Post-Exercise Recovery of Ultra-Short-Term Heart Rate Variability after Yo-Yo Intermittent Recovery Test and Repeated Sprint Ability Test
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Experimental Procedure
2.3. Participants
2.4. Heart Rate Variability
2.5. Yo-Yo Intermittent Recovery Test Level 1
2.6. Repeated Sprint Ability Test
2.7. Statistical Analyses
3. Results
3.1. Exercise Performance
3.2. Heart Rate Variability
4. Discussion
4.1. Time-Domain Analysis
4.2. Frequency-Domain Analysis
4.3. Correlation Coefficient
4.4. Limitation
4.5. Practical Implications
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, Y.-S.; Liao, C.-J.; Lu, W.-A.; Kuo, C.-D. Sympathetic enhancement in futsal players but not in football players after repeated sprint ability test. BMJ. Open Sport. Exer. Med. 2015, 1, e000049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, W.-A.; Chen, Y.S.; Kuo, C.D. Increased first and second pulse harmonics in Tai Chi Chuan practitioners. BMC Complement. Altern. Med. 2016, 16, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, M.; Garg, K. The effect of heart rate variability biofeedback on performance psychology of basketball players. Appl. Psychophysiol. Biofeedback. 2012, 37, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Karinen, H.; Uusitalo, A.; Vähä-Ypyä, H.; Kähönen, M.; Peltonen, J.; Stein, P.; Viik, J.; Tikkanen, H. Heart rate variability changes at 2400 m altitude predicts acute mountain sickness on further ascent at 3000–4300 m altitudes. Front. Physiol. 2012, 3, 336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flatt, A.A.; Howells, D. Effects of varying training load on heart rate variability and running performance among an Olympic rugby sevens team. J. Sci. Med. Sport. 2019, 22, 222–226. [Google Scholar] [CrossRef]
- Flatt, A.A.; Howells, D.; Williams, S. Effects of consecutive domestic and international tournaments on heart rate variability in an elite rugby sevens team. J. Sci. Med. Sport. 2019, 22, 616–621. [Google Scholar] [CrossRef]
- Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef] [Green Version]
- Michael, S.; Jay, O.; Graham, K.S.; Davis, G.M. Higher exercise intensity delays postexercise recovery of impedance-derived cardiac sympathetic activity. Appl. Physiol. Nutr. Metab. 2017, 42, 834–840. [Google Scholar] [CrossRef]
- Michael, S.; Jay, O.; Halaki, M.; Graham, K.; Davis, G.M. Submaximal exercise intensity modulates acute post-exercise heart rate variability. Eur. J. Appl. Physiol. 2016, 116, 697–706. [Google Scholar] [CrossRef]
- Abad, C.C.C.; Pereira, L.A.; Zanetti, V.; Kobal, R.; Loturco, I.; Nakamura, F.Y. Short-term cardiac autonomic recovery after a repeated sprint test in young soccer players. Sports 2019, 7, 102. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, F.; Soares-Caldeira, L.; Laursen, P.; Polito, M.; Leme, L.; Buchheit, M. Cardiac autonomic responses to repeated shuttle sprints. Int. J. Sports Med. 2009, 30, 808–813. [Google Scholar] [CrossRef] [PubMed]
