Ischemic Preconditioning Promotes Post-Exercise Hypotension in a Session of Resistance Exercise in Normotensive Trained Individuals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Subjects
2.3. Resistance Exercise Session
2.4. IPC and SHAM Experimental Protocols
2.5. Procedures
2.5.1. Anthropometric Evaluation
2.5.2. RM Test
2.5.3. Blood Pressure Monitoring
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- MacDonald, H.V.; Johnson, B.T.; Huedo-Medina, T.B.; Livingston, J.; Forsyth, K.C.; Kraemer, W.J.; Farinatti, P.T.; Pescatello, L.S. Dynamic resistance training as stand-alone antihypertensive lifestyle therapy: A meta-analysis. J. Am. Heart Assoc. 2016, 5, e003231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, M.A.; Haskell, W.L.; Ades, P.A.; Amsterdam, E.A.; Bittner, V.; Franklin, B.A.; Gulanick, M.; Laing, S.T.; Stewart, K.J. Resistance exercise in individuals with and without cardiovascular disease: 2007 update: A scientific statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism. Circulation 2007, 116, 572–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bentes, C.M.; Costa, P.B.; Neto, G.R.; Costa, E.; Silva, G.V.; de Salles, B.F.; Miranda, H.L.; Novaes, J.S. Hypotensive effects and performance responses between different resistance training intensities and exercise orders in apparently health women. Clin. Physiol. Funct. Imaging 2015, 35, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Bentes, C.M.; Costa, P.B.; Neto, V.G.C.; Simão, R.; Paz, G.A.; Maia, M.F.; Figueiredo, T.; Neto, G.R.; Novaes, J.S.; Miranda, H. Hypotensive Responses of Reciprocal Supersets versus Traditional Resistance Training in Apparently Healthy Men. Int. J. Exerc. Sci. 2017, 10, 434–445. [Google Scholar] [PubMed]
- Duncan, M.J.; Birch, S.L.; Oxford, S.W. The effect of exercise intensity o postresistance exercise hypotension in trained men. J. Strength Cond. Res. 2014, 28, 1706–1713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueiredo, T.; Willardson, J.M.; Miranda, H.; Bentes, C.M.; Reis, V.M.; Simão, R. Influence of Load Intensity on Post Exercise Hypotension and Heart Rate Variability Following a Strength Training Session. J. Strength Cond. Res. 2015, 29, 2941–2948. [Google Scholar] [CrossRef] [PubMed]
- Keese, F.; Farinatti, P.; Pescatello, L.; Monteiro, W. A comparison of the immediate effects of resistance, aerobic, and concurrent exercise on postexercise hypotension. J. Strength Cond. Res. 2011, 25, 1429–1436. [Google Scholar] [CrossRef]
- Polito, M.D.; Simão, R.; Senna, G.W.; Farinatti, P. Hypotensive effects of resistance exercises performed at different intensities and same work volumes. Rev. Bras. Med. Esporte 2003, 9, 74–77. [Google Scholar] [CrossRef] [Green Version]
- Rezk, C.C.; Marrache, R.C.; Tinucci, T.; Mion, D.J.R.; Forjaz, C.L. Post-resistance exercise hypotension, hemodynamics, and heart rate variability influence of exercise intensity. Eur. J. Appl. Physiol. 2006, 98, 105–112. [Google Scholar] [CrossRef]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef]
- Figueiredo, T.; Willardson, J.M.; Miranda, H.; Melibeu, C.M.; Reis, V.M.; Salles, B.F.; Simão, R. Influence of rest interval length between sets on blood pressure and heart rate after a strength training session performed by prehypertensive men. J. Strength Cond. Res. 2016, 30, 1813–1824. [Google Scholar] [CrossRef] [PubMed]
- Brito, L.C.; Fecchio, R.Y.; Peçanha, T.; Andrade-Lima, A.; Halliwill, J.R.; Forjaz, C.L.M. Post-exercise Hypotension as a Clinical Tool: A “Single Brick” in The Wall. J. Am. Soc. Hypertens. 2018, 12, e59–e64. [Google Scholar] [CrossRef] [PubMed]
