Sociodemographic and Regional Determinants of Dietary Patterns in Russia
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Characteristics of the Sample
2.2. Socio-Economic Characteristics
2.3. Evaluation of the Consumption of Food Groups
2.4. Definition of Dietary Patterns
2.5. Statistical Analysis Methods
3. Results
3.1. Baseline Characteristics of the Study Participants
3.2. Dietary Patterns
3.3. Associations of Socioeconomic and Demographic Factors with DPs
3.4. Associations of Regional Factors with DPs
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Product Group | Factors Identified (Dietary Patterns) | |||
---|---|---|---|---|
DP 1 Rational | DP 2 Salt | DP 3 Meat | DP 4 Mixed | |
Meat | −0.043 | 0.174 | 0.652 1 | −0.083 |
Fish and seafoods | 0.043 | −0.109 | 0.646 1 | 0.429 1 |
Poultry | 0.103 | 0.132 | 0.633 1 | −0.091 |
Sausage products | 0.053 | 0.735 1 | 0.150 | −0.099 |
Pickled products | −0.009 | 0.640 1 | 0.081 | 0.413 1 |
Cereals, pasta | 0.495 1 | 0.311 | 0.069 | 0.083 |
Fruit and vegetables | 0.537 1 | −0.275 | 0.402 1 | 0.026 |
Legumes | 0.094 | 0.072 | −0.075 | 0.843 1 |
Sweets and pastries | 0.647 1 | 0.350 | −0.035 | −0.232 |
Dairy products | 0.771 1 | −0.215 | −0.034 | 0.232 |
Proportion of explained variance, % | 15.7 | 13.5 | 14.5 | 12.0 |
Product Group | Factors Identified (Dietary Patterns) | |||
---|---|---|---|---|
DP 1 Rational | DP 2 Salt | DP 3 Meat | DP 4 Mixed | |
Meat | 0.003 | 0.236 | 0.652 1 | −0.070 |
Fish and seafoods | 0.059 | −0.188 | 0.585 1 | 0.479 1 |
Poultry | 0.122 | 0.054 | 0.673 1 | −0.025 |
Sausage products | 0.028 | 0.790 1 | 0.146 | −0.005 |
Pickled products | 0.006 | 0.536 1 | 0.093 | 0.576 1 |
Cereals, pasta | 0.469 1 | 0.146 | 0.220 | 0.072 |
Fruit and vegetables | 0.531 1 | −0.269 | 0.325 | 0.134 |
Legumes | 0.139 | −0.018 | −0.079 | 0.807 1 |
Sweets and pastries | 0.687 1 | 0.378 | −0.071 | −0.128 |
Dairy products | 0.770 1 | −0.192 | −0.066 | 0.163 |
Proportion of explained variance, % | 16.1 | 12.8 | 14.2 | 12.8 |
Product Group | Factors Identified (Dietary Patterns) | |||
---|---|---|---|---|
DP 1 Rational | DP 2 Salt | DP 3 Meat | DP 4 Mixed | |
Meat | −0.047 | 0.193 | 0.692 1 | 0.023 |
Fish and seafoods | 0.006 | −0.067 | 0.547 1 | 0.576 1 |
Poultry | 0.162 | 0.025 | 0.694 1 | −0.129 |
Sausage products | 0.050 | 0.736 1 | 0.216 | −0.136 |
Pickled products | 0.037 | 0.687 1 | −0.018 | 0.450 1 |
Cereals, pasta | 0.516 1 | 0.283 | 0.069 | 0.038 |
Fruit and vegetables | 0.549 1 | −0.285 | 0.251 | 0.239 |
Legumes | 0.094 | 0.066 | −0.132 | 0.769 1 |
Sweets and pastries | 0.712 1 | 0.205 | −0.002 | −0.222 |
Dairy products | 0.703 1 | −0.279 | −0.065 | 0.302 |
Proportion of explained variance, % | 16.1 | 13.4 | 14.0 | 13.6 |
Product Group | Factors Identified (Dietary Patterns) | |||
---|---|---|---|---|
DP 1 Rational | DP 2 Salt | DP 3 Meat | DP 4 Mixed | |
Meat | −0.087 | 0.211 | 0.636 1 | −0.110 |
Fish and seafoods | 0.097 | −0.071 | 0.684 1 | 0.403 1 |
Poultry | 0.112 | 0.125 | 0.630 1 | −0.079 |
Sausage products | −0.092 | 0.723 1 | 0.153 | −0.075 |
Pickled products | −0.119 | 0.642 1 | 0.080 | 0.439 1 |
Cereals, pasta | 0.348 | 0.433 1 | 0.128 | 0.019 |
Fruit and vegetables | 0.606 1 | −0.175 | 0.344 | 0.050 |
Legumes | 0.121 | 0.039 | −0.054 | 0.863 1 |
Sweets and pastries | 0.617 1 | 0.444 1 | −0.109 | −0.182 |
Dairy products | 0.800 1 | −0.084 | −0.056 | 0.197 |
Proportion of explained variance, % | 15.8 | 14.2 | 14.5 | 12.0 |
Product Group | Factors Identified (Dietary Patterns) | |||
---|---|---|---|---|
DP 1 Rational | DP 2 Salt | DP 3 Meat | DP 4 Mixed | |
Meat | −0.033 | 0.192 | 0.656 1 | −0.124 |
Fish and seafoods | 0.016 | −0.173 | 0.676 1 | 0.374 |
Poultry | 0.122 | 0.128 | 0.608 1 | −0.003 |
Sausage products | 0.065 | 0.786 1 | 0.149 | −0.037 |
Pickled products | −0.009 | 0.518 1 | 0.111 | 0.546 1 |
Cereals, pasta | 0.514 1 | 0.243 | 0.096 | 0.151 |
Fruit and vegetables | 0.540 1 | −0.307 | 0.351 | −0.040 |
Legumes | 0.106 | −0.051 | −0.030 | 0.837 1 |
Sweets and pastries | 0.686 1 | 0.321 | −0.042 | −0.134 |
Dairy products | 0.757 1 | −0.249 | −0.038 | 0.157 |
Proportion of explained variance, % | 16.3 | 12.9 | 14.3 | 12.2 |
Product Group | Factors Identified (Dietary Patterns) | |||
---|---|---|---|---|
DP 1 Rational | DP 2 Salt | DP 3 Meat | DP 4 Mixed | |
Meat | −0.082 | 0.284 | 0.613 1 | −0.166 |
Fish and seafoods | 0.033 | −0.047 | 0.675 1 | 0.341 |
Poultry | 0.127 | 0.068 | 0.625 1 | −0.034 |
Sausage products | 0.062 | 0.755 1 | 0.050 | −0.072 |
Pickled products | 0.017 | 0.660 1 | 0.122 | 0.323 |
Cereals, pasta | 0.445 1 | 0.220 | 0.174 | 0.145 |
Fruit and vegetables | 0.505 1 | −0.213 | 0.468 1 | −0.021 |
Legumes | 0.101 | 0.101 | −0.017 | 0.877 1 |
Sweets and pastries | 0.658 1 | 0.366 | −0.077 | −0.206 |
Dairy products | 0.797 1 | −0.171 | −0.009 | 0.178 |
Proportion of explained variance, % | 16.0 | 13.6 | 15.0 | 11.2 |
Product Group | Factors Identified (Dietary Patterns) | |||
---|---|---|---|---|
DP 1 Rational | DP 2 Salt | DP 3 Meat | DP 4 Mixed | |
Meat | −0.044 | 0.409 1 | 0.563 1 | −0.036 |
Fish and seafoods | 0.048 | −0.092 | 0.677 1 | 0.427 1 |
Poultry | 0.134 | 0.002 | 0.710 1 | −0.165 |
Sausage products | −0.005 | 0.802 1 | 0.061 | −0.003 |
Pickled products | −0.032 | 0.521 1 | 0.024 | 0.629 1 |