- Esco, M.R.; Flatt, A.A. Ultra-short-term heart rate variability indexes at rest and post-exercise in athletes: Evaluating the agreement with accepted recommendations. J. Sport. Sci. Med. 2014, 13, 535–541. [Google Scholar]
- Esco, M.R.; Flatt, A.A.; Nakamura, F.Y. Agreement between a smartphone pulse sensor application and electrocardiography for determining lnRMSSD. J. Str. Cond. Res. 2017, 31, 380–385. [Google Scholar] [CrossRef]
- Flatt, A.A.; Esco, M.R. Validity of the ithlete™ smart phone application for determining ultra-short-term heart rate variability. J. Hum. Kin. 2013, 39, 85–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, F.Y.; Flatt, A.A.; Pereira, L.A.; Ramirez-Campillo, R.; Loturco, I.; Esco, M.R. Ultra-short-term heart rate variability is sensitive to training effects in team sports players. J. Sport. Sci. Med. 2015, 14, 602–605. [Google Scholar]
- Nakamura, F.Y.; Pereira, L.A.; Cal Abad, C.C.; Cruz, I.F.; Flatt, A.A.; Esco, M.R.; Loturco, I. Adequacy of the ultra-short-term HRV to assess adaptive processes in youth female basketball players. J. Hum. Kinet. 2017, 56, 73–80. [Google Scholar] [CrossRef]
- Pereira, L.; Flatt, A.; Ramirez-Campillo, R.; Loturco, I.; Nakamura, F. Assessing shortened field-based heart rate variability data acquisition in team-sport athletes. Int. J. Sport. Physiol. Perform. 2016, 11, 154–158. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Yao, R.; Yin, G.; Li, J. Consecutive ultra-short-term heart rate variability to track dynamic changes in autonomic nervous system during and after exercise. Physiol. Meas. 2017, 38, 1384–1395. [Google Scholar] [CrossRef]
- Baek, H.J.; Cho, C.-H.; Cho, J.; Woo, J.-M. Reliability of ultra-short-term analysis as a surrogate of standard 5-min analysis of heart rate variability. Telemed. J. E. Health 2015, 21, 404–414. [Google Scholar] [CrossRef]
- Habibi, M.; Chahal, H.; Greenland, P.; Guallar, E.; Lima, J.A.C.; Soliman, E.Z.; Alonso, A.; Heckbert, S.R.; Nazarian, S. Resting heart rate, short-term heart rate variability and incident atrial fibrillation (from the multi-ethnic study of atherosclerosis (MESA)). Am. J. Cardiol. 2019, 124, 1684–1689. [Google Scholar] [CrossRef]
- Pecchia, L.; Castaldo, R.; Montesinos, L.; Melillo, P. Are ultra-short heart rate variability features good surrogates of short-term ones? State-of-the-art review and recommendations. Healthc. Technol. Lett. 2018, 5, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Nussinovitch, U.; Cohen, O.; Kaminer, K.; Ilani, J.; Nussinovitch, N. Evaluating reliability of ultra-short ECG indices of heart rate variability in diabetes mellitus patients. J. Diab. Compl. 2012, 26, 450–453. [Google Scholar] [CrossRef] [PubMed]
