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Abstract: The coronavirus COVID-19 has recently started to spread rapidly in Malaysia. The number
of total infected cases has increased to 3662 on 05 April 2020, leading to the country being
placed under lockdown. As the main public concern is whether the current situation will
continue for the next few months, this study aims to predict the epidemic peak using the
Susceptible–Exposed–Infectious–Recovered (SEIR) model, with incorporation of the mortality cases.
The infection rate was estimated using the Genetic Algorithm (GA), while the Adaptive Neuro-Fuzzy
Inference System (ANFIS) model was used to provide short-time forecasting of the number of infected
cases. The results show that the estimated infection rate is 0.228 ± 0.013, while the basic reproductive
number is 2.28 ± 0.13. The epidemic peak of COVID-19 in Malaysia could be reached on 26 July 2020,
with an uncertain period of 30 days (12 July–11 August). Possible interventions by the government
to reduce the infection rate by 25% over two or three months would delay the epidemic peak by 30
and 46 days, respectively. The forecasting results using the ANFIS model show a low Normalized
Root Mean Square Error (NRMSE) of 0.041; a low Mean Absolute Percentage Error (MAPE) of 2.45%;
and a high coefficient of determination (R2) of 0.9964. The results also show that an intervention
has a great effect on delaying the epidemic peak and a longer intervention period would reduce the
epidemic size at the peak. The study provides important information for public health providers and
the government to control the COVID-19 epidemic.

Keywords: COVID-19; SEIR model; epidemic peak; infection rate; basic reproductive number;
ANFIS; GA

1. Introduction

Coronavirus disease (COVID-19) is an infectious disease first reported in China [1]. COVID-19 has
been confirmed on 25 January 2020 in Malaysia and currently continues to spread fast in the country,
which seriously jeopardizes the lives of elderly people as well as those of any age who experience a
serious underlying medical condition [2]. Figure 1 shows the accumulated number of infected cases
due to COVID-19 from 25 January to 05 April in Malaysia. It can be observed that the COVID-19
outbreak started to be a pandemic after 27 February, such that more than 98.77% of the total infected
cases was reported after this date. This outbreak is mostly attributed to a special religious gathering of
more than 15,000 persons between 27 February and 2 March at a local mosque, which was an infection
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cluster and the main source of the spike in COVID-19 cases according to the Ministry of Health in
Malaysia [3]. The spread of the virus came from the foreign participants who came into Malaysia and
participated in the gathering. The sudden increase in the number of infected cases after 12 March is
probably due to the fact that infected people without COVID-19 symptoms could significantly spread
the infection [4]. Furthermore, the diagnostic tests were initially only made available to those who
attended the religious gathering.
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Unfortunately, COVID-19 cannot be controlled as there is no proven pharmaceutical-based
treatment up to now. However, other behavioral strategies, such as lockdown and movement control of
people, can be effective to reduce the number of new cases and delay the epidemic peak. The Malaysian
Government has promulgated the restricted activities order on 18 March, which prohibits all mass
movements and gatherings across the country, including religious, sports, social, and educational
activities. The movement control order was implemented in several stages with the strictness and
punishment increasing with each stage to ensure that the public conform to the restrictions. However,
exclusions are given to public markets, grocery stores, and convenience stores selling food and essential
items. The main public concern is whether the epidemic will continue until August 2020, which would
affect the economy, and in particular the tourism plan of “Visit Malaysia 2020” that attracts Middle
Eastern and Chinese tourists during the holiday season from June through August. Therefore, the short-
and long-term prediction of the COVID-19 epidemic is needed to provide important information
for healthcare providers and government that would help them to implement effective intervention
measures and policies.

Mathematical modeling plays an important role in predicting the epidemic peaks of COVID-19
using real-time historical data [5]. Many statistical and numerical models have been used to
predict the COVID-19 outbreaks, such as the Logistic Growth model [6], stochastic Susceptible–
Infectious–Removed (SIR) model [7], and Natural Growth model [8]. However, the SEIR (Susceptible–
Exposed–Infectious–Recovered) model is still the most widely used to characterize the epidemic
peak of COVID-19 in China [9–11], Japan [12], Italy [13], and Iran [14]. Besides, the SEIR model was
used to compare the effect of the lockdown of Hubei province on the infection rates in Beijing and
Wuhan [15]. On the other hand, in forecasting the number of infected cases for the upcoming few days,
the mathematical models are not effective as many parameters should be daily updated and estimated.
Thus, the accuracy of short-time forecasting using parametric models may not be high [16].

The infection rate (or transmission rate) parameter provides information on the probability of
transmission of COVID-19 from an infectious individual to susceptible individuals [17]. It is one of the
two components in the basic reproductive number by which the continuous increase or decrease in the
infected cases is decided. In calculating the infection rate, the most common method is the asymptotic
statistical theory [18], in which the least-squares method is used to quantify the uncertainty associated
with infection rate estimation. However, the least-squares method is subjected to low accuracy that
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accompanies the estimation of the infection rate. A possible solution is to run the estimation process
10,000 times and then obtain the normal distribution of the infection rate values with 95% confidence
intervals, which would decrease the uncertainty and increase the accuracy as in [12,19]. This method
highly increases the time of the estimation process, especially when the range of the hypothesized
infection rate is relatively large with a small resolution.

To our knowledge, there are no scientific studies related to the pandemic of COVID-19 spread in
Malaysia. Thus, this study is conducted to (1) estimate the infection rate using the Genetic Algorithm
(GA); (2) predict the epidemic peak of COVID-19 using the SEIR model, incorporating also the mortality
in the population due to COVID-19; and (3) forecast the number of infected cases for the upcoming five
days using the Adaptive Neuro-Fuzzy Inference System (ANFIS) predictive model. The available data
of infected cases from 25 January to 05 April 2020 in Malaysia was used to calibrate the SEIR model.
For forecasting, the data from 22 to 31 March was used to train and test the ANFIS model, while the
data from 01 to 05 April was used to validate the ANFIS model.

2. Methods

2.1. SEIR Model for Peak Prediction

The SEIR model that characterizes the epidemic COVID-19 outbreaks is described as follows [20,21]:

dS(t)/d(t) = −βS(t)I(t),
dE(t)/d(t) = βS(t)I(t) − αE(t),

dI(t)/d(t) = αE(t) − γI(t) −MI(t),
dR(t)/d(t) = γI(t),
dD(t)/d(t) =MI(t)

(1)

where S, E, I, R, and D represent the number of susceptible, exposed (not yet infectious), infective,
recovered, and death cases given at time t > 0. The coefficients β, α, γ, and M denote the infection, onset,
removal, and mortality rates. Based on the recent studies related to COVID-19 [22–25], the incubation
(α−1) and infectious (γ−1) periods are 5 days and 10 days, respectively. Thus, the α and γ values are
0.2 and 0.1, respectively. The total number of deaths and confirmed cases up to 5 April are 61 and
3662, respectively, and thus the mortality rate M is 0.016 (61/3662). We fixed the unit time to be 1 day
and S + E + I + R + D = 1, such that each population implies the proportion to the total population.
Let assume that there is one infected case recorded at time t = 0 among the Malaysian population of
N = 32.6 × 106 [26]; that is, X(0) = pNI(0) = 1, where

X(t) = pNI(t), (2)

where X is the number of infected cases that are identified at time t, and p is the identification rate such
that we obtain I(0) = 1/(p × 32.6 × 106). The block diagram of the SEIR model is attached in Appendix A
as Figure A1. It is assumed that there are no exposed, recovered, and death cases at t = 0, and hence,