Cereals, pasta | 0.552 1 | 0.081 | 0.116 | 0.001 |
Fruit and vegetables | 0.569 1 | −0.120 | 0.211 | 0.238 |
Legumes | 0.204 | −0.106 | −0.045 | 0.748 1 |
Sweets and pastries | 0.647 1 | 0.447 1 | −0.092 | −0.204 |
Dairy products | 0.753 1 | −0.187 | −0.109 | 0.204 |
Proportion of explained variance, % | 16.8 | 13.6 | 13.6 | 13.1 |
Product Group | Factors Identified (Dietary Patterns) | |||
---|---|---|---|---|
DP 1 Rational | DP 2 Salt | DP 3 Meat | DP 4 Mixed | |
Meat | −0.079 | 0.267 | 0.650 1 | −0.074 |
Fish and seafoods | 0.081 | −0.158 | 0.334 | 0.703 1 |
Poultry | 0.141 | −0.008 | 0.694 1 | 0.113 |
Sausage products | 0.016 | 0.726 1 | 0.250 | −0.063 |
Pickled products | 0.036 | 0.649 1 | 0.031 | 0.391 |
Cereals, pasta | 0.412 1 | 0.119 | 0.214 | 0.109 |
Fruit and vegetables | 0.576 1 | −0.357 | 0.213 | 0.092 |
Legumes | 0.096 | 0.286 | −0.205 | 0.744 1 |
Sweets and pastries | 0.672 1 | 0.390 | −0.019 | −0.198 |
Dairy products | 0.768 1 | −0.108 | −0.193 | 0.155 |
Proportion of explained variance, % | 15.9 | 14.3 | 12.5 | 13.1 |
Product Group | Factors Identified (Dietary Patterns) | |||
---|---|---|---|---|
DP 1 Rational | DP 2 Salt | DP 3 Meat | DP 4 Mixed | |
Meat | −0.066 | 0.024 | 0.762 1 | −0.024 |
Fish and seafoods | 0.083 | 0.057 | 0.599 1 | 0.493 1 |
Poultry | 0.211 | 0.201 | 0.555 1 | −0.077 |
Sausage products | −0.188 | 0.687 1 | 0.267 | −0.164 |
Pickled products | −0.162 | 0.676 1 | 0.112 | 0.282 |
Cereals, pasta | 0.180 | 0.681 1 | −0.034 | 0.165 |
Fruit and vegetables | 0.735 1 | 0.058 | 0.226 | 0.006 |
Legumes | 0.109 | 0.109 | −0.049 | 0.873 1 |
Sweets and pastries | 0.403 1 | 0.575 1 | 0.059 | −0.085 |
Dairy products | 0.822 1 | −0.045 | −0.089 | 0.168 |
Proportion of explained variance, % | 15.4 | 17.8 | 14.0 | 0.118 |
Product Group | Factors Identified (Dietary Patterns) | ||
---|---|---|---|
DP 1 Rational | DP 2/DP 3 Salt/Meat | DP New | |
Meat | −0.147 | 0.533 1 | 0.204 |
Fish and seafoods | −0.180 | 0.329 | 0.688 1 |
Poultry | 0.024 | 0.443 1 | 0.296 |
Sausage products | 0.257 | 0.595 1 | −0.402 1 |
Pickled products | 0.125 | 0.614 1 | −0.044 |
Cereals, pasta | 0.428 1 | 0.262 | 0.102 |
Fruit and vegetables | 0.356 | −0.020 | 0.570 1 |
Legumes | 0.088 | 0.025 | 0.530 1 |
Sweets and pastries | 0.741 1 | 0.046 | −0.078 |
Dairy products | 0.632 1 | −0.257 | 0.445 1 |
Proportion of explained variance, % | 14.0 | 14.6 | 15.9 |
Product Group | Factors Identified (Dietary Patterns) | |||
---|---|---|---|---|
DP 1 Rational | DP 2 Salt | DP 3 Meat | DP 4 Mixed | |
Meat | −0.038 | 0.175 | 0.694 1 | −0.013 |
Fish and seafoods | 0.001 | −0.373 | 0.573 1 | 0.392 |
Poultry | 0.098 | 0.067 | 0.690 1 | −0.041 |
Sausage products | 0.023 | 0.792 1 | 0.113 | 0.043 |
Pickled products | −0.007 | 0.447 1 | 0.194 | 0.527 1 |
Cereals, pasta | 0.447 1 | 0.145 | 0.040 | 0.150 |
Fruit and vegetables | 0.562 1 | −0.293 | 0.273 | −0.086 |
Legumes | 0.136 | −0.027 | −0.091 | 0.831 1 |
Sweets and pastries | 0.637 1 | 0.393 | −0.005 | −0.092 |
Dairy products | 0.765 1 | −0.185 | −0.112 | 0.120 |
Proportion of explained variance, % | 15.4 | 13.0 | 14.3 | 11.8 |
Product Group | Factors Identified (Dietary Patterns) | ||
---|---|---|---|
DP 1/DP 4 Rational/Mixed | DP 2 Salt | DP 3 Meat | |
Meat | −0.105 | 0.044 | 0.645 1 |
Fish and seafoods | 0.426 1 | −0.053 | 0.624 1 |
Poultry | 0.033 | 0.363 | 0.145 |
Sausage products | −0.266 | 0.702 1 | 0.092 |
Pickled products | −0.007 | 0.491 1 | 0.501 1 |
Cereals, pasta | 0.173 | 0.544 1 | −0.041 |
Fruit and vegetables | 0.696 1 | 0.014 | 0.144 |
Legumes | 0.463 1 | 0.053 | 0.392 |
Sweets and pastries | 0.305 | 0.615 1 | −0.234 |
Dairy products | 0.800 1 | 0.177 | −0.254 |
Proportion of explained variance, % | 17.2 | 15.8 | 13.8 |
Product Group | Factors Identified (Dietary Patterns) | |||
---|---|---|---|---|
DP 1 Rational | DP 3 Meat | DP 4 Mixed | DP New | |
Meat | 0.037 | 0.753 1 | −0.031 | 0.048 |
Fish and seafoods | 0.166 | 0.450 1 | 0.256 | 0.609 1 |
Poultry | 0.053 | 0.523 1 | −0.007 | 0.012 |
Sausage products | −0.232 | 0.516 1 | 0.215 | −0.471 1 |
Pickled products | −0.265 | 0.200 | 0.735 1 | −0.106 |
Cereals, pasta | 0.219 | −0.037 | 0.482 1 | −0.160 |
Fruit and vegetables | 0.656 1 | 0.245 | −0.017 | 0.080 |
Legumes | 0.258 | −0.112 | 0.622 1 | 0.284 |
Sweets and pastries | 0.435 1 | 0.071 | 0.230 | −0.630 1 |
Dairy products | 0.811 1 | −0.140 | 0.161 | −0.085 |
Proportion of explained variance, % | 15.5 | 14.5 | 13.5 | 11.2 |
Product Group | Factors Identified (Dietary Patterns) | |||
---|---|---|---|---|
DP 1 Rational | DP 2 Salt | DP 3 Meat | DP 4 Mixed | |
Meat | −0.083 | 0.295 | 0.535 1 | 0.002 |
Fish and seafoods | 0.139 | −0.112 | 0.493 1 | 0.606 1 |
Poultry | 0.119 | 0.020 | 0.705 1 | −0.061 |
Sausage products | −0.299 | 0.593 1 | 0.229 | −0.057 |
Pickled products | −0.233 | 0.612 1 | −0.032 | 0.435 1 |
Cereals, pasta | 0.153 | 0.553 1 | 0.075 | 0.072 |
Fruit and vegetables | 0.670 1 | −0.075 | 0.292 | 0.084 |
Legumes | 0.162 | 0.084 | −0.164 | 0.779 1 |
Sweets and pastries | 0.439 1 | 0.658 1 | −0.001 | −0.217 |
Dairy products | 0.824 1 | 0.106 | −0.122 | 0.158 |
Proportion of explained variance, % | 15.5 | 15.9 | 12.1 | 12.5 |
Product Group | Factors Identified (Dietary Patterns) | ||
---|---|---|---|
