 −0.325 1.310 0.721 −0.373 −0.342 0.000 0.066 0.376
PL16-1 −2.132 0.811 3.428 2.279 0.505 0.132 0.111 −0.386
PL16-2 −2.338 0.719 −1.945 −2.472 0.634 −0.299 0.364 −1.083
PL16-3 −1.833 0.817 2.780 −0.268 −0.382 −0.237 0.254 −0.309
PL16-4 −1.494 0.960 2.676 −1.275 −0.681 0.000 0.295 0.201
PL16-5 0.442 1.078 1.614 −1.089 −0.539 0.100 0.136 1.103
IP16-1 −0.790 2.520 0.980 −0.784 −0.371 0.092 0.140 0.628
PL19-1 3.249 0.931 2.142 −1.333 −0.133 0.000 0.330 −1.575
PL19-2 0.632 0.873 −0.898 −1.296 0.183 −0.228 0.321 −0.102
PL19-3 −0.160 1.052 1.460 −0.413 −0.475 −0.098 0.363 0.429
PL19-4 −0.071 1.434 1.373 −1.010 −0.537 0.000 0.232 0.946
PL19-5 −0.496 2.272 0.829 −0.607 −0.369 0.000 0.229 0.549
IP19-1 −1.162 8.240 0.266 −0.152 −0.127 0.030 0.159 0.052
PL23-1 5.279 1.038 −0.937 −0.751 −0.200 −0.269 −0.115 0.585
PL23-2 −2.116 −9.697 0.180 0.235 −0.104 0.060 −0.082 0.865
PL23-3 1.108 −5.721 0.111 0.000 −0.125 0.041 −0.030 0.707
IP23-1 0.272 −7.884 0.266 −0.225 −0.122 0.000 0.008 0.294

According to the results of the hybrid model, the deformation of Jinping-I arch dam during high
water level impoundment was separated from the hydraulic component, temperature component, and
time effect component. In this paper, the fitting value and separation amount of radial displacement
hybrid model of all typical measuring points are calculated. Due to space limitation, the results of some
typical measuring points of dam section are shown in Figure 17. Figure 17 shows that the hybrid model
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established in this paper has reasonably high accuracy, and the radial displacement of symmetrical
dam sections on the left and right banks is similar, which is in line with the actual situation.
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4.4. Spatiotemporal Hybrid Model Results

The above-introduced is a single point model, which does not consider the spatial relationship
among the measurement points. At the same time, the single point model does not fully reflect the
overall situation, which will affect the analysis accuracy. Also, there will be too many hybrid models
for each point. It is difficult to predict the deformation of dam position without measuring points.
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Therefore, combined with the relevant principles and contents of Equation (12) to Equation (20), this
paper proposes a spatiotemporal hybrid model of Jinping-I arch dam.

Considering that the thickness of Jinping-I arch dam is relatively thin, the coordinate value of Y
direction changes little relative to X direction or Z direction. Therefore, the influence of coordinate
change of X direction and Z direction on radial deformation measurement in space are considered to
establish the spatiotemporal hybrid model. Equation (27) is simplified as:

δ = a0 +
3∑

l,n=0

Alnxlzn +
1∑

j,k=0

3∑
ln

B jkln
sin 2π jt

365
·
cos 2πkt

365
xlzn +

1∑
j,k=0

3∑
l,n=0

C jklnθ j·lnθkxlzn (28)

The spatiotemporal hybrid model established in this section includes the measured values of all
the typical measuring points of pendulums of the dam body. That is, the spatiotemporal measured
values of all the measuring points are taken into account in one specific spatiotemporal hybrid model.

Table 9 shows the spatial location of typical measuring points of Jinping-I arch dam based on the
spatiotemporal hybrid model. After standardizing the X and Z coordinate values, we can substitute
them into Equations (15) and (28) as (x, z).