S(0) = 1− (E(0) + I(0) + R(0) + D(0)) = 1−
1

pN
(3)

In Malaysia, the COVID-19 test is mainly performed on those with close contacts to the patients as
well as on those with COVID-19 symptoms. We assume that the identification rate is not significantly
dependent on the test kit availability as the Malaysian government is able to perform the test for
11,500 persons a day and the average number of daily tested cases is 2500 persons [27]. In [28], 3662 cases
are currently confirmed among the tested 43,595 infected cases from 25 January to 05 April. Based on
that, p is equal to 0.084 (3662/43,595). The basic reproductive number R0 represents the expected
number of secondary cases resulted from an infected individual [29]. It is calculated as the leading
eigenvalue of the next generation matrix G = FV−1 [30], where
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F =

[
0 βS(0)
0 0

]
, V =

[
α 0
−α γ

]
, (4)

where F is a new infection, while V represents the transfers of infections from one compartment to
another [5]. Then, we obtain

R0 =
βS(0)
γ

=
β

γ
(1 −

1
pN

) ≈
β

γ
. (5)

It is obvious that the basic reproductive number only depends on the infection rate (β) and the
removal rate (γ). Besides, the influence of the identification rate on R0 is negligible as the population
number (N) is 32.2 × 106. The coefficient parameters of the SEIR model are summarized in Table 1.
Note that the estimation of β and R0 values are presented in the next subsection.

Table 1. Coefficient values for the Susceptible–Exposed–Infectious–Recovered (SEIR) model.

Coefficient Description Value

α Onset rate 0.2
γ Removal rate 0.1
M Mortality rate 0.016

N Malaysia
population 32.6 × 106

p Identification rate 0.084

2.2. β. Estimation Using GA

In this study, the estimation of the infection rate is accomplished using the Genetic Algorithm [19].
Let us assume X(t) (described in Equation (2)), t = 0, 1, . . . , 72, is the number of daily infected people
due to COVID-19 in Malaysia from 25 January to 05 April. We assume X(t) is subjected to the Poisson
noise, which reflects the fluctuations of the number of infected cases, so that

.
X(t) = X(t) + εX(t)ξ, Poisson noise = εX(t)ξ, (6)

where
.

X is our deterministic model with Poisson noise, while ε is a random variable from a normal
distribution with a mean zero and a standard deviation of 1. The ξ is equal to 0.5, such that the
variance of the error scales is linear with X(t) and this value refers to the Poisson noise as described
by [31]. The classical GA was applied to estimate the β value that minimizes the cost function. The cost
function is represented by the sum of squares, as in Equation (7). The β value ranged from the lower
bound to upper bound values. The lower and upper bounds of the β value were selected as 0.2 and 0.4,
respectively. The minimum cost function C(β”) is defined as in Equation (8).

C(β) =
∑72

t=0

[
X(t) −

.
X(t)
]2

, (7)

C(β′′) = min0.2 ≤ β ≤ 0.4 C(β), (8)

The classical GA algorithm was then implemented to find the optimum β values that minimize
the cost function using five steps, as follows [32–34]:

a. Population initialization: In order to find a solution to the problem of the cost function, the GA
initially creates a number of populations that randomly encodes the chromosomes (individuals).
Then, the cost values of the generated population are evaluated.

b. Selection: In this process, each individual identified by its associated cost is ranked and the
corresponding individual fitness is selected. According to fitness, the best chromosomes from
the population are then selected such that better fitness has a bigger chance to be selected.
Subsequently, the solutions selected from one population are implemented to form a new
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population. This process is motivated by the new population potentially being better than
the previous one. The selection process is performed using a certain function that fixes the
generation gap. The selected individuals are then recombined.

c. Crossover: To make new offspring (children) for the following iteration, the selected individuals
(parents) have to undergo a crossover with a crossover probability. However, if there is no
crossover performed, the offspring is an exact copy of the parents.

d. Mutation: In this process, the information in the chromosomes is randomly modified. The genes
occasionally mutate to be converted to novel genes. Based on mutation, it is possible to control the
multifariousness of the population as well as to enhance the search capacity of the search scheme.

e. Evaluation: For each individual, the cost function of the optimization problem is calculated.
The stopping criterion of the GA is the number of iterations after which the process is stopped.
For each iteration, the β value that has the minimum cost function is recorded. The distribution of
the β values is then approximated by a normal distribution with a mean and standard deviation.

The flowchart of the GA for β estimation is demonstrated in Figure 2. The GA parameters are
provided in Table 2 and obtained based on the trial and error method. The Optimization Toolbox of
the MATLAB® software (MathWorks Inc.) was used to implement and run the GA algorithm.
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Table 2. GA parameters.

Parameter Value Parameter Value

Population size 200 Mutation rate 0.02
Number of iterations 1000 Mutation percentage 0.9
Crossover percentage 0.95

2.3. ANFIS for Short-Term Forecasting

ANFIS is a nonparametric model used to solve a nonlinear problem with a small dataset in one
framework. It has a powerful hybrid learning capability using an Artificial Neural Network (ANN) and
a Fuzzy Logic model to generate an effective processing tool for prediction [35]. The core element of
ANFIS is the Fuzzy Interference System (FIS) that is embedded into a framework of adaptive networks
that use “IF–THEN” rules to model the behavior of an uncertain system. These adaptive networks
contain a number of adaptive nodes connected through directional links. Each adaptive node has a
modifiable parameter updated using the fuzzy learning rule aiming to minimize the errors. In this
study, the FIS system uses one input x and one output y. The ANFIS model structure is shown in
Figure 3. The first order Sugeno fuzzy model with fuzzy “IF–THEN” rules is employed as follows [36]:

Rule 1: if x is A1 then y1= P1 x + r1, (9)

Rule 2: if x is A2 then y2 = P2 x + r2. (10)
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Layer 1 contains the member functions (MFs) of the inputs and generates the input variables for
Layer 2. Each node in this layer is adaptive using Equation (11). The MF type used in this study is the
Gaussian function, for which 0 and 1 are the lowest and highest values, respectively.

Qi = µAi (x), where µ (x) is MF. (11)

Layer 2 is a membership layer in which the weights of MFs are computed and considered. Input
variables of this layer are obtained from the first layer. Noted that, the layer’s nodes are fixed nodes.
The output of the second layer is a product of all incoming inputs and described as in Equation (12),
where wi represents the weight strength of one rule.

wi = µ (x)i µ (x)i+1 and i = 1,2. (12)

In Layer 3 (rule layer), the weight function is normalized and the outputs of this layer are called
normalized weights or firing strengths. The normalization is described as:

wi =
wi

w1 + w2
, and i = 1, 2. (13)

Layer 4 is the defuzzification layer such that the output from Layer 3 is multiplied with the Sugeno
fuzzy rule function as follows:

Q4
i = w∗i y = w∗i (pix + ri), (14)

Layer 5 is the output layer in which the inputs and outputs from the previous layer are formulated.
Furthermore, this layer converts the results into a crisp output. Thus, all incoming inputs are sum up
producing the overall output as follows:

Q5
i =
∑

i
w∗i yi =

∑
i wi y∑

i wi
(15)

Noted that the ANFIS MFs parameters are adjusted (tuned) using the hybrid method of
backpropagation and least square techniques [37]. The Neuro-Fuzzy Designer of Matlab® Software
(MathWorks Inc.) is used to implement the ANFIS parameters that are summarized in Table 3. In this
study, as the number of infected cases is nonlinearly changed from day to day, the ANFIS model is
used. The ANFIS model forecasts the numbers of infected cases for the upcoming 5 days based on the
numbers of infected cases for the last 10 days. The dataset of 10 days is divided into training (70%)
and testing (30%) datasets which are implemented in the ANFIS model. After that, the trained ANFIS
model is used to forecast the numbers of cases for the next 5 days. The input and output variables are
day number and number of infected cases, respectively.