DP 1 Rational | DP 2 Salt | DP 3 Meat | |
Meat | −0.132 | 0.489 1 | 0.336 |
Fish and seafoods | −0.127 | −0.042 | 0.772 1 |
Poultry | −0.016 | 0.131 | 0.461 1 |
Sausage products | 0.096 | 0.759 1 | −0.160 |
Pickled products | 0.114 | 0.689 1 | 0.141 |
Cereals, pasta | 0.530 1 | 0.307 | 0.051 |
Fruit and vegetables | 0.343 | −0.266 | 0.447 1 |
Legumes | 0.307 | 0.085 | 0.459 1 |
Sweets and pastries | 0.699 1 | 0.124 | −0.167 |
Dairy products | 0.709 1 | −0.360 | 0.208 |
Proportion of explained variance, % | 15.4 | 16.3 | 14.5 |
Product Group | Factors Identified (Dietary Patterns) | |||
---|---|---|---|---|
DP 1 Rational | DP 2 Salt | DP 3 Meat | DP 4 Mixed | |
Meat | −0.001 | −0.031 | 0.684 1 | −0.092 |
Fish and seafoods | −0.356 | 0.244 | 0.591 1 | 0.371 |
Poultry | 0.077 | 0.022 | 0.601 1 | 0.001 |
Sausage products | 0.297 | 0.596 1 | 0.234 | −0.300 |
Pickled products | −0.007 | 0.750 1 | 0.143 | 0.032 |
Cereals, pasta | 0.666 1 | −0.067 | 0.028 | 0.055 |
Fruit and vegetables | 0.281 | −0.558 1 | 0.349 | 0.235 |
Legumes | −0.225 | 0.628 1 | −0.191 | 0.443 1 |
Sweets and pastries | 0.706 1 | 0.023 | −0.017 | 0.110 |
Dairy products | 0.352 | −0.108 | 0.016 | 0.777 1 |
Proportion of explained variance, % | 14.2 | 17.0 | 14.1 | 11.1 |
Product Group | Factors Identified (Dietary Patterns) | ||
---|---|---|---|
DP 1 Rational | DP 2/DP 3 Salt/Meat | DP New | |
Meat | −0.058 | 0.636 1 | 0.121 |
Fish and seafoods | −0.235 | 0.418 1 | 0.633 1 |
Poultry | 0.354 | 0.226 | 0.081 |
Sausage products | 0.341 | 0.627 1 | −0.238 |
Pickled products | 0.257 | 0.650 1 | 0.074 |
Cereals, pasta | 0.460 1 | 0.160 | 0.057 |
Fruit and vegetables | 0.343 | −0.056 | 0.618 1 |
Legumes | 0.041 | 0.039 | 0.662 1 |
Sweets and pastries | 0.719 1 | 0.012 | −0.006 |
Dairy products | 0.543 1 | −0.350 | 0.491 1 |
Proportion of explained variance, % | 15.1 | 16.0 | 15.5 |
Product Group | Factors Identified (Dietary Patterns) | |||
---|---|---|---|---|
DP 1 Rational | DP 2 Salt | DP 3 Meat | DP 4 Mixed | |
Meat | 0.034 | 0.289 | 0.627 1 | −0.102 |
Fish and seafoods | −0.073 | 0.087 | 0.592 1 | 0.252 |
Poultry | 0.030 | 0.083 | 0.688 1 | −0.132 |
Sausage products | 0.123 | 0.646 1 | 0.103 | −0.112 |
Pickled products | −0.053 | 0.747 1 | 0.158 | 0.271 |
Cereals, pasta | 0.123 | 0.107 | 0.688 1 | −0.015 |
Fruit and vegetables | 0.230 | −0.059 | 0.732 1 | 0.030 |
Legumes | 0.014 | 0.072 | −0.066 | 0.881 1 |
Sweets and pastries | 0.776 1 | 0.303 | 0.047 | −0.252 |
Dairy products | 0.735 1 | −0.177 | 0.220 | 0.383 |
Proportion of explained variance, % | 12.4 | 12.2 | 23.2 | 11.7 |
Product Group | Factors Identified (Dietary Patterns) | |||
---|---|---|---|---|
DP 1 Rational | DP 2 Salt | DP 3 Meat | DP 4 Mixed | |
Meat | −0.039 | 0.140 | 0.734 1 | −0.107 |
Fish and seafoods | 0.046 | −0.036 | 0.682 1 | 0.346 |
Poultry | 0.045 | 0.074 | 0.760 1 | −0.053 |
Sausage products | −0.047 | 0.728 1 | 0.170 | −0.019 |
Pickled products | 0.152 | 0.702 1 | 0.003 | 0.124 |
Cereals, pasta | 0.523 1 | 0.209 | −0.033 | 0.168 |
Fruit and vegetables | 0.510 1 | −0.318 | 0.337 | −0.212 |
Legumes | 0.076 | 0.129 | 0.029 | 0.865 1 |
Sweets and pastries | 0.663 1 | 0.215 | 0.067 | −0.291 |
Dairy products | 0.750 1 | −0.169 | −0.068 | 0.271 |
Proportion of explained variance, % | 15.7 | 12.9 | 17.4 | 11.3 |
References
- Krieger, J.-P.; Pestoni, G.; Cabaset, S.; Brombach, C.; Sych, J.; Schader, C.; Faeh, D.; Rohrmann, S. Dietary patterns and their sociodemographic and lifestyle determinants in Switzerland: Results from the National Nutrition Survey MenuCH. Nutrients 2018, 11, 62. [Google Scholar] [CrossRef] [Green Version]
- Darmon, N.; Drewnowski, A. Does social class predict diet quality? Am. J. Clin. Nutr. 2008, 87, 1107–1117. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.D.; Leung, C.W.; Li, Y.; Ding, E.L.; Chiuve, S.E.; Hu, F.B.; Willett, W.C. Trends in dietary quality among adults in the United States, 1999 through 2010. JAMA Intern. Med. 2014, 174, 1587–1595. [Google Scholar] [CrossRef]
- Popkin, B.M. Nutrition transition and the global diabetes epidemic. Curr. Diabetes Rep. 2015, 15, 64. [Google Scholar] [CrossRef]
- Wang, Z.; Zhai, F.; Du, S.; Popkin, B. Dynamic shifts in Chinese eating behaviors. Asia Pac. J. Clin. Nutr. 2008, 17, 123–130. [Google Scholar]
- Delgado, C.L. Rising consumption of meat and milk in developing countries has created a new food revolution. J. Nutr. 2003, 133, 3907S–3910S. [Google Scholar] [CrossRef] [Green Version]
- Green, R.; Milner, J.; Joy, E.J.M.; Agrawal, S.; Dangour, A.D. Dietary patterns in India: A systematic review. Br. J. Nutr. 2016, 116, 142–148. [Google Scholar] [CrossRef] [Green Version]
- Freisling, H.; Fahey, M.T.; Moskal, A.; Ocké, M.C.; Ferrari, P.; Jenab, M.; Norat, T.; Naska, A.; Welch, A.A.; Navarro, C.; et al. Region-specific nutrient intake patterns exhibit a geographical gradient within and between European Countries. J. Nutr. 2010, 140, 1280–1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pestoni, G.; Krieger, J.-P.; Sych, J.M.; Faeh, D.; Rohrmann, S. Cultural differences in diet and determinants of diet quality in Switzerland: Results from the National Nutrition Survey MenuCH. Nutrients 2019, 11, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karamnova, N.S.; Shalnova, S.A.; Deev, A.D.; Tarasov, V.I.; Balanova, Y.A.; Imaeva, А.E.; Muromtseva, G.A.; Kapustina, A.V.; Evstifeeva, S.Е.; Drapkina, О.М. Nutrition characteristics of adult inhabitants by ESSE-RF study. Cardiovasc. Ther. Prev. 2018, 17, 61–66. [Google Scholar] [CrossRef]