δ = f (H, T,θ, x, z) = a0 +
3∑

l,n=0

Alnxlzn (29)

+
1∑

j,k=0

3∑
ln

B jkln
sin 2π jt

365
·
cos 2πkt

365
xlzn +

1∑
j,k=0

3∑
l,n=0

C jklnθ j·lnθkxlzn

Table 9. Spatial location of measurement points in spatiotemporal hybrid model.

Dam Section Points X (m) Z (m)

1#
PL1-1 792.00 1885.00
PL1-2 792.83 1830.00
IP1-1 791.89 1778.00

5#

PL5-1 867.72 1885.00
PL5-2 873.42 1830.00
PL5-3 874.09 1778.00
PL5-4 875.63 1730.00
IP5-1 873.86 1601.00

9#

PL9-1 931.02 1885.00
PL9-2 930.05 1830.00
PL9-3 929.17 1778.00
PL9-4 936.48 1730.00
PL9-5 935.37 1664.25
IP9-1 934.83 1601.00

11#

PL11-1 991.16 1885.00
PL11-2 990.45 1830.00
PL11-3 990.02 1778.00
PL11-4 989.09 1730.00
PL11-5 989.53 1664.25
IP11-1 990.06 1601.00

13#

PL13-1 1030.26 1885.00
PL13-2 1022.98 1830.00
PL13-3 1022.92 1778.00
PL13-4 1022.66 1730.00
PL13-5 1022.49 1664.25
IP13-2 1022.49 1601.00
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Table 9. Cont.

Dam Section Points X (m) Z (m)

16#

PL16-1 1104.84 1885.00
PL16-2 1105.03 1830.00
PL16-3 1105.42 1778.00
PL16-4 1106.21 1730.00
PL16-5 1105.78 1664.25
IP16-1 1105.46 1601.00

19#

PL19-1 1162.66 1885.00
PL19-2 1163.91 1830.00
PL19-3 1162.97 1778.00
PL19-4 1162.41 1730.00
PL19-5 1161.26 1664.25
IP19-1 1160.83 1601.00

23#

PL23-1 1224.58 1885.00
PL23-2 1224.81 1778.00
PL23-3 1224.87 1730.00
IP23-1 1224.18 1601.00

By the way, in this section, on the basis of the original single point hybrid model, the newly
added x and z coordinates are fitted with cubic polynomials, respectively, so the parameters of the
spatiotemporal hybrid model have a 4× 4× 7 = 112 terms.

Table 10 shows the correlation coefficient and residual standard deviation of the spatiotemporal
hybrid model of the typical pendulums of the dam body. The correlation coefficient shows that the
fitting accuracy is good, while the residual standard deviation is larger than that of the single point
hybrid model. However, considering that the measured values of the spatiotemporal hybrid model
include all the measured points, the fitting accuracy of residual standard deviation is still high in
the spatiotemporal model. Table 11 shows the spatiotemporal hybrid model coefficients in detail.
Figure 18 shows comparison nephogram between the measured value and calculated value of radial
displacement of dam body on 31 December 2018. It can be seen from Figure 18 that the fitting effect of
the model is good.

Table 10. Correlation coefficient and residual standard deviation of spatiotemporal hybrid model.

Points R S (mm)

PL1-1~IP23-1 0.981 2.305
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Table 11. Coefficients of spatiotemporal hybrid model of typical measuring points (a0 = −1.04)

Aln
(l, n = 0, 1, 2, 3)

A00 A10 A20 A30

B jkln
( j, k = 0, 1, 2;

l, n = 0, 1, 2, 3)

B2002 B2012 B2022 B2032
−30.28 78.24 −65.37 18.70 3.40 −188.27 175.15 0.00

A01 A11 A21 A31 B2003 B2013 B2023 B2033
182.18 −453.85 354.67 −86.87 −3.46 143.39 −160.98 24.75
A02 A12 A22 A32 B0200 B0210 B0220 B0230
−348.74 873.52 −685.64 166.01 0.69 0.00 −2.86 2.14