Table 3. Adaptive Neuro-Fuzzy Inference System (ANFIS) parameters.

Parameter Method/Value Parameter Method/Value

Fuzzy structure Sugeno-type No. of epochs 300
Rules clustering Grid partition Input Day number

MF type Gaussian Output Infected cases
Optimization method Hybrid Output MF constant
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In order to investigate the performance of the ANFIS model, the Root Mean Square Error mean
(RMSE), normalized RMSE (NRMSE), Mean Absolute Percentage Error (MAPE), and coefficient of
determination (R2) were used as follows [38,39]:

RMSE =
√

1
t
∑t

t=0 (yactual − yestimated)
2, and

NRMSE RMSE
ymax−ymin

,
(16)

MAPE =
yactual − yestimated

yactual
(17)

R2 = 1−

∑t
t=0 (yactual − yestimated)

2∑t
t=0 (yactual − yaverage)

2 . (18)

3. Results

3.1. Infection Rate (β) Estimation

GA was applied to estimate the optimum infection rate between 0.2 ≤ β ≤ 0.4 by minimizing
the cost function described in Equation (8). Figure 4 depicts the cost values for 1000 iterations. It is
observed that the GA searching for the minimum cost value converges to the value of 1.098 × 10−9 at
the iteration number 819, which indicates that there is no better cost value than 1.098 × 10−9 based
on GA. The optimum β values obtained for the entire population size of 200 is shown in Figure 5.
The β values are approximated by the normal distribution and, subsequently, the infection rate β is
0.228 ± 0.013. Based on Equation (5), the basic reproductive number is 2.28 ± 0.13 as γ = 0.1.
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3.2. Epedimic Peak Prediction

Given that the major outbreak occurs after the second wave, it is assumed that the influence of the
number of cases reported before the second wave is negligible in estimating the identification and
infection rates. Besides, this assumption is considered due to the absence of the reported numbers
related to cases that tested negative during the first wave. The epidemic peak is estimated when a
maximum is attained within one year, such that X(tmax) = max0 < t < 365 X(t). Based on the current report,
the p is around 0.084. Subsequently, Figure 6 shows a one-year behavior of X(t) for the determined
infection rate β = 0.228 ± 0.013.
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It is observed that the epidemic peak may occur between 170 (β = 0.241) and 200 (β = 0.215) with
an average of 184 (β = 0.228). This indicate that, starting from 25 January, the predicted epidemic peak
is on 26 July (t = 184), with deviation from 12 July (t = 170) to 11 August (t = 200). The COVID-19
pandemic will last until 15 December 2020 (t = 326), with the deviation ranging from 22 November
2020 (t = 303) to 12 January 2021 (t = 354).

Based on the entire period since the COVID-19 onset in Malaysia, the p value ranges from 0.01 to
0.084. Hence, we also estimate the epidemic peak at p = 0.01. Figure 7 shows the X(t) over one year for
β = 0.228 ± 0.013. As seen, the predicted epidemic peak is 19 June (t = 147) and the uncertainty range is
from 08 June (t = 136) to 02 July (t = 160). The COVID-19 pandemic will last until 29 September (t = 249)
with the deviation ranging from 13 September (t = 233) to 19 October (t = 269). In contrast to the basic
reproductive number R0, it is clear that the epidemic peak and size are responsive to the identification
rate p. Furthermore, a lower identification rate leads to a lower number of infected cases, such that the
number of infected cases decreases from 2.582 × 105 to 3.077 × 104 at the epidemic peak with p = 0.01.
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3.3. Epidemic Peak after Possible Interventions

In this subsection, the effect of possible interventions is investigated. In Malaysia, all universities,
schools, and workshop places have been closed and most of the social events have been canceled
from 17 to 26 March to eliminate the contact risk. However, the government has extended the closure
to 14 April as the number of infected cases is still rising by an average of 170 cases per day. Thus,
the current governmental effort seems to be limited to contain the COVID-19 up to now.

We assume that the governmental and social efforts can reduce the infection rate β = 0.228 by 25%
of its value (βnew = 0.17) during the period from 05 April (t = 72) to the desired day (t = T > 72), and we
fix p to 0.084 in what follows. Firstly, it is assumed that the intervention is adopted for 2 months;
that its, T is equal to 134 (72 + 62). In this situation, the epidemic peak tmax is shifted 30 days later from
26 July to 26 August. It is clear that the epidemic size remains relatively unchanged. On the other hand,
if the interventions are adopted for three months from 05 April to 04 July (T = 72 + 92 = 164), then the
epidemic peak tmax is moved back from 26 July to 09 September. It can be observed that the epidemic
size is significantly reduced. Figure 8 shows the real-time prediction of infected cases that are identified
between t = 0 and t = 365 for no intervention, two months intervention, and three months intervention.

Int. J. Environ. Res. Public Health 2020, 17, x 9 of 15 

 

3.3. Epidemic Peak after Possible Interventions 

In this subsection, the effect of possible interventions is investigated. In Malaysia, all universities, 
schools, and workshop places have been closed and most of the social events have been canceled 
from 17 to 26 March to eliminate the contact risk. However, the government has extended the closure 
to 14 April as the number of infected cases is still rising by an average of 170 cases per day. Thus, the 
current governmental effort seems to be limited to contain the COVID-19 up to now. 

We assume that the governmental and social efforts can reduce the infection rate β = 0.228 by 
25% of its value (βnew = 0.17) during the period from 05 April (t = 72) to the desired day (t= T > 72), and 
we fix p to 0.084 in what follows. Firstly, it is assumed that the intervention is adopted for 2 months; 
that its, T is equal to 134 (72 + 62). In this situation, the epidemic peak tmax is shifted 30 days later from 
26 July to 26 August. It is clear that the epidemic size remains relatively unchanged. On the other 
hand, if the interventions are adopted for three months from 05 April to 04 July (T = 72 + 92 = 164), 
then the epidemic peak tmax is moved back from 26 July to 09 September. It can be observed that the 
epidemic size is significantly reduced. Figure 8 shows the real-time prediction of infected cases that 
are identified between t = 0 and t = 365 for no intervention, two months intervention, and three 
months intervention. 

  

Figure 8. Real-time variation in the number of infected cases (0 ≤ t ≤ 365) for p = 0.084. The red dotted 
lines represent the epidemic peak. 

We can also generalize the desired day for possible interventions over 72 < T < 365, as shown in 
Figure 9a. It is observed that the epidemic peak tmax is linearly delayed as the intervention period 
increases from 72 ≤ T ≤ 263 and then fixed to tmax for T > 263. 

 
(a) 

 
(b) 

Figure 9. The relationship between the desired day for intervention T and (a) the epidemic peak tmax; 
(b) the number of infected cases at epidemic peak tmax. 

The figure also indicates that the interventions have a positive effect to delay the epidemic peak, 
which may give the government more time to contain the COVID-19 and flatten the curve. Figure 9b 
shows the relationship between the intervention period (T) and the number of infected cases at the 
epidemic peaks X(tmax). It is observed that the number of infected cases is monotonically declined and 

Figure 8. Real-time variation in the number of infected cases (0 ≤ t ≤ 365) for p = 0.084. The red dotted
lines represent the epidemic peak.