- Karamnova, N.S.; Shalnova, S.A.; Tarasov, V.I.; Deev, A.D.; Balanova, Y.A.; Imaeva, A.E.; Muromtseva, G.A.; Kapustina, A.V.; Evstifeeva, S.E.; Drapkina, O.M. Gender differences in the nutritional pattern of the adult population of the Russian Federation. The results of ESSE-RF epidemiological study. Russ. J. Cardiol. 2019, 6, 66–72. [Google Scholar] [CrossRef]
- Tapsell, L.C.; Neale, E.P.; Satija, A.; Hu, F.B. Foods, nutrients, and dietary patterns: Interconnections and implications for dietary guidelines. Adv. Nutr. 2016, 7, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Murakami, K.; Shinozaki, N.; Fujiwara, A.; Yuan, X.; Hashimoto, A.; Fujihashi, H.; Wang, H.-C.; Livingstone, M.B.E.; Sasaki, S. A systematic review of principal component analysis—Derived dietary patterns in Japanese adults: Are major dietary patterns reproducible within a country? Adv. Nutr. 2019, 10, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Balder, H.F.; Virtanen, M.; Brants, H.A.M.; Krogh, V.; Dixon, L.B.; Tan, F.; Mannisto, S.; Bellocco, R.; Pietinen, P.; Wolk, A.; et al. Common and country-specific dietary patterns in four European Cohort Studies. J. Nutr. 2003, 133, 4246–4251. [Google Scholar] [CrossRef] [Green Version]
- Schulze, M.B.; Martínez-González, M.A.; Fung, T.T.; Lichtenstein, A.H.; Forouhi, N.G. Food based dietary patterns and chronic disease prevention. BMJ 2018, 361, k2396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ocké, M.C. Evaluation of methodologies for assessing the overall diet: Dietary quality scores and dietary pattern analysis. Proc. Nutr. Soc. 2013, 72, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Krebs-Smith, S.M.; Pannucci, T.E.; Subar, A.F.; Kirkpatrick, S.I.; Lerman, J.L.; Tooze, J.A.; Wilson, M.M.; Reedy, J. Update of the Healthy Eating Index: HEI-2015. J. Acad. Nutr. Diet 2018, 118, 1591–1602. [Google Scholar] [CrossRef] [Green Version]
- Liese, A.D.; Krebs-Smith, S.M.; Subar, A.F.; George, S.M.; Harmon, B.E.; Neuhouser, M.L.; Boushey, C.J.; Schap, T.E.; Reedy, J. The dietary patterns methods project: Synthesis of findings across cohorts and relevance to dietary guidance. J. Nutr. 2015, 145, 393–402. [Google Scholar] [CrossRef] [Green Version]
- Hodge, A.; Bassett, J. What can we learn from dietary pattern analysis? Public Health Nutr. 2016, 19, 191–194. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef]
- Newby, P.K.; Tucker, K.L. Empirically derived eating patterns using factor or cluster analysis: A review. Nutr. Rev. 2004, 62, 177–203. [Google Scholar] [CrossRef] [PubMed]
- Maksimov, S.A.; Kurakin, M.S.; Maksimova, E.V. Stereotypes of food behaviour of pupils depending on an urban saturation of a place of residing: Application factor analysis. Rossiiskii Pediatricheskii Zhurnal 2012, 6, 52–55. [Google Scholar]
- Maksimov, S.A.; Ivanova, O.A.; Zinchuk, S.F. The use of factor analysis in determining the dietary patterns in the population. Gig. Sanit. 2013, 92, 45–48. [Google Scholar]
- Maksimov, S.A.; Tabakaev, M.V.; Danilchenko, Y.V.; Mulerova, T.A.; Indukaeva, E.V.; Artamonova, G.V. Dietary patterns and cardiovascular health of the population (ESSE-RF) study in the Kemerovo region. Gig. Sanit. 2017, 96, 585–589. [Google Scholar] [CrossRef]
- Boitsov, S.A.; Chazov, E.I.; Shlyakhto, E.V.; Shalnova, S.A.; Konradi, A.O.; Karpov, Y.A.; Muromtseva, G.A.; Zhernakova, Y.V.; Oshchepkova, E.V.; Rotar, O.P. Epidemiology of cardiovascular diseases in different regions of Russia (ESSE-RF). The rationale for and design of the study. Profilakticheskaya Meditsina 2013, 16, 25–34. [Google Scholar]
- Fransen, H.P.; May, A.M.; Stricker, M.D.; Boer, J.M.A.; Hennig, C.; Rosseel, Y.; Ocké, M.C.; Peeters, P.H.M.; Beulens, J.W.J. A posteriori dietary patterns: How many patterns to retain? J. Nutr. 2014, 144, 1274–1282. [Google Scholar] [CrossRef]
- Mayén, A.-L.; Stringhini, S.; Ford, N.D.; Martorell, R.; Stein, A.D.; Paccaud, F.; Marques-Vidal, P. Socioeconomic predictors of dietary patterns among Guatemalan adults. Int. J. Public Health 2016, 61, 1069–1077. [Google Scholar] [CrossRef] [Green Version]
- Waid, J.L.; Sinharoy, S.S.; Ali, M.; Stormer, A.E.; Thilsted, S.H.; Gabrysch, S. Dietary patterns and determinants of changing diets in Bangladesh from 1985 to 2010. Curr. Dev. Nutr. 2019, 3, nzy091. [Google Scholar] [CrossRef]
- Soleimani, D.; Ranjbar, G.; Rezvani, R.; Goshayeshi, L.; Razmpour, F.; Nematy, M. Dietary patterns in relation to hepatic fibrosis among patients with nonalcoholic fatty liver disease. Diabetes Metab. Syndr. Obes. 2019, 12, 315–324. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; Zhang, Y.; Nuli, R.; Zhang, Y.; Abudusemaiti, M.; Kadeer, A.; Tian, X.; Xiao, H. Interaction between dietary patterns and TCF7L2 polymorphisms on type 2 diabetes mellitus among Uyghur adults in Xinjiang province, China. Diabetes Metab. Syndr. Obes. 2019, 12, 239–255. [Google Scholar] [CrossRef] [Green Version]