- Castaldo, R.; Montesinos, L.; Melillo, P.; James, C.; Pecchia, L. Ultra-short term HRV features as surrogates of short term HRV: A case study on mental stress detection in real life. BMC Med. Inform. Decis. Mak. 2019, 19, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melo, H.M.; Martins, T.C.; Nascimento, L.M.; Hoeller, A.A.; Walz, R.; Takase, E. Ultra-short heart rate variability recording reliability: The effect of controlled paced breathing. Ann. Noninv. Electrocar. 2018, 23, e12565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaffer, F.; Shearman, S.; Meehan, Z. The promise of ultra-short-term (UST) heart rate variability measurements. Biofeedback 2016, 44, 229–233. [Google Scholar] [CrossRef]
- Esco, M.; Williford, H.; Flatt, A.; Freeborn, T.; Nakamura, F. Ultra-shortened time-domain HRV parameters at rest and following exercise in athletes: An alternative to frequency computation of sympathovagal balance. Eur. J. Appl. Physiol. 2018, 118, 175–184. [Google Scholar] [CrossRef]
- Bishop, D.; Girard, O.; Mendez-Villanueva, A. Repeated-sprint ability—part II: Recommendations for training. Sports Med. 2011, 41, 741–756. [Google Scholar] [CrossRef]
- Bangsbo, J.; Iaia, F.M.; Krustrup, P. The Yo-Yo intermittent recovery test: A useful tool for evaluation of physical performance in intermittent sports. Sports Med. 2008, 38, 37–51. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Tarvainen, M.P.; Niskanen, J.-P.; Lipponen, J.A.; Ranta-aho, P.O.; Karjalainen, P.A. Kubios HRV—Heart rate variability analysis software. Comput. Meth. Prog. Biomed. 2014, 113, 210–220. [Google Scholar] [CrossRef]
- Grgic, J.; Oppici, L.; Mikulic, P.; Bangsbo, J.; Krustrup, P.; Pedisic, Z. Test–retest reliability of the Yo-Yo test: A systematic review. Sports Med. 2019, 49, 1547–1557. [Google Scholar] [CrossRef] [PubMed]
- Glaister, M.; Howatson, G.; Pattison, J.R.; McInnes, G. The reliability and validity of fatigue measures during multiple-sprint work: An issue revisited. J. Str. Cond. Res. 2008, 22, 1597–1601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Impellizzeri, F.M.; Rampinini, E.; Castagna, C.; Bishop, D.; Ferrari Bravo, D.; Tibaudi, A.; Wisloff, U. Validity of a repeated-sprint test for football. Int. J. Sports Med. 2008, 29, 899–905. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sport. Exer. 2009, 41, 3–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchheit, M. Monitoring training status with HR measures: Do all roads lead to Rome? Front. Phys. 2014, 5, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flatt, A.; Esco, M.; Nakamura, F.; Plews, D. Interpreting daily heart rate variability changes in collegiate female soccer players. The. J. Sports Med. Phys. Fitness 2016, 57, 151. [Google Scholar] [CrossRef]