We can also generalize the desired day for possible interventions over 72 < T < 365, as shown
in Figure 9a. It is observed that the epidemic peak tmax is linearly delayed as the intervention period
increases from 72 ≤ T ≤ 263 and then fixed to tmax for T > 263.

Int. J. Environ. Res. Public Health 2020, 17, x 9 of 16 

 

3.3. Epidemic Peak after Possible Interventions 

In this subsection, the effect of possible interventions is investigated. In Malaysia, all universities, 
schools, and workshop places have been closed and most of the social events have been canceled 
from 17 to 26 March to eliminate the contact risk. However, the government has extended the closure 
to 14 April as the number of infected cases is still rising by an average of 170 cases per day. Thus, the 
current governmental effort seems to be limited to contain the COVID-19 up to now. 

We assume that the governmental and social efforts can reduce the infection rate β = 0.228 by 
25% of its value (βnew = 0.17) during the period from 05 April (t = 72) to the desired day (t= T > 72), and 
we fix p to 0.084 in what follows. Firstly, it is assumed that the intervention is adopted for 2 months; 
that its, T is equal to 134 (72 + 62). In this situation, the epidemic peak tmax is shifted 30 days later from 
26 July to 26 August. It is clear that the epidemic size remains relatively unchanged. On the other 
hand, if the interventions are adopted for three months from 05 April to 04 July (T = 72 + 92 = 164), 
then the epidemic peak tmax is moved back from 26 July to 09 September. It can be observed that the 
epidemic size is significantly reduced. Figure 8 shows the real-time prediction of infected cases that 
are identified between t = 0 and t = 365 for no intervention, two months intervention, and three 
months intervention. 

  

Figure 8. Real-time variation in the number of infected cases (0 ≤ t ≤ 365) for p = 0.084. The red dotted 
lines represent the epidemic peak. 

We can also generalize the desired day for possible interventions over 72 < T < 365, as shown in 
Figure 9a. It is observed that the epidemic peak tmax is linearly delayed as the intervention period 
increases from 72 ≤ T ≤ 263 and then fixed to tmax for T > 263. 

  
(a) (b) 

 
Figure 9. The relationship between the desired day for intervention T and (a) the epidemic peak tmax;
(b) the number of infected cases at epidemic peak tmax.

The figure also indicates that the interventions have a positive effect to delay the epidemic peak,
which may give the government more time to contain the COVID-19 and flatten the curve. Figure 9b
shows the relationship between the intervention period (T) and the number of infected cases at the
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epidemic peaks X(tmax). It is observed that the number of infected cases is monotonically declined
and fixed as T increases. Interestingly, the change in the number of infected cases is rapidly increased
for T > 72. This implies that an early intervention over a relatively small duration can be effective to
reduce the epidemic size and flatten the curve.

3.4. Short-Term Forecasting

The ANFIS model was mainly used to forecast the infected cases for the next five days based on
the historical data of 10 days. Firstly, the historical data is randomly split into training and testing
datasets according to a 70%:30% ratio to make sure the model is not subjected to overfitting. Figure 10
shows the training and testing errors over the 300 epochs (iterations). Estimated (ANFIS output) and
actual infected cases are depicted in Figure 11. Table 4 presents the RMSE, NRMSE, MAPE, and R2

obtained while training the ANFIS model using the training and testing datasets.

Int. J. Environ. Res. Public Health 2020, 17, x 10 of 15 

 

fixed as T increases. Interestingly, the change in the number of infected cases is rapidly increased for 

T > 72. This implies that an early intervention over a relatively small duration can be effective to 

reduce the epidemic size and flatten the curve. 

3.4. Short-Term Forecasting 

The ANFIS model was mainly used to forecast the infected cases for the next five days based on 

the historical data of 10 days. Firstly, the historical data is randomly split into training and testing 

datasets according to a 70%:30% ratio to make sure the model is not subjected to overfitting. Figure 

10 shows the training and testing errors over the 300 epochs (iterations). Estimated (ANFIS output) 

and actual infected cases are depicted in Figure 11. Table 4 presents the RMSE, NRMSE, MAPE, and 

R2 obtained while training the ANFIS model using the training and testing datasets. 

 

Figure 10. The upper and lower curves represent the training and testing errors, respectively. 

Table 4. Performance of the ANFIS model. 

Parameter Training Data Testing Dataset 

RMSE 18.53 46.87 

NRMSE 0.012 0.032 

MAPE 1.31% 2.79% 

R2 0.9973 0.9998 

 

 
(a) 

 
(b) 

Figure 11. Estimated and actual infected cases using the (a) training dataset and (b) testing dataset. 

Secondly, the developed ANFIS model was then used to forecast the number of infected cases 

for the next five days. The results of the forecasted and actual number of infected cases are presented 

in Figure 12. The performance of the ANFIS model to forecast is as follows: the RMSE, NRMSE, 

MAPE, and R2 values are 96.8, 0.041, 2.45%, and 0.9964, respectively. These results indicate a very 

low RMSE, NRMSE, and MAPE, but a high R2. 

Figure 10. The upper and lower curves represent the training and testing errors, respectively.

Int. J. Environ. Res. Public Health 2020, 17, x 10 of 15 

 

fixed as T increases. Interestingly, the change in the number of infected cases is rapidly increased for 
T > 72. This implies that an early intervention over a relatively small duration can be effective to 
reduce the epidemic size and flatten the curve. 

3.4. Short-Term Forecasting 

The ANFIS model was mainly used to forecast the infected cases for the next five days based on 
the historical data of 10 days. Firstly, the historical data is randomly split into training and testing 
datasets according to a 70%:30% ratio to make sure the model is not subjected to overfitting. Figure 
10 shows the training and testing errors over the 300 epochs (iterations). Estimated (ANFIS output) 
and actual infected cases are depicted in Figure 11. Table 4 presents the RMSE, NRMSE, MAPE, and 
R2 obtained while training the ANFIS model using the training and testing datasets. 

 
Figure 10. The upper and lower curves represent the training and testing errors, respectively. 

Table 4. Performance of the ANFIS model. 

Parameter Training Data Testing Dataset 
RMSE 18.53 46.87 

NRMSE 0.012 0.032 
MAPE 1.31% 2.79% 

R2 0.9973 0.9998 
 

 
(a) 

 
(b) 

Figure 11. Estimated and actual infected cases using the (a) training dataset and (b) testing dataset. 

Secondly, the developed ANFIS model was then used to forecast the number of infected cases 
for the next five days. The results of the forecasted and actual number of infected cases are presented 
in Figure 12. The performance of the ANFIS model to forecast is as follows: the RMSE, NRMSE, 
MAPE, and R2 values are 96.8, 0.041, 2.45%, and 0.9964, respectively. These results indicate a very 
low RMSE, NRMSE, and MAPE, but a high R2. 

Figure 11. Estimated and actual infected cases using the (a) training dataset and (b) testing dataset.

Table 4. Performance of the ANFIS model.