- Czekajło, A.; Różańska, D.; Zatońska, K.; Szuba, A.; Regulska-Ilow, B. Association between dietary patterns and metabolic syndrome in the selected population of Polish adults-results of the PURE Poland study. Eur. J. Public Health 2019, 29, 335–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jezewska-Zychowicz, M.; Gębski, J.; Guzek, D.; Świątkowska, M.; Stangierska, D.; Plichta, M.; Wasilewska, M. The Associations between dietary patterns and sedentary behaviors in Polish adults (LifeStyle study). Nutrients 2018, 10, 1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Judd, S.E.; Letter, A.J.; Shikany, J.M.; Roth, D.L.; Newby, P.K. Dietary patterns derived using exploratory and confirmatory factor analysis are stable and generalizable across race, region, and gender subgroups in the REGARDS study. Front. Nutr. 2014, 1, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedeian, A.G.; Armenakis, A.A.; Randolph, W.A. The significance of congruence coefficients: A comment and statistical test. J. Manag. 1988, 14, 559–566. [Google Scholar] [CrossRef]
- Steffen, L.M.; Hootman, K.C. A posteriori data-derived dietary patterns and incident coronary heart disease: Making sense of inconsistent findings. Curr. Nutr. Rep. 2016, 5, 168–179. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, R.; Anand, S.; Ounpuu, S.; Islam, S.; Zhang, X.; Rangarajan, S.; Chifamba, J.; Al-Hinai, A.; Keltai, M.; Yusuf, S.; et al. Dietary patterns and the risk of acute myocardial infarction in 52 countries: Results of the INTERHEART study. Circulation 2008, 118, 1929–1937. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Larsen, V.; Morton, V.; Norat, T.; Moreira, A.; Potts, J.F.; Reeves, T.; Bakolis, I. Dietary patterns derived from principal component analysis (PCA) and risk of colorectal cancer: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2019, 73, 366–386. [Google Scholar] [CrossRef]
- Jannasch, F.; Kröger, J.; Schulze, M.B. Dietary patterns and type 2 diabetes: A systematic literature review and meta-analysis of prospective studies. J. Nutr. 2017, 147, 1174–1182. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Hou, L.N.; Chen, W.; Chen, P.L.; Lei, C.Y.; Wei, Q.; Tan, W.L.; Zheng, S.B. Associations of dietary patterns with the risk of all-cause, CVD and stroke mortality: A meta-analysis of prospective cohort studies. Br. J. Nutr. 2015, 113, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Nanri, A.; Mizoue, T.; Shimazu, T.; Ishihara, J.; Takachi, R.; Noda, M.; Iso, H.; Sasazuki, S.; Sawada, N.; Tsugane, S. Dietary patterns and all-cause, cancer, and cardiovascular disease mortality in Japanese men and women: The Japan public health center-based prospective study. PLoS ONE 2017, 12, e0174848. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. What Is a Healthy Diet? Available online: https://cancer-code-europe.iarc.fr/index.php/en/ecac-12-ways/diet-recommendation/39-healthy-diet (accessed on 29 October 2019).
- Lindgren, J.A.; Vernarelli, J.A.; Savage-Williams, J.; Hartman, T.J. Is usual dietary pattern related to the risk of developing breast cancer? Curr. Nutr. Rep. 2013, 2, 90–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millen, B.E.; Quatromoni, P.A.; Pencina, M.; Kimokoti, R.; Nam, B.-H.O.; Cobain, S.; Kozak, W.; Appugliese, D.P.; Ordovas, J.; D’Agostino, R.B. Unique dietary patterns and chronic disease risk profiles of adult men: The Framingham Nutrition Studies. J. Am. Diet. Assoc. 2005, 105, 1723–1734. [Google Scholar] [CrossRef]
- Shikany, J.M.; Safford, M.M.; Bryan, J.; Newby, P.K.; Richman, J.S.; Durant, R.W.; Brown, T.M.; Judd, S.E. Dietary patterns and Mediterranean Diet Score and hazard of recurrent coronary heart disease events and all-cause mortality in the REGARDS study. J. Am. Heart Assoc. 2018, 7, e008078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques-Vidal, P.; Waeber, G.; Vollenweider, P.; Guessous, I. Socio-demographic and lifestyle determinants of dietary patterns in French-speaking Switzerland, 2009–2012. BMC Public Health 2018, 18, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Betancourt-Nuñez, A.; Márquez-Sandoval, F.; González-Zapata, L.I.; Babio, N.; Vizmanos, B. Unhealthy dietary patterns among healthcare professionals and students in Mexico. BMC Public Health 2018, 18, 1246. [Google Scholar] [CrossRef] [PubMed]
- Roberts, K.; Cade, J.; Dawson, J.; Holdsworth, M. Empirically derived dietary patterns in UK adults are associated with sociodemographic characteristics, lifestyle, and diet quality. Nutrients 2018, 10, 177. [Google Scholar] [CrossRef] [Green Version]
- Dekker, L.H.; Nicolaou, M.; van Dam, R.M.; de Vries, J.H.M.; de Boer, E.J.; Brants, H.A.M.; Beukers, M.H.; Snijder, M.B.; Stronks, K. Socio-economic status and ethnicity are independently associated with dietary patterns: The HELIUS-dietary patterns study. Food. Nutr. Res. 2015, 59, 26317. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.B.; Rimm, E.B.; Stampfer, M.J.; Ascherio, A.; Spiegelman, D.; Willett, W.C. Prospective study of major dietary patterns and risk of coronary heart disease in men. Am. J. Clin. Nutr. 2000, 72, 912–921. [Google Scholar] [CrossRef]
- Trudeau, K.; Rousseau, M.-C.; Csizmadi, I.; Parent, M.-É. Dietary patterns among French-speaking men residing in Montreal, Canada. Prev. Med. Rep. 2019, 13, 205–213. [Google Scholar] [CrossRef]
