Robotic Technology in Pediatric Neurorehabilitation. A Pilot Study of Human Factors in an Italian Pediatric Hospital
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design Setting
2.2. Traditional and Robotic Technology
2.3. Enrollment of Study Populations Inclusion and Exclusion Criteria
- Patients
- Children aged over 4 and under 16 years;
- Children affected by a neurological pathology that required neurorehabilitation therapy of the lower limbs;
- Hospitalized for a neurorehabilitation therapy cycle with the use of the Lokomat robotic technology, exclusive or mixed with traditional therapy, or an exclusively traditional therapy;
- Presenting cognitive medium/low-degree deficits;
- Parents
- Father and mother of each child selected for the study;
- Physiotherapists
- Trained in the use of the technology;
- Usually engaged in the therapy that uses the technology;
- Usually engaged in the traditional therapy.
2.4. Study Variables
2.5. Questionnaires
2.6. Statistical Analysis
2.7. Ethical Considerations. Informed Consent
3. Results
4. Discussion
5. Conclusions
Availability of data and material
Author Contributions
Funding
Conflicts of Interest
References
- Fricke, S.S.; Bayón, C.; der Kooij, H.V.; van Asseldonk, E.H. Automatic versus manual tuning of robot-assisted gait training in people with neurological disorders. J. Neuroeng. Rehabil. 2020, 17, 9. [Google Scholar] [CrossRef] [PubMed]
- Tieri, G.; Morone, G.; Paolucci, S.; Iosa, M. Virtual reality in cognitive and motor rehabilitation: Facts, fiction and fallacies. Expert Rev. Med. Devices 2018, 15, 107–117. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Innovative Technologies that Address Global Health Concerns: Outcome of the Call. 2010. Available online: https://apps.who.int/iris/bitstream/handle/10665/70522/WHO_HSS_EHT_DIM_10.12_eng.pdf;jsessionid=4F9F9D356EC33F514F6FBDA35BF0DCA5?sequence=1 (accessed on 16 February 2020).
- World Health Organization. Health Technology Assessment of Medical Devices. WHO Medical Device Technical Series. 2011. Available online: https://apps.who.int/iris/bitstream/handle/10665/44564/9789241501361_eng.pdf?sequence=1 (accessed on 16 February 2020).
- Sheridan, T.B. Human–Robot Interaction: Status and Challenges. Hum. Factors 2016, 58, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Jakob, I.; Kollreider, A.; Germanotta, M.; Benetti, F.; Cruciani, A.; Padua, L.; Aprile, I. Robotic and Sensor Technology for Upper Limb Rehabilitation. PM&R 2018, 10 (Suppl. 2), S189–S197. [Google Scholar] [CrossRef] [Green Version]
- Michmizos, K.P.; Krebs, H.I. Pediatric robotic rehabilitation: Current knowledge and future trends in treating children with sensorimotor impairments. NeuroRehabilitation 2017, 41, 69–76. [Google Scholar] [CrossRef]
- Fasoli, S.E.; Ladenheim, B.; Mast, J.; Krebs, H.I. New horizons for robot-assisted therapy in pediatrics. Am. J. Phys. Med. Rehabil. 2012, 91 (Suppl. 3), S280–S289. [Google Scholar] [CrossRef]
- Allen, A.; Gillen, E.; Rixon, L. The Effectiveness of Integrated Care Pathways for Adults and Children in Health Care Settings: A Systematic Review. JBI Libr. Syst. Rev. JBR000171 2009, 7, 80–129. [Google Scholar]
- Caldwell, K.l.; Vicidomini, D.; Wells, R.; Wolever, R.Q. Engaging Patients in their Health Care: Lessons from a Qualitative Study on the Processes Health Coaches Use to Support an Active Learning Paradigm. Glob. Adv. Health Med. 2020, 9, 2164956120904662. [Google Scholar] [CrossRef] [Green Version]