Parameter Training Data Testing Dataset

RMSE 18.53 46.87
NRMSE 0.012 0.032
MAPE 1.31% 2.79%

R2 0.9973 0.9998

Secondly, the developed ANFIS model was then used to forecast the number of infected cases for
the next five days. The results of the forecasted and actual number of infected cases are presented in
Figure 12. The performance of the ANFIS model to forecast is as follows: the RMSE, NRMSE, MAPE,
and R2 values are 96.8, 0.041, 2.45%, and 0.9964, respectively. These results indicate a very low RMSE,
NRMSE, and MAPE, but a high R2.
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4. Discussion

This study mainly aims to (1) estimate the infection rate using the GA algorithm; (2) predict the
epidemic peak of COVID-19; and (3) forecast the number of infected cases for the upcoming five days
based on historical data of the last ten days. First, the confirmed cases from 25 January to 05 April
was used to find the coefficient parameters of the SEIR model. Subsequently, the GA was applied to
find the infection rate value that minimizes the function of the SEIR model with Poisson noise. As a
result, the infection rate is 0.228 ± 0.013. Based on Equation (5), the basic reproductive number R0 is
2.28 ± 0.13. This value is relatively close to the estimated value by the World Health Organization
(WHO), which ranges from 2 to 2.5 for COVID-19 [40]. In addition, this value is not so different
from recent estimations: 2.24–3.58 [41], 2.0–3.1 [42], and 2.06–2.52 [43] for COVID-19. However, some
studies reported higher R0 values of 3.28, 2.90, and 3.11, as reported in [44–46], respectively. This bias
in estimating the R0 value is probably attributed to limited available data over a short period and also
highly depends on the settings. Furthermore, the estimation of R0 strongly relies on the estimation
method and the validity of the assumptions for some coefficients. Thus, the availability of more data
over a long period would provide a more accurate estimation and form a clearer trend.

Secondly, the SEIR model incorporating the mortality in the population due to COVID-19 was
used to predict the epidemic peak of COVID-19 in this study. The epidemic peak in Malaysia could be
reached late July 2020 and the uncertainty range is from 12 July to 11 August 2020. The results also
indicated that the COVID-19 trend in Malaysia will not flatten too quickly. This indication might be
consistent with the WHO’s statement [47] that COVID-19 is not a seasonal virus and thus will not
disappear in the summer, such as the flu. It should be noticed that the epidemic estimation may be
subjected to some variability, such that possible big change in social and natural situations would
shorten the range of the peak estimation. Besides, the epidemic estimation relies on the mathematical
modeling used to describe the epidemic. A complex model with more biological and epidemiological
variables is more realistic. However, it requires more model parameters and coefficients to be estimated
compared to a simpler one. Therefore, it is important to keep a balance between biological realism
and eliminating the variability in the model prediction with a view to increase the reliability of
the predictions.

The findings obtained for epidemic peak prediction are as follows: (1) the epidemic size is
not affected by the identification rate, which ranges from 0.01 to 0.084 for the total population in
Malaysia; (2) a near-future intervention has a great effect to postpone the epidemic peak that would
give the government and healthcare providers more time to optimize the medical environment by
training more staffs to deal with COVID-19; and (3) a longer period intervention should be taken
into account to reduce the epidemic size. Although the Malaysian government has implemented the
Movement Control Order (MCO) towards COVID-19 on 18 March throughout the country, the number
of daily confirmed cases is still rising with an average of 170 cases for the last two weeks. Besides,
more critical cases requiring intensive care units are being recorded. This trend is due to the following
possible reasons:
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1. The number of people who had contact with COVID-19 patients is enormous, as reported in [48].
This could make the process of tracking and isolating more complex. Based on the information
reported by Chinese medical doctors involved in Wuhan, the critical cases form 10% of the
total number of infected people. The early diagnosis and treatment would reduce the flow of
COVID-19 patients into the ICU unit [49].

2. Poor experience in treating and managing cases with different levels of infection. For instance,
severe cases should be kept under monitoring with intensive care, while mild cases without clear
symptoms should be kept with less intensive care in the hospitals. However, patients under
investigation should be placed in special isolation outside the hospitals. This kind of management
would ease the treating process with the currently available equipment [50].

3. The current MCO implemented in Malaysia is limited to aiding the awareness of the people to
the danger of COVID-19. For the first 10 days of the MCO, 60% of the public has obeyed the
MCO issued by the government [51]. Thus, more restrictions are needed to enforce the MCO.
By increasing the public awareness, the infection rate will be reduced, which would result in
decreasing the reproductive number and delaying the epidemic peak.

Lastly, this study provides short-term forecasting for the number of infected cases based on the
ANFIS model. The results indicate a high forecast precision is achieved based on the ANFIS model.
The ANFIS model achieved (1) an excellent coefficient of determination (R2 = 0.9964), which is very
close to the perfect value of 1; (2) a low NRMSE value (NRMSE = 0.041), which is highly close to the
perfect values of 0; and (3) a high MAPE value (MAPE = 2.45%), which is less than 10% [52]. The main
motivation behind using the ANFIS model instead of parametric models (e.g., likelihood and Bayesian
methods) is that ANFIS is able to achieve a high accuracy using only a few datasets and is easy to be
deployed, such that the ANFIS model uses one input as day number, while parametric models require
at least four inputs as well as estimation of the coefficients.

This study has some limitations. First, the SEIR model is used with a limited number of cases
and COVID-19 is highly infectious; so, the current results of peak estimation are constrained to a
limited period and may be changed after inputting a considerable number of infected cases. Secondly,
the estimation is based on the available data from the WHO. A possible delay in confirming or
reporting could result in an underestimation ofR0. Lastly, the ANFIS model is applicable for short-term
forecasting, and so it cannot be used to predict the epidemic peak of COVID-19 as the ANFIS model
does not consider the recovered and death rates.

5. Conclusions

As the main public concern in Malaysia is whether the COVID-19 spread will continue for the
upcoming few months, we provide here information on predicting the epidemic peak using the SEIR
model, estimating the infection rate using the GA algorithm, and short-time forecasting using the
ANFIS model. The results related to the epidemic peak show that (1) the epidemic peak could be
reached in the period ranging from 12 July to 11 August 2020, and last until the period ranging
from 22 November 2020 to 12 January 2021; (2) the identification rate, which ranges from 0.01 to
0.084, does not affect the epidemic size for the total Malaysian population; (3) the influence of the
identification rate on the basic reproductive number is negligible; and (4) a near-future intervention
may decrease the infection rate, which would lead to a delay the epidemic peak. The results also show
that the infection rate is 0.228 ± 0.013, while the basic reproductive number is 2.28 ± 0.13. Furthermore,
a high forecasting accuracy is achieved, such that the NRMSE, MAPE, and R2 values are 0.041, 2.45%,
and 0.9964, respectively.

Author Contributions: A.A. and H.S. implemented the concept of the SEIR model; A.A. and R.K. implemented
the concept of GA and ANFIS models; H.S. performed data and resources collection; A.A. performed coding and
data visualization; all authors performed results analysis and discussion; R.K. validated the SEIR model and
acquire the necessary fund; all authors contributed to writing and editing the paper. All authors have read and
agreed to the published version of the manuscript



Int. J. Environ. Res. Public Health 2020, 17, 4076 13 of 15

Funding: This research was funded by Universiti Putra Malaysia, grant number IPS No. 9574400.

Acknowledgments: We would like to thank Khazanah Nasional Berhad, Malaysia, for their technical and
financial support.

Conflicts of Interest: The authors declare no conflict of interest.

Data availability: The data and MATLAB® codes used to generate the results are available from the corresponding
author upon request.

Appendix A

Int. J. Environ. Res. Public Health 2020, 17, x 13 of 15 

 

Acknowledgments: We would like to thank Khazanah Nasional Berhad, Malaysia, for their technical and 

financial support. 

Conflicts of Interest: The authors declare no conflict of interest. 

Data availability: The data and MATLAB®  codes used to generate the results are available from the 

corresponding author upon request. 

Appendix A 

 

Figure A1. Block diagram of the SEIR model. 