- Ding, N.; Wang, X.; Tucker, K.L.; Weisskopf, M.G.; Sparrow, D.; Hu, H.; Park, S.K. Dietary patterns, bone lead and incident coronary heart disease among middle-aged to elderly men. Environ. Res. 2019, 168, 222–229. [Google Scholar] [CrossRef]
- Murakami, K.; Livingstone, M.B.E.; Sasaki, S. Thirteen-year trends in dietary patterns among Japanese adults in the National Health and Nutrition Survey 2003−2015: Continuous westernization of the Japanese diet. Nutrients 2018, 10, 994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markussen, M.S.; Veierød, M.B.; Kristiansen, A.L.; Ursin, G.; Andersen, L.F. Dietary patterns of women aged 50–69 years and associations with nutrient intake, sociodemographic factors and key risk factors for non-communicable diseases. Public Health Nutr. 2016, 19, 2024–2032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Dam, R.M.; Grievink, L.; Ocké, M.C.; Feskens, E.J.M. Patterns of food consumption and risk factors for cardiovascular disease in the general Dutch population. Am. J. Clin. Nutr. 2003, 77, 1156–1163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jannasch, F.; Riordan, F.; Andersen, L.F.; Schulze, M.B. Exploratory dietary patterns: A systematic review of methods applied in Pan-European studies and of validation studies. Br. J. Nutr. 2018, 120, 601–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorpe, M.G.; Milte, C.M.; Crawford, D.; McNaughton, S.A. A comparison of the dietary patterns derived by principal component analysis and cluster analysis in older Australians. Int. J. Behav. Nutr. Phys. 2016, 13, 30. [Google Scholar] [CrossRef] [Green Version]
- Kant, A.K. Dietary patterns and health outcomes. J. Am. Diet. Assoc. 2004, 104, 615–635. [Google Scholar] [CrossRef]
- Arabshahi, S.; van der Pols, J.C.; Williams, G.M.; Marks, G.C.; Lahmann, P.H. Diet quality and change in anthropometric measures: 15-year longitudinal study in Australian adults. Br. J. Nutr. 2012, 107, 1376–1385. [Google Scholar] [CrossRef] [Green Version]
- Thornton, L.E.; Pearce, J.R.; Ball, K. Sociodemographic factors associated with healthy eating and food security in socio-economically disadvantaged groups in the UK and Victoria, Australia. Public Health Nutr. 2014, 17, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Marques-Vidal, P.; Ravasco, P.; Dias, C.M.; Camilo, M.E. Trends of food intake in Portugal, 1987–1999: Results from the National Health Surveys. Eur. J. Clin. Nutr. 2006, 60, 1414–1422. [Google Scholar] [CrossRef] [Green Version]
- Hanna, K.L.; Collins, P.F. Relationship between living alone and food and nutrient intake. Nutr. Rev. 2015, 73, 594–611. [Google Scholar] [CrossRef] [Green Version]
- Eng, P.M.; Kawachi, I.; Fitzmaurice, G.; Rimm, E.B. Effects of marital transitions on changes in dietary and other health behaviours in US male health professionals. J. Epidemiol. Community Health 2005, 59, 56–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkerwi, A.; Vernier, C.; Sauvageot, N.; Crichton, G.E.; Elias, M.F. Demographic and socioeconomic disparity in nutrition: Application of a novel Correlated Component Regression approach. BMJ Open 2015, 5, e006814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geyer, S.; Hemstrom, O.; Peter, R.; Vagerom, D. Education, income, and occupational class cannot be used interchangeably in social epidemiology. Empirical evidence against a common practice. J. Epidemiol. Community Health 2006, 60, 804–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, A.; Sakurazawa, H.; Fujita, T.; Akamatsu, R. Overeating, late dinner, and perceived stress in Japanese workers. Obes. Res. Clin. Pract. 2016, 10, 390–398. [Google Scholar] [CrossRef]
- Sam, L.; Craig, T.; Horgan, G.W.; Macdiarmid, J.I. Association between hours worked in paid employment and diet quality, frequency of eating out and consuming takeaways in the UK. Public Health Nutr. 2019, 22, 3368–3376. [Google Scholar] [CrossRef] [Green Version]
- Chau, C.A.; Pan, W.H.; Chen, H.J. Employment status and temporal patterns of energy intake: Nutrition and Health Survey in Taiwan, 2005–2008. Public Health Nutr. 2017, 20, 3295–3303. [Google Scholar] [CrossRef] [Green Version]
- Tripathy, J.P.; Thakur, J.S.; Jeet, G.; Chawla, S.; Jain, S.; Prasad, R. Urban rural differences in diet, physical activity and obesity in India: Are we witnessing the great Indian equalisation? Results from a cross-sectional STEPS survey. BMC Public Health 2016, 16, 816. [Google Scholar] [CrossRef] [Green Version]
- Suliburska, J.; Bogdański, P.; Pupek-Musialik, D.; Głód-Nawrocka, M.; Krauss, H.; Piątek, J. Analysis of lifestyle of young adults in the rural and urban areas. Ann. Agric. Environ. Med. 2012, 19, 135–139. [Google Scholar]
- Kriaucioniene, V.; Klumbiene, J.; Petkeviciene, J.; Sakyte, E. Time trends in social differences in nutrition habits of a Lithuanian population: 1994–2010. BMC Public Health 2012, 12, 218. [Google Scholar] [CrossRef] [Green Version]
- Neerubala, P.P. Food consumption patterns of adult population in rural and urban areas of Faizabad district of Uttar Pradesh, India. Int. J. Sci. Res. 2016, 2, 2080–2084. [Google Scholar]