- King, G.; Chiarello, L.A.; Ideishi, R.; Ziviani, J.; Phoenix, M.; McLarnon, M.J.W.; Pinto, M.; Thompson, L.; Smart, E. The complexities and synergies of engagement: An ethnographic study of engagement in outpatient pediatric rehabilitation sessions. Disabil. Rehabil. 2019. [Google Scholar] [CrossRef]
- Butchart, J.; Harrison, R.; Ritchie, J.; Martí, F.; McCarthy, C.; Knight, S.; Scheinberg, A. Child and parent perceptions of acceptability and therapeutic value of a socially assistive robot used during pediatric rehabilitation. Disabil. Rehabil. 2019. [Google Scholar] [CrossRef]
- Ashcraft, L.E.; Asato, M.; Houtrow, A.J.; Kavalieratos, D.; Miller, E.; Ray, K.N. Parent Empowerment in Pediatric Healthcare Settings: A Systematic Review of Observational Studies. Patient 2019, 12, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, S.; Lam, A. Exploring types of play in an adapted robotics program for children with disabilities. Disabil. Rehabil. Assist. Technol. 2018, 13, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Bulea, T.C.; Lerner, Z.F.; Gravunder, A.J.; Damiano, D.L. Exergaming with a pediatric exoskeleton: Facilitating rehabilitation and research in children with cerebral palsy. In Proceedings of the 2017 International Conference on Rehabilitation Robotics, London, UK, 17–20 July 2017; pp. 1087–1093. [Google Scholar] [CrossRef]
- Kleim, J.A.; Jones, T.A. Principles of Experience-Dependent Neural Plasticity: Implications for Rehabilitation after Brain Damage. J. Speech Lang. Hear. Res. 2008, 51, 225–239. [Google Scholar] [CrossRef]
- Bayon, C.; Raya, R.; Lerma Lara, S.; Ramirez, O.; Serrano, I.; Rocon, E. Robotic Therapies for Children with Cerebral Palsy: A Systematic Review. Transl. Biomed. 2016, 7, 44. [Google Scholar] [CrossRef] [Green Version]
- Labruyère, R.; Gerber, C.N.; Birrer-Brütsch, K.; Meyer-Heim, A.; van Hedel, H.J. Requirements for and impact of a serious game for neuro-pediatric robot-assisted gait training. Res. Dev. Disabil. 2013, 34, 3906–3915. [Google Scholar] [CrossRef] [PubMed]
- Brütsch, K.; Schuler, T.; Koenig, A.; Zimmerli, L.; Koeneke, S.M.; Lünenburger, L.; Riener, R.; Jäncke, L.; Meyer-Heim, A. Influence of virtual reality soccer game on walking performance in robotic assisted gait training for children. J. Neuroeng. Rehabil. 2010, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- Yoo, J.W.; Lee, D.R.; Sim, Y.J.; You, J.H.; Kim, C.J. Effects of innovative virtual reality game and EMG biofeedback on neuromotor control in cerebral palsy. Biomed. Mater. Eng. 2014, 24, 3613–3618. [Google Scholar] [CrossRef] [Green Version]
- Colombo, R.; Pisano, F.; Mazzone, A.; Delconte, C.; Micera, S.; Carrozza, M.C.; Dario, P.; Minuco, G. Design strategies to improve patient motivation during robot-aided rehabilitation. J. Neuroeng. Rehabil. 2007, 4, 3. [Google Scholar] [CrossRef] [Green Version]
- Encarnacao, P.; Leite, T.; Nunes, C.; Nunes da Ponte, M.; Adams, K.; Cook, A.; Caiado, A.; Pereira, J.; Piedade, G.; Ribeiro, M. Using assistive robots to promote inclusive education. Disabil. Rehabil. Assist. Technol. 2017, 12, 352–372. [Google Scholar] [CrossRef] [Green Version]
- Encarnacao, P.; Alvarez, L.; Rios-Rincon, A.M. Using virtual robot-mediated play activities to assess cognitive skills. Disabil. Rehabil. Assist. Technol. 2014, 9, 231–241. [Google Scholar] [CrossRef]