References 

1. Gallego, V.; Nishiura, H.; Sah, R.; Rodriguez-Morales, A.J. The COVID-19 outbreak and implications for 

the Tokyo 2020 Summer Olympic Games. Travel Med. Infect. Dis. 2020, 34, 101604. 

2. Jiang, F.; Deng, L.; Zhang, L.; Cai, Y.; Cheung, C.W.; Xia, Z. Review of the clinical characteristics of 

coronavirus disease 2019 (COVID-19). J. Gen. Intern. Med. 2020, 35, 1545–1549. 

3. Updates on the Coronavirus Disease 2019 (COVID-19) Situation in Malaysia. Available online: 

http://www.moh.gov.my/index.php/database_stores/attach_download/337/1378 (accessed on 22 March 2020). 

4. Rothe, C.; Schunk, M.; Sothmann, P.; Bretzel, G.; Froeschl, G.; Wallrauch, C.; Zimmer, T.; Thiel, V.; Janke, C.; 

Guggemos, W. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. New Engl. 

J. Med. 2020, 382, 970–971. 

5. van den Driessche, P. Reproduction numbers of infectious disease models. Infect. Dis. Model. 2017, 2, 288–303. 

6. Roosa, K.; Lee, Y.; Luo, R.; Kirpich, A.; Rothenberg, R.; Hyman, J.M.; Yan, P.; Chowell, G. Short-term 

forecasts of the COVID-19 epidemic in Guangdong and Zhejiang, China: February 13–23, 2020. J. Clin. Med. 

2020, 9, 596. 

7. Guzzetta, G.; Poletti, P.; Ajelli, M.; Trentini, F.; Marziano, V.; Cereda, D.; Tirani, M.; Diurno, G.; Bodina, A.; 

Barone, A. Potential short-term outcome of an uncontrolled COVID-19 epidemic in Lombardy, Italy, 

February to March 2020. Eurosurveillance 2020, 25, 2000293. 

8. Huang, N.E.; Qiao, F. A data driven time-dependent transmission rate for tracking an epidemic: A case 

study of 2019-nCoV. Sci. Bull. 2020, 65, 425. 

9. Peng, L.; Yang, W.; Zhang, D.; Zhuge, C.; Hong, L. Epidemic analysis of COVID-19 in China by dynamical 

modeling. arXiv:2002.06563v1, 2020, 1, 18. 

10. Tian, S.; Hu, N.; Lou, J.; Chen, K.; Kang, X.; Xiang, Z.; Chen, H.; Wang, D.; Liu, N.; Liu, D. Characteristics 

of COVID-19 infection in Beijing. J. Infect. 2020, 4, 401-406. 

11. Qin, L.; Sun, Q.; Wang, Y.; Wu, K.-F.; Chen, M.; Shia, B.-C.; Wu, S.-Y. Prediction of Number of Cases of 2019 

Novel Coronavirus (COVID-19) Using Social Media Search Index. Int. J. Environ. Res. Public Health 2020, 17, 2365. 

12. Kuniya, T. Prediction of the Epidemic Peak of Coronavirus Disease in Japan, 2020. J. Clin. Med. 2020, 9, 789. 

13. Rovetta, A.; Bhagavathula, A.S. Modelling the epidemiological trend and behavior of COVID-19 in Italy. 

medRxiv 2020, doi:10.1101/2020.03.19.20038968. 

14. Olfatifar, M.; Houri, H.; Shojaee, S.; Pourhoseingholi, M.A.; Al-Ali, W.; Luca, B.; Ashtari, S.; Shahrokh, S.; 

Vahedian, A.; Asadzadeh Aghdaei, H. The Required Confronting Approaches Efficacy and Time to Control 

Iranian COVID-19 Outbreak. Arch. Clin. Inf. Dis. 2020, 15, e102633. 

15. Li, X.; Zhao, X.; Sun, Y. The lockdown of Hubei Province causing different transmission dynamics of the 

novel coronavirus (2019-nCoV) in Wuhan and Beijing. medRxiv 2020, doi10.1101/2020.02.09.20021477 

Figure A1. Block diagram of the SEIR model.

References

1. Gallego, V.; Nishiura, H.; Sah, R.; Rodriguez-Morales, A.J. The COVID-19 outbreak and implications for the
Tokyo 2020 Summer Olympic Games. Travel Med. Infect. Dis. 2020, 34, 101604. [CrossRef] [PubMed]

2. Jiang, F.; Deng, L.; Zhang, L.; Cai, Y.; Cheung, C.W.; Xia, Z. Review of the clinical characteristics of coronavirus
disease 2019 (COVID-19). J. Gen. Intern. Med. 2020, 35, 1545–1549. [CrossRef] [PubMed]

3. Updates on the Coronavirus Disease 2019 (COVID-19) Situation in Malaysia. Available online: http:
//www.moh.gov.my/index.php/database_stores/attach_download/337/1378 (accessed on 22 March 2020).

4. Rothe, C.; Schunk, M.; Sothmann, P.; Bretzel, G.; Froeschl, G.; Wallrauch, C.; Zimmer, T.; Thiel, V.; Janke, C.;
Guggemos, W. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N. Engl.
J. Med. 2020, 382, 970–971. [CrossRef]

5. van den Driessche, P. Reproduction numbers of infectious disease models. Infect. Dis. Model. 2017, 2, 288–303.
[CrossRef] [PubMed]

6. Roosa, K.; Lee, Y.; Luo, R.; Kirpich, A.; Rothenberg, R.; Hyman, J.M.; Yan, P.; Chowell, G. Short-term forecasts
of the COVID-19 epidemic in Guangdong and Zhejiang, China: February 13–23, 2020. J. Clin. Med. 2020,
9, 596. [CrossRef] [PubMed]

7. Guzzetta, G.; Poletti, P.; Ajelli, M.; Trentini, F.; Marziano, V.; Cereda, D.; Tirani, M.; Diurno, G.; Bodina, A.;
Barone, A. Potential short-term outcome of an uncontrolled COVID-19 epidemic in Lombardy, Italy, February
to March 2020. Eurosurveillance 2020, 25, 2000293. [CrossRef]

8. Huang, N.E.; Qiao, F. A data driven time-dependent transmission rate for tracking an epidemic: A case
study of 2019-nCoV. Sci. Bull. 2020, 65, 425. [CrossRef]

9. Peng, L.; Yang, W.; Zhang, D.; Zhuge, C.; Hong, L. Epidemic analysis of COVID-19 in China by dynamical
modeling. arXiv 2020, arXiv:2002.06563v1.