- Araújo, J.A.; Peçanha, T.; Novelli, F.I.; Mello, C.S.A.; Moreira-Gonçalves, D.; Arsa, G.; Cambri, L.T. Reproducibility of heart rate variability indices at post-maximal exercise. Int. J. Sports Med. 2020. In press. [Google Scholar] [CrossRef]
- Saboul, D.; Pialoux, V.; Hautier, C. The breathing effect of the LF/HF ratio in the heart rate variability measurements of athletes. Eur. J. Sport. Sci. 2014, 14, S282–S288. [Google Scholar] [CrossRef]
- Wang, H.-M.; Huang, S.-C. SDNN/RMSSD as a surrogate for LF/HF: A revised investigation. Modeling Sim. Eng. 2012, 16, 1–8. [Google Scholar] [CrossRef] [Green Version]
Exercise Performance | Mean ± SD | CV (%) |
---|---|---|
RSA1–3mean (s) | 7.31 ± 0.29 | 3.91 |
RSA4–6mean (s) | 7.64 ± 0.27 | 3.47 |
RSAmean (s) | 7.48 ± 0.26 | 3.46 |
RSAtotal (s) | 44.86 ± 1.55 | 3.46 |
RSAbest (s) | 7.17 ± 0.28 | 3.85 |
RSAworse (s) | 7.75 ± 0.26 | 3.30 |
RSAdecrement (%) | 4.26 ± 1.94 | 45.55 |
RSA fatigue index (%) | 8.13 ± 3.38 | 41.53 |
YYIR1 distance (m) | 1214.40 ± 290.95 | 23.96 |
YYIR1 VO2max (ml.kg−1.min−1) | 46.60 ± 2.44 | 5.25 |
Period | Parameter | HRVUST (Mean ± SD) | HRVcriterion (Mean ± SD) | ES (95% CI) | ICC (95% CI) | Bias (±1.96 SD) |
---|---|---|---|---|---|---|
RSA Baseline | LnSDNN | 3.89 ± 0.34 | 3.91 ± 0.37 | −0.06 (0.61; 0.50) * | 0.82 (0.64; 0.92) ‡ | −0.02 (−0.43; 0.40) |
LnRMSSD | 4.06 ± 0.43 | 4.09 ± 0.42 | −0.07 (0.63; 0.48) * | 0.90 (0.78; 0.95) § | −0.03 (−0.41; 0.36) | |
LnSDNN:LnRMSSD | 0.96 ± 0.05 | 0.96 ± 0.04 | −0.00 (−0.55; 0.55) * | 0.69 (0.36; 0.83) † | 0.01 (−0.07; 0.08) | |
RSA Post 1 | LnSDNN | 1.62 ± 0.39 | 1.69 ± 0.44 | −0.17 (−0.72; 0.39) * | 0.88 (0.74; 0.94) ‡ | −0.07 (−0.46; 0.33) |
LnRMSSD | 1.27 ± 0.64 | 1.36 ± 0.61 | −0.14 (−0.70; 0.42) * | 0.88 (0.76; 0.95) ‡ | −0.08 (−0.66; 0.49) | |
LnSDNN:LnRMSSD | 1.47 ± 0.48 | 1.39 ± 0.42 | 0.18 (−0.38; 0.73) * | 0.81 (0.60; 0.91) ‡ | 0.08 (−0.47; 0.63) | |
RSA Post 2 | LnSDNN | 1.69 ± 0.52 | 1.82 ± 0.52 | −0.23 (−0.78; 0.33) # | 0.84 (0.65; 0.93) ‡ | −0.12 (−0.66; 0.41) |
LnRMSSD | 1.34 ± 0.66 | 1.40 ± 0.68 | −0.09 (−0.64; 0.47) * | 0.83 (0.65; 0.92) ‡ | 0.06 (−0.73; 0.84) | |
LnSDNN:LnRMSSD | 1.45 ± 0.48 | 1.51 ± 0.61 | −0.11 (−0.66; 0.45) * | 0.82 (0.60; 0.91) ‡ | −0.07 (−0.74; 0.61) | |
RSA Post 3 | LnSDNN | 2.81 ± 0.53 | 2.89 ± 0.51 | −0.15 (−0.71; 0.40) * | 0.95 (0.85; 0.98) § | −0.09 (−0.39; 0.21) |
LnRMSSD | 2.45 ± 0.65 | 2.55 ± 0.60 | −0.16 (−0.71; 0.40) * | 0.95 (0.87; 0.98) § | −0.10 (−0.44; 0.25) | |
LnSDNN:LnRMSSD | 1.17 ± 0.15 | 1.15 ± 0.11 | 0.15 (−0.40; 0.71) * | 0.90 (0.71; 0.94) § | 0.02 (−0.12; 0.16) | |
YYIR1 Baseline | LnSDNN | 3.93 ± 0.34 | 3.88 ± 0.29 | 0.16 (−0.40; 0.71) * | 0.90 (0.78; 0.95) § | 0.05 (−0.22; 0.32) |