- Kwakkel, G.; Kollen, B.J.; Krebs, H.I. Effects of robot-assisted therapy on upper limb recovery after stroke: A systematic review. Neurorehabil. Neural Repair 2008, 22, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Novak, I.; McIntyre, S.; Morgan, C.; Campbell, L.; Dark, L.; Morton, N.; Stumbles, E.; Wilson, S.A.; Goldsmith, S. A systematic review of intervention for children with cerebral palsy: State of the evidence. Dev. Med. Child Neurol. 2013, 55, 885–910. [Google Scholar] [CrossRef] [PubMed]
- Heinemann, A.W.; Jayaraman, A.; Mummidisetty, C.K.; Spraggins, J.; Pinto, D.; Charlifue, S.; Tefertiller, C.; Taylor, H.B.; Chang, S.H.; Stampas, A.; et al. Experience of Robotic Exoskeleton Use at Four Spinal Cord Injury Model Systems Centers. J. Neurol. Phys. Ther. 2018, 42, 256–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nolan, K.J.; Karunakaran, K.K.; Ehrenberg, N.; Kesten, A.G. Robotic Exoskeleton Gait Training for Inpatient Rehabilitation in a Young Adult with Traumatic Brain Injury. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Honolulu, Hawaii, 17–21 July 2018; pp. 2809–2812. [Google Scholar] [CrossRef]
- Aurich-Schuler, T.; Warken, B.; Graser, J.V.; Ulrich, T.; Borggraefe, I.; Heinen, F.; Meyer-Heim, A.; van Hedel, H.J.; Schroeder, A.S. Practical Recommendations for Robot-Assisted Treadmill Therapy (Lokomat) in Children with Cerebral Palsy: Indications, Goal Setting, and Clinical Implementation within the WHO-ICF Framework. Neuropediatrics 2015, 46, 248–260. [Google Scholar] [CrossRef] [PubMed]
- Craig, F.; Savino, R.; Scoditti, S.; Lucarelli, E.; Fanizza, I.; De Rinaldis, M.; Gennaro, L.; Simone, M.; Russo, L.; Trabacca, A. Coping, stress and negative psychological outcomes in parents of children admitted to a pediatric neurorehabilitation care unit. Eur. J. Phys. Rehabil. Med. 2019, 55, 772–782. [Google Scholar] [CrossRef] [PubMed]
- De Falco, F.; Camisa, V.; Zaffina, S.; Raponi, M.; Dalmasso, G.; Rongoni, S. L’ergonomia cognitiva: I nuovi rischi da valutare nell’interfaccia uomo-macchina. Ambiente Sicur. Lav. 2018, 8, 64–73. [Google Scholar]
- Gopher, D.; Donchin, E. Workload: An examination of the concept. In Handbook of Perception and Human Performance: Volume II; Boff, K.R., Kaufman, L., Thomas, J., Eds.; Wiley: New York, NY, USA, 1986; pp. 41.1–41.49. [Google Scholar]
- O’Donnell, R.D.; Eggemeier, F.T. Workload assessment methodology. In Handbook of Perception and Human Performance; Boff, K., Kaufman, L., Thomas, J., Eds.; Cognitive Processes and Performance; Wiley: New York, NY, USA, 1986; Volume 2, pp. 42.1–42.49. [Google Scholar]
- Hancock, P.A.; Chignell, M.H. 8. Adaptive Control in Human-Machine Systems. Adv. Psychol. 1987, 47, 305–345. [Google Scholar]
- Xie, B.; Salvendy, G. Review and reappraisal of modelling and predicting mental workload in single-and multi-task environments. Work Stress 2000, 14, 74–99. [Google Scholar] [CrossRef]
- Veltman, J.A.; Gaillard, A.W.K. Pilot Workload Evaluated with Subjective and Physiological Measures. In Aging and Human Factors; Brookhuis, K., Weikert, C., Moraal, J., de Waard, D., Eds.; University of Groningen: Groningen, The Netherlands, 1996; pp. 107–128. [Google Scholar]
- Chiorri, C.; Garbarino, S.; Bracco, F.; Magnavita, N. Personality Traits Moderate the Effect of Workload Sources on Perceived Workload in Flying Column Police Officers. Front. Psychol. 2015, 6, 1835. [Google Scholar] [CrossRef] [Green Version]
- Fardoun, H.M.; Mashat, A.S.; Lange, B. New methodologies for patients rehabilitation. Methods Inf. Med. 2015, 54, 111–113. [Google Scholar] [CrossRef]