10. Tian, S.; Hu, N.; Lou, J.; Chen, K.; Kang, X.; Xiang, Z.; Chen, H.; Wang, D.; Liu, N.; Liu, D. Characteristics of
COVID-19 infection in Beijing. J. Infect. 2020, 4, 401–406. [CrossRef]

11. Qin, L.; Sun, Q.; Wang, Y.; Wu, K.-F.; Chen, M.; Shia, B.-C.; Wu, S.-Y. Prediction of Number of Cases of 2019
Novel Coronavirus (COVID-19) Using Social Media Search Index. Int. J. Environ. Res. Public Health 2020,
17, 2365. [CrossRef]

12. Kuniya, T. Prediction of the Epidemic Peak of Coronavirus Disease in Japan, 2020. J. Clin. Med. 2020, 9, 789.
[CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.tmaid.2020.101604
http://www.ncbi.nlm.nih.gov/pubmed/32112859
http://dx.doi.org/10.1007/s11606-020-05762-w
http://www.ncbi.nlm.nih.gov/pubmed/32133578
http://www.moh.gov.my/index.php/database_stores/attach_download/337/1378
http://www.moh.gov.my/index.php/database_stores/attach_download/337/1378
http://dx.doi.org/10.1056/NEJMc2001468
http://dx.doi.org/10.1016/j.idm.2017.06.002
http://www.ncbi.nlm.nih.gov/pubmed/29928743
http://dx.doi.org/10.3390/jcm9020596
http://www.ncbi.nlm.nih.gov/pubmed/32098289
http://dx.doi.org/10.2807/1560-7917.ES.2020.25.12.2000293
http://dx.doi.org/10.1016/j.scib.2020.02.005
http://dx.doi.org/10.1016/j.jinf.2020.02.018
http://dx.doi.org/10.3390/ijerph17072365
http://dx.doi.org/10.3390/jcm9030789
http://www.ncbi.nlm.nih.gov/pubmed/32183172


Int. J. Environ. Res. Public Health 2020, 17, 4076 14 of 15

13. Rovetta, A.; Bhagavathula, A.S. Modelling the epidemiological trend and behavior of COVID-19 in Italy.
medRxiv 2020. [CrossRef]

14. Olfatifar, M.; Houri, H.; Shojaee, S.; Pourhoseingholi, M.A.; Al-Ali, W.; Luca, B.; Ashtari, S.; Shahrokh, S.;
Vahedian, A.; Asadzadeh Aghdaei, H. The Required Confronting Approaches Efficacy and Time to Control
Iranian COVID-19 Outbreak. Arch. Clin. Inf. Dis. 2020, 15, e102633. [CrossRef]

15. Li, X.; Zhao, X.; Sun, Y. The lockdown of Hubei Province causing different transmission dynamics of the
novel coronavirus (2019-nCoV) in Wuhan and Beijing. medRxiv 2020. [CrossRef]

16. Hu, Z.; Ge, Q.; Jin, L.; Xiong, M. Artificial intelligence forecasting of covid-19 in China. Available online:
https://arxiv.org/abs/2002.07112 (accessed on 13 May 2020).

17. Li, X.; Xu, B.; Shaman, J. The Impact of Environmental Transmission and Epidemiological Features on the
Geographical Translocation of Highly Pathogenic Avian Influenza Virus. Int. J. Environ. Res. Public Health
2019, 16, 1890. [CrossRef]

18. Davidian, M.; Giltinan, D.M. Nonlinear Models for Repeated Measurement Data; CRC Press: Boca Raton, FL,
USA, 1995; Volume 62.

19. Capaldi, A.; Behrend, S.; Berman, B.; Smith, J.; Wright, J.; Lloyd, A.L. Parameter estimation and uncertainty
quantication for an epidemic model. Math. Biosci. Eng. 2012, 9, 553–576.

20. Keeling, M.J.; Rohani, P. Modeling Infectious Diseases in Humans and Animals; Princeton University Press:
Princeton, NJ, USA, 2011.

21. Smirnova, A.; deCamp, L.; Chowell, G. Forecasting epidemics through nonparametric estimation of
time-dependent transmission rates using the SEIR model. Bull. Math. Biol. 2019, 81, 4343–4365. [CrossRef]

22. Sun, H.; Qiu, Y.; Yan, H.; Huang, Y.; Zhu, Y.; Chen, S.X. Tracking and Predicting COVID-19 Epidemic in
China Mainland. medRxiv 2020, 17, 20.

23. Linton, N.M.; Kobayashi, T.; Yang, Y.; Hayashi, K.; Akhmetzhanov, A.R.; Jung, S.-M.; Yuan, B.; Kinoshita, R.;
Nishiura, H. Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections
with right truncation: A statistical analysis of publicly available case data. J. Clin. Med. 2020, 9, 538.
[CrossRef]

24. Lauer, S.A.; Grantz, K.H.; Bi, Q.; Jones, F.K.; Zheng, Q.; Meredith, H.R.; Azman, A.S.; Reich, N.G.; Lessler, J.
The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases:
Estimation and application. Ann. Intern. Med. 2020, 172, 577–582. [CrossRef]

25. Roda, W.C.; Varughese, M.B.; Han, D.; Li, M.Y. Why is it difficult to accurately predict the COVID-19
epidemic? Infect. Dis. Model. 2020, 5, 271–281. [CrossRef] [PubMed]

26. Current Population Estimates, Malaysia, 2018–2019. Available online: https://www.dosm.gov.my/v1/index.
php?r=column/cthemeByCat&cat=155&bul_id=aWJZRkJ4UEdKcUZpT2tVT090Snpydz09&menu_id=

L0pheU43NWJwRWVSZklWdzQ4TlhUUT09 (accessed on 20 March 2020).
27. Covid-19: Malaysia to Receive New Test Kit from South Korea. Available online: https://www.thestar.

com.my/news/nation/2020/04/05/covid-19-malaysia-to-receive-new-test-kit-from-south-korea (accessed on
12 April 2020).

28. Latest COVID-19 Statistic in Malaysia by MOH. Available online: http://www.moh.gov.my/index.php/pages/
view/2019-ncov-wuhan (accessed on 25 March 2020).

29. Jung, S.-M.; Akhmetzhanov, A.R.; Hayashi, K.; Linton, N.M.; Yang, Y.; Yuan, B.; Kobayashi, T.; Kinoshita, R.;
Nishiura, H. Real-time estimation of the risk of death from novel coronavirus (COVID-19) infection: Inference
using exported cases. J. Clin. Med. 2020, 9, 523. [CrossRef] [PubMed]

30. Jones, J.H. Notes on R0; Department of Anthropological Sciences: Stanford, CA, USA, 2007.
31. Tuncer, N.; Gulbudak, H.; Cannataro, V.L.; Martcheva, M. Structural and practical identifiability issues of

immuno-epidemiological vector–host models with application to rift valley fever. Bull. Math. Biol. 2016, 78,
1796–1827. [CrossRef] [PubMed]

32. Ahmad, F.; Isa, N.A.M.; Osman, M.K.; Hussain, Z. Performance comparison of gradient descent and
Genetic Algorithm based Artificial Neural Networks training. In Proceedings of the 2010 10th International
Conference on Intelligent Systems Design and Applications, Cairo, Egypt, 29 November–1 December 2010;
pp. 604–609.

33. Sorsa, A.; Peltokangas, R.; Leiviska, K. Real-coded genetic algorithms and nonlinear parameter identification.
In Proceedings of the 2008 4th International IEEE Conference Intelligent Systems, Varna, Bulgaria,
6–8 September 2008; pp. 10–42.

