Spatio-Temporal Resource Mapping for Intensive Care Units at Regional Level for COVID-19 Emergency in Italy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Diffusion Model of COVID-19
3.2. Model at Regional Scale
3.3. Model Based ICUs Prediction
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ICU | Intensive Care Unit |
References
- Malta, M.; Rimoin, A.W.; Strathdee, S.A. The coronavirus 2019-nCoV epidemic: Is hindsight 20/20? EClinicalMedicine 2020, 20, 100289. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020, 395, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.T.; Leung, K.; Leung, G.M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet 2020, 395, 689–697. [Google Scholar] [CrossRef] [Green Version]
- Rezaeetalab, F.; Mozdourian, M.; Amini, M.; Javidarabshahi, Z.; Akbari, F. COVID-19: A New Virus as a Potential Rapidly Spreading in the Worldwide. J. Cardio-Thorac. Med. 2020, 8, 563–564. [Google Scholar]
- Chinazzi, M.; Davis, J.T.; Ajelli, M.; Gioannini, C.; Litvinova, M.; Merler, S.; Pastore y Piontti, A.; Mu, K.; Rossi, L.; Sun, K.; et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science 2020, 368, 365–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Day, M. Covid-19: Italy confirms 11 deaths as cases spread from north. BMJ 2020, 368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arabi, Y.M.; Fowler, R.; Hayden, F.G. Critical care management of adults with community-acquired severe respiratory viral infection. Intensive Care Med. 2020, 46, 315–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Guan, W.; Ni, Z.Y.; Hu, Y.; Liang, W.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.; et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Liew, M.F.; Siow, W.T.; MacLaren, G.; See, K.C. Preparing for COVID-19: Early experience from an intensive care unit in Singapore. Crit. Care 2020, 24, 1–3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remuzzi, A.; Remuzzi, G. COVID-19 and Italy: What next? Lancet 2020, 395, 1225–1228. [Google Scholar] [CrossRef]
- Keeling, M.J.; Rohani, P. Modeling Infectious Diseases in Humans and Animals; Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Yaesoubi, R.; Cohen, T. Generalized Markov models of infectious disease spread: A novel framework for developing dynamic health policies. Eur. J. Oper. Res. 2011, 215, 679–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; He, W.T.; Wang, L.; Lai, A.; Ji, X.; Zhai, X.; Li, G.; Suchard, M.A.; Tian, J.; Zhou, J.; et al. COVID-19: Epidemiology, Evolution, and Cross-Disciplinary Perspectives. Trends Mol. Med. 2020, 26, 843–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coronavirus Pandemic. Available online: https://www.ft.com/coronavirus-latest (accessed on 21 April 2020).
Region | Beds | Region | Beds |
---|---|---|---|
Piemonte | 320 | Marche | 108 |
Valle D’Aosta | 15 | Lazio | 590 |
Lombardia | 1067 | Abruzzo | 73 |
P.A. Bolzano | 48 | Molise | 30 |
P.A. Trento | 23 | Campania | 350 |
Veneto | 498 | Puglia | 210 |
Friuli Venezia Giulia | 80 | Basilicata | 49 |
Liguria | 70 | Calabria | 110 |
Emilia Romagna | 539 | Sicilia | 346 |
Toscana | 450 | Sardegna | 150 |
Umbria | 30 | Italy | 5156 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzzi, P.H.; Tradigo, G.; Veltri, P. Spatio-Temporal Resource Mapping for Intensive Care Units at Regional Level for COVID-19 Emergency in Italy. Int. J. Environ. Res. Public Health 2020, 17, 3344. https://doi.org/10.3390/ijerph17103344
Guzzi PH, Tradigo G, Veltri P. Spatio-Temporal Resource Mapping for Intensive Care Units at Regional Level for COVID-19 Emergency in Italy. International Journal of Environmental Research and Public Health. 2020; 17(10):3344. https://doi.org/10.3390/ijerph17103344
Chicago/Turabian StyleGuzzi, Pietro Hiram, Giuseppe Tradigo, and Pierangelo Veltri. 2020. "Spatio-Temporal Resource Mapping for Intensive Care Units at Regional Level for COVID-19 Emergency in Italy" International Journal of Environmental Research and Public Health 17, no. 10: 3344. https://doi.org/10.3390/ijerph17103344
APA StyleGuzzi, P. H., Tradigo, G., & Veltri, P. (2020). Spatio-Temporal Resource Mapping for Intensive Care Units at Regional Level for COVID-19 Emergency in Italy. International Journal of Environmental Research and Public Health, 17(10), 3344. https://doi.org/10.3390/ijerph17103344