- Hung, C.S.; Hsieh, Y.W.; Wu, C.Y.; Chen, Y.J.; Lin, K.C.; Chen, C.L.; Yao, K.G.; Liu, C.T.; Horng, Y.S. Hybrid Rehabilitation Therapies on Upper-Limb Function and Goal Attainment in Chronic Stroke. OTJR Thorofare N. J. 2019, 39, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Resquín, F.; Cuesta Gómez, A.; Gonzalez-Vargas, J.; Brunetti, F.; Torricelli, D.; Molina Rueda, F.; Cano de la Cuerda, R.; Miangolarra, J.C.; Pons, J.L. Hybrid robotic systems for upper limb rehabilitation after stroke: A review. Med. Eng. Phys. 2016, 38, 1279–1288. [Google Scholar] [CrossRef] [PubMed]
- Fundarò, C.; Giardini, A.; Maestri, R.; Traversoni, S.; Bartolo, M.; Casale, R. Motor and psychosocial impact of robot-assisted gait training in a real-world rehabilitation setting: A pilot study. PLoS ONE 2018, 13, e0191894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beveridge, B.; Feltracco, D.; Struyf, J.; Strauss, E.; Dang, S.; Phelan, S.; Wright, F.V.; Gibson, B.E. “You gotta try it all”: Parents’ Experiences with Robotic Gait Training for their Children with Cerebral Palsy. Phys. Occup. Ther. Pediatrics 2015, 35, 327–341. [Google Scholar] [CrossRef] [PubMed]
- Phelan, S.K.; Gibson, B.E.; Wright, F.V. What is it like to walk with the help of a robot? Children’s perspectives on robotic gait training technology. Disabil. Rehabil. 2015, 37, 2272–2281. [Google Scholar] [CrossRef] [PubMed]
- Wiart, L.; Rosychuk, R.J.; Wright, F.V. Evaluation of the effectiveness of robotic gait training and gait-focused physical therapy programs for children and youth with cerebral palsy: A mixed methods RCT. BMC Neurol. 2016, 16, 86. [Google Scholar] [CrossRef] [Green Version]
- LeRoy, K.; Boyd, K.; De Asis, K.; Lee, R.W.T.; Martin, R.; Teachman, G.; Gibson, E. Balancing Hope and Realism in Family-Centered Care: Physical Therapists’ Dilemmas in Negotiating Walking Goals with Parents of Children with Cerebral Palsy. Phys. Occup. Ther. Pediatrics 2014, 35, 253–264. [Google Scholar] [CrossRef]
- Miguel Cruz, A.; Rios Rincon, A.M.; Rodriguez Duenas, W.R.; Quiroga Torres, D.A.; Bohorquez-Heredia, A.F. What does the literature say about using robots on children with disabilities? Disability and rehabilitation. Assist. Technol. 2017, 12, 429–440. [Google Scholar]
- Moscato, U.; Pattavina, F.; Zaffina, S.; Laurini, C.; Camisa, V.; Continolo, N.; Sammartino, A.; Poscia, A.; Colaiacomo, G.; Wachocka, M.; et al. Protossido d’azoto a basso tenore. Risk assessment e risk management. G. Ital. Med. Lav. Erg. 2016, 38, 232–234. [Google Scholar]
- Ciofi degli Atti, M.L.; Gattinara, G.C.; Ciliento, G.; Lancella, L.; Russo, C.; Coltella, L.; Vinci, M.R.; Zaffina, S.; Raponi, M. Prolonged in-hospital exposure to an infant with active pulmonary tuberculosis. Epidemiol. Infect. 2011, 139, 139–142. [Google Scholar] [CrossRef]
- Bruni, M.F.; Melegari, C.; De Cola, M.C.; Bramanti, A.; Bramanti, P.; Calabrò, R.S. What does best evidence tell us about robotic gait rehabilitation in stroke patients: A systematic review and meta-analysis. J. Clin. Neurosci. 2018, 48, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Nam, K.Y.; Kim, H.J.; Kwon, B.S.; Park, J.W.; Lee, H.J.; Yoo, A. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: A systematic review. J. Neuroeng. Rehabil. 2017, 14, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Hedel, H.J.A.; Severini, G.; Scarton, A.; O’Brien, A.; Reed, T.; Gaebler-Spira, D.; Egan, T.; Meyer-Heim, A.; Graser, J.; Chua, K.; et al. ARTIC network. Advanced Robotic Therapy Integrated Centers (ARTIC): An international collaboration facilitating the application of rehabilitation technologies. J. Neuroeng. Rehabil. 2018, 15, 30. [Google Scholar] [CrossRef] [PubMed]