LnRMSSD | 4.05 ± 0.40 | 3.98 ± 0.41 | 0.17 (−0.38; 0.73) * | 0.93 (0.82; 0.97) § | 0.07 (−0.21; 0.35) | |
LnSDNN:LnRMSSD | 0.97 ± 0.07 | 0.98 ± 0.06 | −0.15 (−0.71; 0.40) * | 0.89 (0.78; 0.95) ‡ | −0.01 (−0.06; 0.05) | |
YYIR1 Post 1 | LnSDNN | 1.48 ± 0.32 | 1.53 ± 0.33 | −0.15 (−0.71; 0.40) * | 0.84 (0.68; 0.93) ‡ | −0.05 (−0.41; 0.30) |
LnRMSSD | 1.11 ± 0.44 | 1.23 ± 0.47 | −0.26 (−0.82; 0.30) # | 0.84 (0.64; 0.93) ‡ | −0.12 (−0.59; 0.36) | |
LnSDNN:LnRMSSD | 1.47 ± 0.45 | 1.38 ± 0.42 | 0.20 (−0.35; 0.76) * | 0.80 (0.59; 0.91) ‡ | 0.09 (−0.44; 0.62) | |
YYIR1 Post 2 | LnSDNN | 1.42 ± 0.45 | 1.56 ± 0.40 | −0.32 (−0.89; 0.23) # | 0.76 (0.48; 0.89) ‡ | −0.14 (−0.68; 0.40) |
LnRMSSD | 1.03 ± 0.46 | 1.09 ± 0.47 | −0.13 (−0.68; 0.43) * | 0.82 (0.64; 0.92) ‡ | −0.06 (−0.61; 0.49) | |
LnSDNN:LnRMSSD | 1.56 ± 0.56 | 1.65 ± 0.68 | −0.14 (−0.70; 0.41) * | 0.74 (0.50; 0.88) ‡ | −0.09 (−0.96; 0.78) | |
YYIR1 Post 3 | LnSDNN | 2.62 ± 0.52 | 2.67 ± 0.50 | −0.10 (−0.65; 0.46) * | 0.92 (082; 0.96) § | −0.05 (−0.45; 0.35) |
LnRMSSD | 2.01 ± 0.57 | 2.16 ± 0.59 | −0.26 (−0.81; 0.30) # | 0.90 (0.66; 0.96) § | −0.16 (−0.57; 0.26) | |
LnSDNN:LnRMSSD | 1.34 ± 0.17 | 1.26 ± 0.15 | 0.49 (−0.07; 1.06) # | 0.63 (0.27; 0.83) † | 0.07 (−0.17; 0.32) |
Period | Parameter | HRVUST (Mean ± SD) | HRVcriterion (Mean ± SD) | ES (95% CI) | ICC (95% CI) | Bias (±1.96 SD) |
---|---|---|---|---|---|---|
RSA Baseline | LnLF | 3.70 ± 0.51 | 3.81 ± 0.40 | −0.24 (−0.80; 0.32) # | 0.27 (−0.13; 0.59) * | −0.11 (−1.21; 0.98) |
LnHF | 3.90 ± 0.50 | 3.87 ± 0.40 | 0.07 (−0.49; 0.62) * | 0.36 (−0.04; 0.66) # | −0.03 (−0.99; 1.04) | |
LnLF:LnHF | 0.98 ± 0.29 | 1.01 ± 0.22 | −0.12 (−0.67; 0.44) * | 0.36 (−0.05; 0.66) # | −0.02 (−0.60; 0.55) | |
RSA Post 1 | LnLF | 4.35 ± 0.28 | 4.39 ± 0.15 | −0.18 (−0.73; 0.38) * | 0.39 (0.01; 0.68) # | −0.04 (−0.53; 0.44) |
LnHF | 2.56 ± 0.99 | 2.70 ± 0.65 | −0.17 (−0.72; 0.39) * | 0.57 (0.24; 0.78) † | −0.14 (−1.67; 1.38) | |
LnLF:LnHF | 2.44 ± 2.81 | 1.77 ± 0.63 | 0.32 (−0.23; 0.89) # | 0.25 (−0.13; 0.58) * | 0.65 (−4.19; 5.53) | |
RSA Post 2 | LnLF | 4.26 ± 0.28 | 4.39 ± 0.18 | −0.54 (−1.12; 0.02) # | −0.02 (−0.35; 0.35) * | −0.13 (−0.78; 0.52) |
LnHF | 3.04 ± 0.74 | 2.66 ± 0.69 | 0.52 (−0.04; 1.09) # | 0.32 (−0.04; 0.62) # | −0.38 (−1.97; 1.22) | |
LnLF:LnHF | 1.53 ± 0.58 | 1.82 ± 0.71 | −0.44 (−1.01; 0.12) # | 0.56 (0.21; 0.78) † | −0.29 (−1.42; 0.85) | |
RSA Post 3 | LnLF | 4.27 ± 0.27 | 4.30 ± 0.16 | −0.13 (−0.69; 0.42) * | 0.44 (0.06; 0.71) # | −0.03 (−0.61; 0.55) |
LnHF | 3.02 ± 0.73 | 3.11 ± 0.56 | −0.14 (−0.69; 0.42) * | 0.58 (0.25; 0.79) † | −0.09 (−1.36; 1.18) | |
LnLF:LnHF | 1.54 ± 0.58 | 1.45 ± 0.39 | −0.18 (−0.37; 0.74) * | 0.64 (0.34; 0.82) † | 0.09 (−0.73; 0.91) | |
YYIR1 Baseline | LnLF | 3.64 ± 0.57 | 3.87 ± 0.37 | −0.47 (−1.04; 0.09) # | 0.48 (0.12; 0.73) # | −0.23 (−1.15; 0.67) |