- Bowen, L.; Ebrahim, S.; De Stavola, B.; Ness, A.; Kinra, S.; Bharathi, A.V.; Prabhakaran, D.; Reddy, K.S. Dietary intake and rural-urban migration in India: A cross-sectional study. PLoS ONE 2011, 6, e14822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bamia, C.; Orfanos, P.; Ferrari, P.; Overvad, K.; Hundborg, H.H.; Tjønneland, A.; Olsen, A.; Kesse, E.; Boutron-Ruault, M.-C.; Clavel-Chapelon, F.; et al. Dietary patterns among older Europeans: The EPIC-elderly study. Br. J. Nutr. 2005, 94, 100–113. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Papier, K.; Yiengprugsawan, V.; Kelly, M.; Seubsman, S.-A.; Sleigh, A.C. Dietary patterns associated with hypertension risk among adults in Thailand: 8-year findings from the Thai Cohort Study. Public Health Nutr. 2019, 22, 307–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, R.L.; Gutschall, M.D.; Mitchell, D.C.; Miller, C.K.; Lawrence, F.R.; Smiciklas-Wright, H. Comparative strategies for using cluster analysis to assess dietary patterns. J. Am. Diet. Assoc. 2006, 106, 1194–1200. [Google Scholar] [CrossRef]
- Northstone, K.; Ness, A.R.; Emmett, P.M.; Rogers, I.S. Adjusting for energy intake in dietary pattern investigations using principal components analysis. Eur. J. Clin. Nutr. 2008, 62, 931–938. [Google Scholar] [CrossRef] [Green Version]
- Wood, A.M.; White, I.R.; Thompson, S.G. Are missing outcome data adequately handled? A review of published randomized controlled trials in Major Medical Journals. Clin. Trials 2004, 1, 368–376. [Google Scholar] [CrossRef]
- Lang, K.M.; Little, T.D. Principled missing data treatments. Prev. Sci. 2018, 19, 284–294. [Google Scholar] [CrossRef]
- Kang, H. The prevention and handling of the missing data. Korean J. Anesthesiol. 2013, 64, 402–406. [Google Scholar] [CrossRef]
Parameter | Amount | % | |
---|---|---|---|
Sex | Female | 12,191 | 62.4 |
Male | 7329 | 37.6 | |
Age | 25–34 years old | 4148 | 21.3 |
35–44 years old | 3903 | 20.0 | |
45–54 years old | 5432 | 27.8 | |
55–64 years old | 6037 | 30.9 | |
Family | No family | 6905 | 35.4 |
Has a family | 12,615 | 64.6 | |
Education | Secondary | 5527 | 28.3 |
Advanced Secondary | 5516 | 28.3 | |
Higher | 8477 | 43.4 | |
Job | No | 4710 | 24.1 |
Yes | 14,810 | 75.9 | |
Income | Low | 2098 | 10.7 |
Average | 15,291 | 78.3 | |
High | 2131 | 10.9 | |
Settlement type | Urban | 15,817 | 81.0 |
Rural | 3703 | 19.0 | |
Region | Krasnoyarsk Territory | 1370 | 7.0 |
Primorsk Territory | 1903 | 9.8 | |
Volgograd region | 1176 | 6.0 | |
Vologda region | 1516 | 7.8 | |
Voronezh region | 1480 | 7.6 | |
Ivanovo region | 1731 | 8.9 | |
Kemerovo region | 1469 | 7.5 | |
Samara region | 1530 | 7.8 | |
St. Petersburg | 1460 | 7.5 | |
Orenburg region | 1445 | 7.4 | |
Tomsk region | 1464 | 7.5 | |
Tyumen region | 1371 | 7.0 | |
Republic of North Ossetia–Alania | 1605 | 8.2 |
Product Group | Factors Identified (Dietary Patterns) | |||
---|---|---|---|---|
DP 1 Rational | DP 2 Salt | DP 3 Meat | DP 4 Mixed | |
Meat | −0.054 | 0.232 | 0.645 1 | −0.088 |
Fish and seafood | 0.039 | −0.125 | 0.644 1 | 0.436 1 |
Poultry | 0.135 | 0.091 | 0.643 1 | −0.077 |
Sausage products | 0.042 | 0.754 1 | 0.141 | −0.070 |
Pickled products | 0.001 | 0.609 1 | 0.083 | 0.472 1 |
Cereals, pasta | 0.471 1 | 0.284 | 0.124 | 0.082 |
Fruit and vegetables | 0.545 1 | −0.287 | 0.364 | 0.071 |
Legumes | 0.105 | 0.035 | −0.068 | 0.837 1 |
Sweets and pastries | 0.675 1 | 0.345 | −0.059 | −0.186 |
Dairy products | 0.764 1 | −0.229 | −0.046 | 0.210 |
Proportion of explained variance, % | 15.9 | 13.5 | 14.3 | 12.2 |
Group | Factor Number | |||
---|---|---|---|---|
DP 1 Rational | DP 2 Salt | DP 3 Meat | DP 4 Mixed | |
Female | 0.99 | 0.99 | 0.99 | 0.99 |
Male | 0.99 | 0.99 | 0.99 | 0.99 |
25–34 years old | 0.99 | 0.99 | 0.98 | 0.97 |
35–44 years old | 0.98 | 0.97 | 0.99 | 0.99 |
45–54 years old | 0.99 | 0.99 | 0.99 | 0.98 |
55–64 years old | 0.99 | 0.99 | 0.99 | 0.98 |
Krasnoyarsk Territory | 0.99 | 0.94 | 0.98 | 0.97 |
Primorsk Territory | 0.99 | 0.96 | 0.93 | 0.95 |
Volgograd region | 0.91 | 0.86 | 0.96 | 0.97 |
Vologda region | 0.94 | 0.78 2 | 0.70 2 | − |
New Factor 1 | 0.47 | −0.40 | 0.58 | 0.62 |
Voronezh region | 0.99 | 0.95 | 0.98 | 0.97 |
Ivanovo region | 0.81 2 | 0.82 | 0.72 | 0.53 2 |
Kemerovo region | 0.89 | − | 0.90 | 0.78 |
New Factor 1 | −0.37 | −0.60 | 0.31 | 0.49 |
Samara region | 0.89 | 0.88 | 0.97 | 0.98 |
St. Petersburg | 0.95 | 0.95 | 0.79 | − |
Orenburg region | 0.80 | 0.70 | 0.98 | 0.64 |
Tomsk region | 0.88 | 0.77 2 | 0.65 2 | − |
New Factor 1 | 0.52 | −0.30 | 0.45 | 0.74 |
Tyumen region | 0.91 | 0.94 | 0.88 | 0.95 |
Republic of North Ossetia–Alania | 0.99 | 0.98 | 0.98 | 0.90 |
Parameter | DP 1 Rational | DP 2 Salt | DP 3 Meat | DP 4 Mixed | |||||
---|---|---|---|---|---|---|---|---|---|
% | p-Value | % | p-Value | % | p-Value | % | p-Value | ||
Sex | Female | 29.2 | <0.001 | 21.1 | <0.001 | 23.4 | <0.001 | 24.9 | 0.93 |
Male | 18.6 | 31.3 | 27.2 | 24.8 | |||||
Age | 25–34 years old | 22.7 | <0.001 | 30.0 | <0.001 | 24.4 | 0.12 | 19.9 | <0.001 |
35–44 years old | 23.8 | 27.9 | 23.5 | 24.0 | |||||
45–54 years old | 27.7 | 24.1 | 25.4 | 26.0 | |||||
55–64 years old | 25.6 | 20.1 | 25.4 | 27.8 | |||||
Family | No family | 26.1 | 0.038 | 23.1 | <0.001 | 22.7 | <0.001 | 24.8 | 0.94 |
Has a family | 24.7 | 25.9 | 25.9 | 24.9 | |||||
Education | Secondary | 23.8 | <0.001 | 27.9 | <0.001 | 26.0 | 0.053 | 24.9 | 0.0054 |