- Esquenazi, A.; Lee, S.; Wikoff, A.; Packel, A.; Toczylowski, T.; Feeley, J. A Comparison of Locomotor Therapy Interventions: Partial-Body Weight-Supported Treadmill, Lokomat, and G-EO Training in People with Traumatic Brain Injury. PM&R 2017, 9, 839–846. [Google Scholar] [CrossRef]
- Hilderley, A.J.; Fehlings, D.; Lee, G.W.; Wright, F.V. Comparison of a robotic-assisted gait training program with a program of functional gait training for children with cerebral palsy: Design and methods of a two group randomized controlled cross-over trial. Springerplus 2016, 5, 1886. [Google Scholar] [CrossRef] [Green Version]
- Van Kammen, K.; Boonstra, A.; Reinders-Messelink, H.; den Otter, R. The combined effects of body weight support and gait speed on gait related muscle activity: A comparison between walking in the Lokomat exoskeleton and regular treadmill walking. PLoS ONE 2014, 9, e107323. [Google Scholar] [CrossRef]
- Hart, S.G.; Staveland, L.E. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. Adv. Psychol. 1988, 52, 139–183. [Google Scholar]
- Bracco, F.; Chiorri, C. Validazione italiana del NASA-TLX su un campione di motociclisti [Italian validation of the NASA-TLX in a sample of bikers]. In Proceedings of the National Congress of the Italian Psychological Association, Gauteng, South Africa, 24–27 October 2006; p. 47. [Google Scholar]
- NASA Ames Research Center. Task Load Index (NASA-TLX). Available online: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20000021488.pdf (accessed on 27 March 2020).
- Warr, P.; Cook, J.; Wall, T. Scales for the measurement of some work attitudes and aspects of psychological well-being. J. Occup. Psychol. 1979, 52, 129–148. [Google Scholar] [CrossRef]
- Magnavita, N.; Fileni, A.; Magnavita, L.; Mammi, F.; Roccia, K.; De Matteis, B.; Colozza, V.; Vitale, M.V. Soddisfazione da lavoro. Uso della Job Satisfaction Scale. Job satisfaction. Use of the Job Satisfaction Scale (JSS). G. Ital. Med. Lav. Ergon. 2007, 29, 655–657. [Google Scholar]
- Mapi Research Trust. Varni, J.W. Scaling and Scoring of the Pediatric Quality of Life Inventory™ PedsQL T3M. Version 17; Mapi Research Trust: Lyon, France, 2017. [Google Scholar]
- Varni, J.W.; Seid, M.; Kurtin, P.S. PedsQL 4.0: Reliability and validity of the Pediatric Quality of Life Inventory version 4.0 generic core scales in healthy and patient populations. Med. Care 2001, 39, 800–812. [Google Scholar] [CrossRef]
- Trapanotto, M.; Giorgino, D.; Zuliani, F.; Benini, F.; Varni, J.W. The Italian version of the PedsQL™ in children with rheumatic diseases. Clin. Exp. Rheumatol. 2009, 27, 373–380. [Google Scholar] [PubMed]
- Reichheld, F.F. One Number You Need to Grow. In Harvard Business Review; Harvard Business School Publishing: Brighton, MA, USA; Boston, MA, USA, 2003. [Google Scholar]
- Gisondi, P.; De Angelis, G.; Venturelli, G.; Girolomoni, G. Public perception of dermatology and dermatologists in Italy: Results from a population-based national survey. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 2119–2123. [Google Scholar] [CrossRef] [PubMed]