- Kenney, M.J.; Seals, D.R. Postexercise hypotension. Key features, mechanisms, and clinical significance. Hypertension 1993, 22, 653–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carpio-Rivera, E.; Moncada-Jimenez, J.; Salazar-Rojas, W.; Solera-Herrera, A. Acute Effects of Exercise on Blood Pressure: A Meta-Analytic Investigation. Arq. Bras. Cardiol. 2016, 106, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Romero, S.A.; Minson, C.T.; Halliwill, J.R. The cardiovascular system after exercise. J. Appl. Physiol. 2017, 122, 925–932. [Google Scholar] [CrossRef]
- Marocolo, M.; Willardson, J.M.; Marocolo, I.C.; Da Mota, G.; Simao, R.; Maior, A.S. Ischemic preconditioning and placebo intervention improves resistance exercise performance. J. Strength Cond. Res. 2016, 30, 1462–1469. [Google Scholar] [CrossRef]
- Wang, W.Z.; Stepheson, L.L.; Fang, X.H.; Khiabani, K.T.; Zamboni, W.A. Ischemic preconditioning-induced microvascular protection at a distance. J. Reconstr. Microsurg. 2004, 20, 175–181. [Google Scholar] [CrossRef]
- Kanoria, S.; Jalan, R.; Davies, N.A.; Seifalian, A.M.; Williams, R.; Davidson, B.R. Remote ischaemic preconditioning of the hind limb reduces experimental liver warm ischaemia-reperfusion injury. Br. J. Surg. 2006, 93, 762–768. [Google Scholar] [CrossRef]
- Zhou, K.; Yang, B.; Zhou, X.M.; Tan, C.M.; Zhao, Y.; Huang, C.; Liao, X.B.; Xiao, H.B. Effects of remote ischemic preconditioning on the flow pattern of the left anterior descending coronary artery in normal subjects. Int. J. Cardiol. 2007, 122, 250–251. [Google Scholar] [CrossRef]
- Ali, Z.A.; Callaghan, C.J.; Lim, E.; Ali, A.A.; Reza Nouraei, S.A.; Akthar, A.M.; Boyle, J.R.; Varty, K.; Kharbanda, R.K.; Dutka, D.P.; et al. Remote ischemic preconditioning reduces myocardial and renal injury after elective abdominal aortic aneurysm repair: A randomized controlled trial. Circulation 2007, 116, I-98–I-105. [Google Scholar] [CrossRef] [Green Version]
- Murry, C.E.; Jennings, R.B.; Reimer, K.A. Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation 1986, 74, 1124–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crisafulli, A.; Tangianu, F.; Tocco, F.; Concu, A.; Mameli, O.; Mulliri, G.; Caria, M.A. Ischemic preconditioning of the muscle improves maximal exercise performance but not maximal oxygen uptake in humans. J. Appl. Physiol. 2011, 111, 530–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Groot, P.C.; Thijssen, D.H.; Sanchez, M.; Ellenkamp, R.; Hopman, M.T. Ischemic preconditioning improves maximal performance in humans. Eur. J. Appl. Physiol. 2010, 108, 141–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caru, M.; Levesque, A.; Lalonde, F.; Curnier, D. An overview of ischemic preconditioning in exercise performance: A systematic review. J. Sport Health Sci. 2019, 8, 355–369. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.G.; Jones, H.; Gregson, W.; Atkinson, G.; Cable, N.T.; Thijssen, D.H. Effect of ischemic preconditioning on lactate accumulation and running performance. Med. Sci. Sports Exerc. 2012, 44, 2084–2089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, X.Z.; Cui, W.F.; Li, Y.; Su, C.; Shao, Y.J.; Liang, J.W.; Zhou, Z.T.; Zhang, C.J.; Zhang, J.N.; Zhang, X.Y.; et al. Chronic remote ischemic preconditioning-induced increase ofcirculating hSDF-1α level and its relation with reduction of blood pressure and protection endothelial function in hypertension. J. Hum. Hypertens. 2019, 33. [Google Scholar] [CrossRef] [PubMed]