LnHF | 3.95 ± 0.44 | 3.81 ± 0.40 | 0.33 (−0.23; 0.89) # | 0.61 (0.30; 0.81) † | 0.13 (−0.58; 0.85) | |
LnLF:LnHF | 0.95 ± 0.26 | 1.04 ± 0.21 | −0.38 (−0.94; 0.18) # | 0.58 (0.25; 0.79) † | −0.09 (−0.50; 0.33) | |
YYIR1 Post 1 | LnLF | 4.34 ± 0.44 | 4.43 ± 0.10 | −0.27 (−0.84; 0.28) # | 0.28 (−0.11; 0.60) * | −0.09 (−0.84; 0.66) |
LnHF | 2.46 ± 0.95 | 2.61 ± 0.57 | −0.19 (−0.75; 0.37) * | 0.61 (0.30; 0.81) † | −0.14 (−1.49; 1.21) | |
LnLF:LnHF | 2.49 ± 2.80 | 1.81 ± 0.55 | 0.33 (−0.22; 0.89) # | 0.26 (−0.13; 0.58) * | 0.68 (−4.11; 5.47) | |
YYIR1 Post 2 | LnLF | 4.40 ± 0.21 | 4.47 ± 0.08 | −0.43 (−1.00; 0.12) # | 0.22 (−0.15; 0.54) * | −0.08 (−0.47; 0.32) |
LnHF | 2.55 ± 0.79 | 2.35 ± 0.53 | 0.29 (−0.26; 0.85) # | 0.47 (0.12; 0.72) # | 0.20 (−1.15; 1.55) | |
LnLF:LnHF | 1.98 ± 0.94 | 2.01 ± 0.53 | −0.04 (−0.60; 0.51) * | 0.42 (0.03; 0.70) # | −0.04 (−1.66; 1.58) | |
YYIR1 Post 3 | LnLF | 4.33 ± 0.28 | 4.37 ± 0.14 | −0.18 (−0.74; 0.38) * | 0.43 (0.05; 0.70) # | −0.05 (−0.51; 0.42) |
LnHF | 2.79 ± 0.77 | 2.83 ± 0.64 | −0.06 (−0.61; 0.50) * | 0.60 (0.27; 0.80) † | −0.04 (−1.30; 1.22) | |
LnLF:LnHF | 1.70 ± 0.57 | 1.67 ± 0.62 | 0.05 (−0.50; 0.61) * | 0.68 (0.39; 0.85) † | 0.03 (−0.92; 0.98) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, C.-H.; Clemente, F.M.; Bezerra, P.; Chiu, Y.-W.; Chien, C.-H.; Crowley-McHattan, Z.; Chen, Y.-S. Post-Exercise Recovery of Ultra-Short-Term Heart Rate Variability after Yo-Yo Intermittent Recovery Test and Repeated Sprint Ability Test. Int. J. Environ. Res. Public Health 2020, 17, 4070. https://doi.org/10.3390/ijerph17114070
Hung C-H, Clemente FM, Bezerra P, Chiu Y-W, Chien C-H, Crowley-McHattan Z, Chen Y-S. Post-Exercise Recovery of Ultra-Short-Term Heart Rate Variability after Yo-Yo Intermittent Recovery Test and Repeated Sprint Ability Test. International Journal of Environmental Research and Public Health. 2020; 17(11):4070. https://doi.org/10.3390/ijerph17114070
Chicago/Turabian StyleHung, Chin-Hwai, Filipe Manuel Clemente, Pedro Bezerra, Yi-Wen Chiu, Chia-Hua Chien, Zachary Crowley-McHattan, and Yung-Sheng Chen. 2020. "Post-Exercise Recovery of Ultra-Short-Term Heart Rate Variability after Yo-Yo Intermittent Recovery Test and Repeated Sprint Ability Test" International Journal of Environmental Research and Public Health 17, no. 11: 4070. https://doi.org/10.3390/ijerph17114070
APA StyleHung, C. -H., Clemente, F. M., Bezerra, P., Chiu, Y. -W., Chien, C. -H., Crowley-McHattan, Z., & Chen, Y. -S. (2020). Post-Exercise Recovery of Ultra-Short-Term Heart Rate Variability after Yo-Yo Intermittent Recovery Test and Repeated Sprint Ability Test. International Journal of Environmental Research and Public Health, 17(11), 4070. https://doi.org/10.3390/ijerph17114070