- Nast, I.; Tal, A.; Schmid, S.; Schoeb, V.; Rau, B.; Barbero, M.; Kool, J. Physiotherapy Research Priorities in Switzerland: Views of the Various Stakeholders. Physiother. Res. Int. 2016, 21, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Eliasson, K.; Lind, C.M.; Nyman, T. Factors influencing ergonomists’ use of observation-based risk-assessment tools. Work 2019, 64, 93–106. [Google Scholar] [CrossRef] [Green Version]
- Czupryna, K.; Nowotny-Czupryna, O.; Nowotny, J. Ergonomic determinants of back pain in physiotherapists involved in paediatric neurorehabilitation. Ortop. Traumatol. Rehabil. 2014, 16, 407–418. [Google Scholar] [CrossRef]
- Jensen, G.M.; Gwyer, J.; Shepard, K.F. Expert practice in physical therapy. Phys. Ther. 2000, 80, 28–43. [Google Scholar] [CrossRef]
- Sørvoll, M.; Obstfelder, A.; Normann, B.; Øberg, G.K. How physiotherapists supervise to enhance practical skills in dedicated aides of toddlers with cerebral palsy: A qualitative observational study. Physiother. Theory Prac. 2019, 35, 427–436. [Google Scholar] [CrossRef]
- Eicher, C.; Haesner, M.; Spranger, M.; Kuzmicheva, O.; Gräser, A.; Steinhagen-Thiessen, E. Usability and acceptability by a younger and older user group regarding a mobile robot-supported gait rehabilitation system. Assist. Technol. 2019, 31, 25–33. [Google Scholar] [CrossRef]
- Swinnen, E.; Lefeber, N.; Willaert, W.; De Neef, F.; Bruyndonckx, L.; Spooren, A.; Kerckhofs, E. Motivation, expectations, and usability of a driven gait orthosis in stroke patients and their therapists. Top. Stroke Rehabil. 2017, 24, 299–308. [Google Scholar] [CrossRef]
- Munera, M.; Marroquin, A.; Jimenez, L.; Lara, J.S.; Gomez, C.; Rodriguez, S.; Rodriguez, L.E.; Cifuentes, C.A. Lokomat therapy in Colombia: Current state and cognitive aspects. In Proceedings of the 2017 International Conference on Rehabilitation Robotics, London, UK, 17–20 July 2017; pp. 394–399. [Google Scholar] [CrossRef]
Patients | Lokomat | Mixed | Traditional | ||
---|---|---|---|---|---|
Number | 46 | 15 | 15 | 16 | |
Age | 9.65 (DS ± 3.80) | 10.20 (DS ± 4.30) | 9.20 (DS ± 3.63) | 9.56 (DS ± 3.54) | |
Sex | Male | 24 (52.2%) | 9 (60%) | 8 (53.3%) | 7 (43.7) |
Female | 22 (47.8%) | 6 (40%) | 7 (46.7%) | 9 (56.3%) | |
Diagnosis | Double hemiparesis | 14 (30.4%) | 6 (40%) | 7 (46.7%) | |
Diplegia | 9 (19.6%) | 4 (26.7%) | 3 (20%) | 2 (12.5%) | |
Inf. cerebral palsy | 4 (8.7%) | 1 (6.6%) | 2 (13.3%) | 2 (12.5%) | |
Hemiparesis | 4 (8.7%) | - | 1 (6.7%) | 2 (12.5%) | |
Other | 15 (32.6%) | 4 (26.7%) | 2 (13.3%) | 10 (62.5%) | |
Cognitive Level | Normal | 23 (50%) | 7 (46.7%) | 10 (66.6%) | 12 (75%) |
Slight impairment | 10 (21.7%) | 4 (26.7%) | 3 (20%) | 3 (18.7%) | |
Medium impairment | 5 (10.9%) | 3 (20%) | 1 (6.7%) | 1 (6.3%) | |
Medium-severe impairment | 2 (4.3%) | 1 (6.6%) | 1 (6.7%) | ||
Average Length of Treatment (days) | 16.8 (DS ± 8.23) | 16.6 (DS ± 8.10) | 19.9 (DS ± 8.27) | 14.1 (DS ± 7.84) |
Variable | Description | Type of Measure |
---|---|---|
Physiotherapists | ||
Gender | Male/Female | Categorical |
Age | Years | Continuous |
Length of service | Years | Continuous |
Experience in the use of the technology | Years | Continuous |
Patients | ||
Gender | Male/Female | Categorical |
Age | Years | Continuous |
Pathology | Diplegia; Hemiparesis; Cerebral palsy; Others | Categorical |
Cognitive level | None or Low; Medium; Severe Impairment | Categorical |
Parents | ||
Gender | Male/Female | Categorical |
Age | Years | Continuous |
Education | <8; 8–13; >13 years of schooling | Categorical |
Employment | Housewife of housemaker; white collar; blue collar | Categorical |