- Madias, J.E. Effect of serial arm ischemic preconditioning sessions on the systemic blood pressure of a normotensive subject. Med. Hypotheses 2011, 76, 503–506. [Google Scholar] [CrossRef]
- Jones, H.; Hopkins, N.; Bailey, T.G.; Green, D.J.; Cable, N.T.; Thijssen, D.H. Seven-Day Remote Ischemic Preconditioning Improves Local and Systemic Endothelial Function and Microcirculation in Healthy Humans. Am. J. Hypertens. 2014, 27, 918–925. [Google Scholar] [CrossRef] [Green Version]
- Battipaglia, I.; Scalone, G.; Milo, M.; Di Franco, A.; Lanza, G.A.; Crea, F. Upper arm intermittent ischaemia reduces exercise-related increase of platelet reactivity in patients with obstructive coronary artery disease. Heart 2011, 97, 1298–1303. [Google Scholar] [CrossRef]
- Kimura, M.; Ueda, K.; Goto, C.; Jitsuiki, D.; Nishioka, K.; Umemura, T.; Noma, K.; Yoshizumi, M.; Chayama, K.; Higashi, Y. Repetition of ischemic preconditioning augments endothelium-dependent vasodilation in humans: Role of endothelium-derived nitric oxide and endothelial progenitor cells. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 1403–1410. [Google Scholar] [CrossRef]
- Enko, K.; Nakamura, K.; Yunoki, K.; Miyoshi, T.; Akagi, S.; Yoshidam, T.N.; Sangawa, M.; Nishii, N.; Nagase, S.; Toh, N.; et al. Intermittent arm ischemia induces vasodilatation of the contralateral upper limb. J. Physiol. Sci. 2011, 61, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Beck, T.W. The importance of a priori sample size estimation in strength and conditioning research. J. Strength Cond. Res. 2013, 27, 2323–2337. [Google Scholar] [CrossRef] [PubMed]
- Shephard, R.J. PAR-Q, Canadian Home Fitness Test and exercise screening alternatives. Sports Med. 1988, 5, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Marocolo, M.; Da Mota, G.R.; Pelegrini, V.; Coriolano, H.J.A. Are the Beneficial Effects of Ischemic Preconditioning on Performance Partly a Placebo Effect? Int. J. Sports Med. 2015, 36, 822–825. [Google Scholar] [CrossRef] [PubMed]
- Cukson, A.; Reinders, A.; Shabeeh, H.; Shennan, A.H. Validation of the Microlife BP 3BTO-A oscillometric blood pressure monitoring device according to a modified British Hypertension Society. Blood Press. Monit. 2002, 14, 12–17. [Google Scholar] [CrossRef]
- Pickering, T.G.; Hall, J.E.; Appel, L.J.; Falkner, B.E.; Graves, J.; Hill, M.N.; Jones, D.W.; Kurtz, T.; Sheps, S.G.; Roccella, E.J. Recommendations for blood pressure measurement in humans and experimental animals part 1: Blood pressure measurement in humans: A statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Circulation 2005, 111, 697–716. [Google Scholar] [CrossRef] [Green Version]
- Rhea, M.R. Determining the magnitude of treatment effects in strength training research through the use of the effect size. J. Strength Cond. Res. 2004, 18, 918–920. [Google Scholar] [CrossRef]
- Luca, M.C.; Liuni, A.; McLaughlin, K.; Gori, T.; Parker, J.D. Daily Ischemic Preconditioning Provides Sustained Protection From Ischemia–Reperfusion Induced Endothelial Dysfunction: A Human Study. J. Am. Heart Assoc. 2013, 22, e000075. [Google Scholar] [CrossRef] [Green Version]
- Billah, M.; Ridiandries, A.; Allahwala, U.; Mudaliar, H.; Dona, A.; Hunyor, S.; Khachigian, L.M.; Bhindi, R. Circulating mediators of remote ischemic preconditioning: Search for the missing link between non-lethal ischemia and cardioprotection. Oncotarget 2019, 10, 216–244. [Google Scholar] [CrossRef]