Advanced Secondary | 23.7 | 26.2 | 24.3 | 26.3 | |||||
Higher | 27.2 | 22.1 | 24.4 | 23.9 | |||||
Job | No | 24.4 | 0.14 | 19.7 | <0.001 | 24.2 | 0.24 | 28.1 | <0.001 |
Yes | 25.5 | 25.6 | 25.0 | 23.8 | |||||
Income | Low | 22.9 | 0.024 | 24.0 | 0.0022 | 16.1 | <0.001 | 23.1 | 0.13 |
Average | 25.6 | 25.4 | 25.4 | 25.1 | |||||
High | 24.8 | 22.1 | 29.4 | 24.9 | |||||
Type | Urban | 25.6 | 0.0080 | 24.4 | 0.0013 | 24.9 | 0.51 | 24.6 | 0.054 |
Rural | 23.5 | 26.9 | 24.4 | 26.1 | |||||
Region | Krasnoyarsk Territory | 24.2 | <0.001 | 22.3 | <0.001 | 30.7 | <0.001 | 21.2 | <0.001 |
Primorsk Territory | 19.6 | 23.4 | 26.0 | 32.6 | |||||
Volgograd region | 16.6 | 33.1 | 12.2 | 29.7 | |||||
Vologda region | 30.5 | 24.1 | 22.0 | 18.9 | |||||
Voronezh region | 30.1 | 26.2 | 36.6 | 33.4 | |||||
Ivanovo region | 27.5 | 31.8 | 18.6 | 14.1 | |||||
Kemerovo region | 29.7 | 25.0 | 30.0 | 26.1 | |||||
Samara region | 18.9 | 25.6 | 18.4 | 14.4 | |||||
St. Petersburg | 30.0 | 19.0 | 24.0 | 21.0 | |||||
Orenburg region | 32.4 | 27.0 | 30.2 | 32.5 | |||||
Tomsk region | 16.9 | 23.6 | 18.8 | 14.7 | |||||
Tyumen region | 35.9 | 28.2 | 41.4 | 36.6 | |||||
Republic of North Ossetia–Alania | 16.6 | 16.0 | 14.6 | 29.3 |
Parameter | DP 1 Rational | DP 2 Salt | DP 3 Meat | DP 4 Mixed | |
---|---|---|---|---|---|
Sex | Male vs. Female (Ref.) | 0.54; 0.51–0.59 | 1.57; 1.47–1.68 | 1.19; 1.11–1.27 | 1.05; 0.98–1.13 |
Age | 35–44 vs. 25–34 (Ref.) | 1.05; 0.95–1.17 | 0.89; 0.80–0.98 | 0.94; 0.85–1.05 | 1.29; 1.16–1.44 |
45–54 vs. 25–34 (Ref.) | 1.29; 1.17–1.42 | 0.72; 0.66–0.79 | 1.09; 0.98–1.19 | 1.44; 1.30–1.59 | |
55–64 vs. 25–34 (Ref.) | 1.22; 1.10–1.35 | 0.60; 0.54–0.67 | 1.14; 1.03–1.26 | 1.47; 1.33–1.64 | |
45–54 vs. 35–44 (Ref.) | 1.22; 1.11–1.35 | 0.82; 0.74–0.90 | 1.13; 1.03–1.25 | 1.12; 1.01–1.23 | |
55–64 vs. 35–44 (Ref.) | 1.16; 1.05–1.29 | 0.69; 0.63–0.77 | 1.19; 1.08–1.32 | 1.15; 1.04–1.28 | |
55–64 vs. 45–54 (Ref.) | 0.95; 0.87–1.04 | 0.86; 0.78–0.95 | 1.02; 0.93–1.12 | 1.04; 0.96–1.14 | |
Family | Has a family vs. No family (Ref.) | 1.02; 0.95–1.09 | 1.08; 1.01–1.16 | 1.11; 1.03–1.19 | 0.98; 0.92–1.05 |
Education | Advanced Secondary vs. Secondary (Ref.) | 0.96; 0.88–1.05 | 0.90; 0.82–0.98 | 0.92; 0.84–1.01 | 1.11; 1.01–1.21 |
Higher vs. Secondary (Ref.) | 1.17; 1.08–1.27 | 0.66; 0.60–0.71 | 0.90; 0.83–0.98 | 1.05; 0.97–1.14 | |
Higher vs. Advanced Secondary (Ref.) | 1.24; 1.14–1.34 | 0.73; 0.67–0.79 | 0.99; 0.91–1.07 | 0.93; 0.86–1.00 | |
Job | Yes vs. No (Ref.) | 1.18; 1.09–1.28 | 1.27; 1.16–1.38 | 1.01; 0.93–1.10 | 0.88; 0.82–0.96 |
Income | Average vs. Low (Ref.) | 1.22; 1.09–1.36 | 0.95; 0.85–1.06 | 1.78; 1.57–2.01 | 1.21; 1.08–1.35 |
High vs. Low (Ref.) | 1.15; 0.98–1.35 | 0.73; 0.62–0.86 | 1.99; 1.69–2.35 | 1.30; 1.11–1.52 | |
High vs. Average (Ref.) | 1.01; 0.90–1.12 | 0.77; 0.69–0.86 | 1.23; 1.11–1.36 | 1.03; 0.93–1.15 | |
Settlement type | Rural vs. Urban (Ref.) | 0.90; 0.83–0.98 | 1.11; 1.02–1.21 | 0.96; 0.88–1.05 | 1.08; 0.99–1.17 |
Region | DP 1 Rational | DP 2 Salt | DP 3 Meat | DP 4 Mixed |
---|---|---|---|---|
Krasnoyarsk Territory | 1.31; 1.10–1.56 | 0.91; 0.77–1.08 | 1.24; 1.06–1.45 | 0.55; 0.47–0.66 |
Primorsk Territory | Reference | Reference | Reference | Reference |
Volgograd region | 0.79; 0.64–0.96 | 1.56; 1.32–1.85 | 0.39; 0.32–0.49 | 0.88; 0.75–1.04 |
Vologda region | 1.89; 1.60–2.22 | 0.97; 0.82–1.14 | 0.75; 0.64–0.89 | 0.50; 0.42–0.59 |
Voronezh region | 1.77; 1.49–2.10 | 1.25; 1.05–1.48 | 1.64; 1.40–1.92 | 0.96; 0.82–1.12 |
Ivanovo region | 1.50; 1.26–1.77 | 1.43; 1.22–1.67 | 0.62; 0.53–0.74 | 0.32; 0.27–0.39 |
Kemerovo region | 1.77; 1.49–2.10 | 1.03; 0.87–1.22 | 1.19; 1.02–1.40 | 0.71; 0.60–0.83 |
Samara region | 0.96; 0.79–1.15 | 1.06; 0.90–1.25 | 0.61; 0.51–0.72 | 0.35; 0.29–0.42 |
St. Petersburg | 1.67; 1.39–2.02 | 0.80; 0.66–0.97 | 0.89; 0.75–1.07 | 0.52; 0.43–0.62 |
Orenburg region | 2.05; 1.70–2.48 | 1.12; 0.93–1.34 | 1.16; 0.98–1.39 | 0.97; 0.82–1.15 |
Tomsk region | 0.86; 0.71–1.04 | 1.01; 0.86–1.20 | 0.62; 0.52–0.74 | 0.35; 0.29–0.42 |
Tyumen region | 2.28; 1.94–2.69 | 1.30; 1.10–1.53 | 2.06; 1.76–2.40 | 1.11; 0.95–1.29 |
Republic of North Ossetia–Alania | 0.76; 0.63–0.91 | 0.69; 0.58–0.83 | 0.48; 0.40–0.58 | 0.81; 0.70–0.94 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maksimov, S.; Karamnova, N.; Shalnova, S.; Drapkina, O. Sociodemographic and Regional Determinants of Dietary Patterns in Russia. Int. J. Environ. Res. Public Health 2020, 17, 328. https://doi.org/10.3390/ijerph17010328
Maksimov S, Karamnova N, Shalnova S, Drapkina O. Sociodemographic and Regional Determinants of Dietary Patterns in Russia. International Journal of Environmental Research and Public Health. 2020; 17(1):328. https://doi.org/10.3390/ijerph17010328
Chicago/Turabian StyleMaksimov, Sergey, Natalia Karamnova, Svetlana Shalnova, and Oksana Drapkina. 2020. "Sociodemographic and Regional Determinants of Dietary Patterns in Russia" International Journal of Environmental Research and Public Health 17, no. 1: 328. https://doi.org/10.3390/ijerph17010328
APA StyleMaksimov, S., Karamnova, N., Shalnova, S., & Drapkina, O. (2020). Sociodemographic and Regional Determinants of Dietary Patterns in Russia. International Journal of Environmental Research and Public Health, 17(1), 328. https://doi.org/10.3390/ijerph17010328