A03 A13 A23 A33 B0201 B0211 B0221 B0231
219.08 −550.23 440.76 −110.75 −4.47 0.00 −64.79 64.27

B jkln
( j, k = 0, 1, 2;

l, n = 0, 1, 2, 3)

B1000 B1010 B1020 B1030

C jkln
( j, k = 0, 1, 10;
l, n = 0, 1, 2, 3)

B0202 B0212 B0222 B0232
0.62 0.00 −2.80 3.03 3.84 80.97 0.00 −75.78

B1001 B1011 B1021 B1031 B0203 B0213 B0223 B0133
−4.91 0.00 −132.14 140.08 0.00 −86.86 82.62 0.00
B1002 B1012 B1022 B1032 C1000 C1010 C1020 C1030
4.10 137.32 150.19 −286.18 0.69 −1.09 0.00 0.32

B1003 B1013 B1023 B1033 C1001 C1011 C1021 C1031
0.00 −144.29 0.00 135.92 −3.50 −20.63 42.23 −18.09

B0100 B0110 B0120 B0130 C1002 C1012 C1022 C1032
−3.51 −6.75 31.99 −21.86 4.71 82.35 −146.21 60.40
B0101 B0111 B0121 B0131 C1003 C1013 C1023 C1033
26.84 0.00 245.33 −230.63 −2.02 −62.25 108.21 −45.47
B0102 B0112 B0122 B0132 C0100 C0110 C0120 C0130
−36.36 −271.01 −190.06 417.36 −11.10 42.54 −46.72 18.96
B0103 B0113 B0123 B0133 C0101 C0111 C0121 C0131
13.24 299.10 −142.85 −130.61 56.73 86.55 −38.55 −132.84
B2000 B2010 B2020 B2030 C0102 C0112 C0122 C0132
0.000 −10.13 24.36 −14.40 −64.47 −755.24 856.22 0.00
B2001 B2011 B2021 B2031 C0103 C0113 C0123 C0133
0.00 61.48 −55.41 0.00 22.08 635.42 −792.72 127.82

To sum up, for all the typical measuring points in an arch dam, considering the factors of its
spatial location, only a general spatiotemporal hybrid model is needed. The model is feasible and has
high precision, which can basically be applied to the calculation of radial displacement of all positions
on the dam body. It is of great significance for the safety monitoring of the arch dam.

5. Conclusions

In this paper, taking the deformation data of Jinping-I arch dam as an example, a spatiotemporal
prediction model is established. The main research contents are summarized as follows:

(1) This paper studies the representation methods of monitoring deformation data, and analyzes the
characteristics of various methods. We should choose the spatial panel data representation if
possible, which is more suitable on deformation data analysis. Aiming at data pollution, this
paper puts forward the regressions of interpolation of spatial neighboring points and the spatial
inverse distance weighted interpolation methods, both of which are applicable. We can choose
the methods when the missing data is important;

(2) Combined with the actual working behavior of Jinping-I arch dam, a hybrid model is established.
The FEM is used to calculate the displacement field of the dam and its foundation under
the action of hydraulic pressure. The statistical model is still used for the other components.
The results show that the established hybrid model is feasible with high accuracy. During the
dam operation, a hybrid model is necessary to be established to monitor the dam deformation at
the measured points.

(3) Considering the lack of space influence in the single measuring point hybrid model, the
spatiotemporal hybrid model of radial displacement is established by using multiple measuring
points in space and introducing the spatial coordinate variables. The specific spatiotemporal
hybrid model includes the measured values of all the typical measuring points of pendulums of
the dam body. The spatiotemporal hybrid model is much easier after it is built. The model can
be basically applied to the calculation of radial displacement at any position on the dam body.
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It can be proved that the established model is feasible, accurate, and applicable for the Jinping-I
arch dam.

The methods mentioned above are applicable and of great significance for the safety monitoring of
arch dams. However, in this paper, some extreme conditions (very cold winter or very warm summer)
are not considered, which are worthy of further study.
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