- Nagasawa, T.; Hirota, S.; Tachibana, K.; Takakura, N.; Nishikawa, S.I.; Kitamura, Y.; Yoshida, N.; Kikutani, H.; Kishimoto, T. Defects of B-cell lymphopoiesis and bonemarrow myelopoiesis in mice lacking the CXC chemokine PBSF/ SDF-1. Nature 1996, 382, 635–638. [Google Scholar] [CrossRef]
- Collins, M.A.; Cureton, K.J.; Hill, D.W.; Ray, C.A. Relation of plasma volume change to intensity of weight lifting. Med. Sci. Sports Exerc. 1989, 21, 178–185. [Google Scholar] [CrossRef] [PubMed]
IPC + RE | SHAM + RE | RE | |||||||
---|---|---|---|---|---|---|---|---|---|
ES | Δ% | p | ES | Δ% | p | ES | Δ% | p | |
SBP | |||||||||
Post-10 | −3.15 | −9.0 | 0.01 | −0.49 | −3.0 | 0.80 | −1.47 | −5.1 | 0.55 |
Post-20 | −3.74 | −10.7 | 0.02 | −0.02 | −0.1 | 1.00 | 1.15 | −4.0 | 0.04 |
Post-30 | −3.88 | −11.1 | 0.01 | −0.49 | −3.0 | 0.80 | 1.57 | −5.4 | 0.01 |
Post-40 | −3.74 | −10.7 | 0.02 | −0.35 | −2.1 | 0.96 | 1.71 | −5.9 | 0.01 |
Post-50 | −3.86 | −11.1 | 0.02 | −0.36 | −2.2 | 0.95 | −1.08 | −3.7 | 0.20 |
Post-60 DBP | −3.20 | −9.2 | 0.05 | −0.26 | −1.6 | 1.00 | −1.37 | −4.7 | 0.29 |
Post-10 | −0.77 | −6.6 | 0.01 | −0.89 | −7.0 | 0.42 | 0.07 | 0.6 | 1.00 |
Post-20 | −1.40 | −11.5 | 0.01 | −0.91 | −7.1 | 0.39 | 0.86 | −7.1 | 0.44 |
Post-30 | −1.57 | −13.4 | 0.02 | −0.58 | −1.7 | 0.87 | 0.68 | −5.6 | 0.73 |
Post-40 | −1.81 | −15.5 | 0.01 | −1.04 | −8.2 | 0.22 | −0.82 | −11.1 | 0.01 |
Post-50 | −2.05 | −17.5 | 0.01 | −0.97 | −7.6 | 0.31 | −0.94 | −11.5 | 0.01 |
Post-60 MBP | −2.23 | −19.6 | 0.01 | −1.10 | −8.6 | 0.17 | 0.90 | −7.4 | 0.17 |
Post-10 | −1.48 | −7.7 | 0.53 | 0.63 | −5.2 | 0.11 | −0.37 | −2.1 | 1.00 |
Post-20 | −2.14 | −11.2 | 0.01 | 0.74 | −4.0 | 0.01 | −1.24 | −5.6 | 0.02 |
Post-30 | −2.37 | −12.9 | 0.01 | 0.71 | −3.8 | 0.15 | −1.21 | −5.5 | 0.01 |
Post-40 | −2.55 | −13.3 | 0.01 | 1.01 | −5.4 | 0.01 | −1.90 | −8.7 | 0.02 |
Post-50 | −2.79 | −14.5 | 0.01 | 0.96 | −5.1 | 0.35 | −1.72 | −7.8 | 0.01 |
Post-60 | −2.83 | −14.8 | 0.01 | 1.01 | −5.4 | 0.09 | −1.35 | −6.2 | 0.01 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panza, P.; Novaes, J.; Telles, L.G.; Campos, Y.; Araújo, G.; Neto, N.; Raider, L.; Novaes, G.; Leitão, L.; Vianna, J. Ischemic Preconditioning Promotes Post-Exercise Hypotension in a Session of Resistance Exercise in Normotensive Trained Individuals. Int. J. Environ. Res. Public Health 2020, 17, 78. https://doi.org/10.3390/ijerph17010078
Panza P, Novaes J, Telles LG, Campos Y, Araújo G, Neto N, Raider L, Novaes G, Leitão L, Vianna J. Ischemic Preconditioning Promotes Post-Exercise Hypotension in a Session of Resistance Exercise in Normotensive Trained Individuals. International Journal of Environmental Research and Public Health. 2020; 17(1):78. https://doi.org/10.3390/ijerph17010078
Chicago/Turabian StylePanza, Patricia, Jefferson Novaes, Luiz Guilherme Telles, Yuri Campos, Gleisson Araújo, Nacipe Neto, Leandro Raider, Giovanni Novaes, Luis Leitão, and Jeferson Vianna. 2020. "Ischemic Preconditioning Promotes Post-Exercise Hypotension in a Session of Resistance Exercise in Normotensive Trained Individuals" International Journal of Environmental Research and Public Health 17, no. 1: 78. https://doi.org/10.3390/ijerph17010078
APA StylePanza, P., Novaes, J., Telles, L. G., Campos, Y., Araújo, G., Neto, N., Raider, L., Novaes, G., Leitão, L., & Vianna, J. (2020). Ischemic Preconditioning Promotes Post-Exercise Hypotension in a Session of Resistance Exercise in Normotensive Trained Individuals. International Journal of Environmental Research and Public Health, 17(1), 78. https://doi.org/10.3390/ijerph17010078