Marital status | Single; Paired | Categorical |
Children | Number | Discrete |
Category | Questionnaire | Measure | Time of Administration/Schedule |
---|---|---|---|
Patients | PedsQL | Quality of life | Pre and post the cycle of therapy |
NPS | Satisfaction | At the end of the cycle of therapy | |
Parents | Ad-hoc | Expectations | At the beginning of the cycle of therapy |
NPS | Satisfaction | At the end of the cycle of therapy | |
Physiotherapists | NASA-TLX | Workload | At the end of each therapy |
NPS | Satisfaction | At the end of the cycle of therapy |
Subscale | Lokomat | Traditional | p-Value * | ||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
Psychological Demands | 23.87 | ±7.06 | 21.05 | ±8.07 | 0.062 |
Physical Demands | 14.21 | ±9.06 | 14.58 | ±9.87 | 0.098 |
Temporal Demands | 0.90 | ±1.71 | 0.99 | ±1.57 | 0.711 |
Effort | 20.85 | ±6.73 | 18.18 | ±6.74 | 0.047 |
Frustration | 9.85 | ±9.84 | 2.34 | ±2.91 | <0.001 |
Total Score | 83.56 | ±9.32 | 77.17 | ±8.76 | <0.001 |
Score | Lokomat | Mixed | Traditional | p-Value ** | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | p-Value * | Mean | SD | p-Value * | Mean | SD | p-Value * | |||
Psychological Health Summary Score (Emotional, Social and School Functioning Scale Score) | PRE-TEST | 73.7 | ±13.31 | 0.004 | 71.0 | ±15.55 | 0.05 | 72.5 | ±13.81 | 0.04 | 0.62 |
POST-TEST | 78.1 | ±12.38 | 75.6 | ±11.43 | 75.4 | ±14.55 | |||||
Physical Health Summary Score | PRE-TEST | 38.8 | ±14.65 | 0.01 | 40.6 | ±13.16 | 0.005 | 43.4 | ±21.28 | 0.01 | 0.35 |
POST-TEST | 50.2 | ±15.86 | 49.6 | ±15.47 | 51.3 | ±17.31 | |||||
Total Score | PRE-TEST | 60.9 | ±11.40 | 0.04 | 60.4 | ±11.73 | 0.08 | 62.2 | ±12.13 | 0.37 | 0.55 |
POST-TEST | 66.10 | ±13.48 | 65.0 | ±9.96 | 62.9 | ±13.05 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gilardi, F.; De Falco, F.; Casasanta, D.; Andellini, M.; Gazzellini, S.; Petrarca, M.; Morocutti, A.; Lettori, D.; Ritrovato, M.; Castelli, E.; et al. Robotic Technology in Pediatric Neurorehabilitation. A Pilot Study of Human Factors in an Italian Pediatric Hospital. Int. J. Environ. Res. Public Health 2020, 17, 3503. https://doi.org/10.3390/ijerph17103503
Gilardi F, De Falco F, Casasanta D, Andellini M, Gazzellini S, Petrarca M, Morocutti A, Lettori D, Ritrovato M, Castelli E, et al. Robotic Technology in Pediatric Neurorehabilitation. A Pilot Study of Human Factors in an Italian Pediatric Hospital. International Journal of Environmental Research and Public Health. 2020; 17(10):3503. https://doi.org/10.3390/ijerph17103503
Chicago/Turabian StyleGilardi, Francesco, Federica De Falco, Daniela Casasanta, Martina Andellini, Simone Gazzellini, Maurizio Petrarca, Andreina Morocutti, Donatella Lettori, Matteo Ritrovato, Enrico Castelli, and et al. 2020. "Robotic Technology in Pediatric Neurorehabilitation. A Pilot Study of Human Factors in an Italian Pediatric Hospital" International Journal of Environmental Research and Public Health 17, no. 10: 3503. https://doi.org/10.3390/ijerph17103503
APA StyleGilardi, F., De Falco, F., Casasanta, D., Andellini, M., Gazzellini, S., Petrarca, M., Morocutti, A., Lettori, D., Ritrovato, M., Castelli, E., Raponi, M., Magnavita, N., & Zaffina, S. (2020). Robotic Technology in Pediatric Neurorehabilitation. A Pilot Study of Human Factors in an Italian Pediatric Hospital. International Journal of Environmental Research and Public Health, 17(10), 3503. https://doi.org/10.3390/ijerph17103503