http://dx.doi.org/10.1101/2020.03.19.20038968
http://dx.doi.org/10.5812/archcid.102633
http://dx.doi.org/10.1101/2020.02.09.20021477
https://arxiv.org/abs/2002.07112
http://dx.doi.org/10.3390/ijerph16111890
http://dx.doi.org/10.1007/s11538-017-0284-3
http://dx.doi.org/10.3390/jcm9020538
http://dx.doi.org/10.7326/M20-0504
http://dx.doi.org/10.1016/j.idm.2020.03.001
http://www.ncbi.nlm.nih.gov/pubmed/32289100
https://www.dosm.gov.my/v1/index.php?r=column/cthemeByCat&cat=155&bul_id=aWJZRkJ4UEdKcUZpT2tVT090Snpydz09&menu_id=L0pheU43NWJwRWVSZklWdzQ4TlhUUT09
https://www.dosm.gov.my/v1/index.php?r=column/cthemeByCat&cat=155&bul_id=aWJZRkJ4UEdKcUZpT2tVT090Snpydz09&menu_id=L0pheU43NWJwRWVSZklWdzQ4TlhUUT09
https://www.dosm.gov.my/v1/index.php?r=column/cthemeByCat&cat=155&bul_id=aWJZRkJ4UEdKcUZpT2tVT090Snpydz09&menu_id=L0pheU43NWJwRWVSZklWdzQ4TlhUUT09
https://www.thestar.com.my/news/nation/2020/04/05/covid-19-malaysia-to-receive-new-test-kit-from-south-korea
https://www.thestar.com.my/news/nation/2020/04/05/covid-19-malaysia-to-receive-new-test-kit-from-south-korea
http://www.moh.gov.my/index.php/pages/view/2019-ncov-wuhan
http://www.moh.gov.my/index.php/pages/view/2019-ncov-wuhan
http://dx.doi.org/10.3390/jcm9020523
http://www.ncbi.nlm.nih.gov/pubmed/32075152
http://dx.doi.org/10.1007/s11538-016-0200-2
http://www.ncbi.nlm.nih.gov/pubmed/27651156


Int. J. Environ. Res. Public Health 2020, 17, 4076 15 of 15

34. Kilinc, M.; Caicedo, J.M. Finding Plausible Optimal Solutions in Engineering Problems Using an Adaptive
Genetic Algorithm. Adv. Civ. Eng. 2019, 2019. [CrossRef]

35. Mohammadi, K.; Shamshirband, S.; Kamsin, A.; Lai, P.; Mansor, Z. Identifying the most significant input
parameters for predicting global solar radiation using an ANFIS selection procedure. Renew. Sustain.
Energy Rev. 2016, 63, 423–434. [CrossRef]

36. Rezakazemi, M.; Dashti, A.; Asghari, M.; Shirazian, S. H2-selective mixed matrix membranes modeling
using ANFIS, PSO-ANFIS, GA-ANFIS. Int. J. Hydrog. Energy 2017, 42, 15211–15225. [CrossRef]

37. Yi, H.-S.; Park, S.; An, K.-G.; Kwak, K.-C. Algal bloom prediction using extreme learning machine models at
artificial weirs in the Nakdong River, Korea. Int. J. Environ. Res. Public Health 2018, 15, 2078. [CrossRef]
[PubMed]

38. Mentaschi, L.; Besio, G.; Cassola, F.; Mazzino, A. Problems in RMSE-based wave model validations.
Ocean Model. 2013, 72, 53–58. [CrossRef]

39. Piepho, H.P. A coefficient of determination (R2) for generalized linear mixed models. Biom. J. 2019, 61,
860–872. [CrossRef]

40. Coronavirus Disease 2019 (COVID-19) Situation Report–46. Available online: https://www.who.int/
docs/default-source/coronaviruse/situation-reports/20200306-sitrep-46-covid-19.pdf?sfvrsn=96b04adf_2
(accessed on 20 March 2020).

41. Zhao, S.; Lin, Q.; Ran, J.; Musa, S.S.; Yang, G.; Wang, W.; Lou, Y.; Gao, D.; Yang, L.; He, D. Preliminary
estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020:
A data-driven analysis in the early phase of the outbreak. Int. J. Infect. Dis. 2020, 92, 214–217. [CrossRef]

42. Majumder, M.; Mandl, K.D. Early transmissibility assessment of a novel coronavirus in Wuhan, China.
N. Engl. J. Med. 2020, 382, 1199–1207. [CrossRef]

43. Zhang, S.; Diao, M.; Yu, W.; Pei, L.; Lin, Z.; Chen, D. Estimation of the reproductive number of Novel
Coronavirus (COVID-19) and the probable outbreak size on the Diamond Princess cruise ship: A data-driven
analysis. Int. J. Infect. Dis. 2020, 93, 201–204. [CrossRef]

44. Liu, Y.; Gayle, A.A.; Wilder-Smith, A.; Rocklöv, J. The reproductive number of COVID-19 is higher compared
to SARS coronavirus. J. Travel Med. 2020, 27, 1–4.

45. Liu, T.; Hu, J.; Kang, M.; Lin, L.; Zhong, H.; Xiao, J.; He, G.; Song, T.; Huang, Q.; Rong, Z. Transmission
dynamics of 2019 novel coronavirus (2019-nCoV). bioRexiv 2020, 1, 919787. [CrossRef]

46. Read, J.M.; Bridgen, J.R.; Cummings, D.A.; Ho, A.; Jewell, C.P. Novel coronavirus 2019-nCoV: Early estimation
of epidemiological parameters and epidemic predictions. MedRxiv 2020, preprint. [CrossRef]

47. It’s a ‘False Hope’ Coronavirus Will Disappear in the Summer Like the Flu. Available online:
https://www.msn.com/en-us/health/health-news/its-a-false-hope-coronavirus-will-disappear-in-the-
summer-like-the-flu-who-says/ar-BB10QrLc (accessed on 12 March 2020).

48. Efforts to Contain Covid-19 No Longer Possible. Available online: https://www.nst.com.my/news/nation/

2020/03/575003/efforts-contain-covid-19-no-longer-possible-dr-lee (accessed on 16 March 2020).
49. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Available

online: https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-
report.pdf (accessed on 12 March 2020).

50. World Health Organization. Clinical Management of Severe Acute Respiratory Infection (SARI) When COVID-19
Disease Is Suspected: Interim Guidance, 13 March 2020; World Health Organization: Geneva, Switzerland, 2020.

51. Only 60pc Complied with MCO; Police May Take Sterner Action. Available online: https:
//www.malaymail.com/news/malaysia/2020/03/19/ismail-sabri-four-in-10-malaysians-violating-
movement-control-order/1848077/ (accessed on 19 March 2020).

52. Gilliland, M. The Business Forecasting Deal: Exposing Myths, Eliminating Bad Practices, Providing Practical
Solutions; John Wiley & Sons: Hoboken, NJ, USA, 2010; Volume 27.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1155/2019/7475156
http://dx.doi.org/10.1016/j.rser.2016.05.065
http://dx.doi.org/10.1016/j.ijhydene.2017.04.044
http://dx.doi.org/10.3390/ijerph15102078
http://www.ncbi.nlm.nih.gov/pubmed/30248912
http://dx.doi.org/10.1016/j.ocemod.2013.08.003
http://dx.doi.org/10.1002/bimj.201800270
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200306-sitrep-46-covid-19.pdf?sfvrsn=96b04adf_2
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200306-sitrep-46-covid-19.pdf?sfvrsn=96b04adf_2
http://dx.doi.org/10.1016/j.ijid.2020.01.050
http://dx.doi.org/10.2139/ssrn.3524675
http://dx.doi.org/10.1016/j.ijid.2020.02.033
http://dx.doi.org/10.2139/ssrn.3526307
http://dx.doi.org/10.1101/2020.01.23.20018549
https://www.msn.com/en-us/health/health-news/its-a-false-hope-coronavirus-will-disappear-in-the-summer-like-the-flu-who-says/ar-BB10QrLc
https://www.msn.com/en-us/health/health-news/its-a-false-hope-coronavirus-will-disappear-in-the-summer-like-the-flu-who-says/ar-BB10QrLc
https://www.nst.com.my/news/nation/2020/03/575003/efforts-contain-covid-19-no-longer-possible-dr-lee
https://www.nst.com.my/news/nation/2020/03/575003/efforts-contain-covid-19-no-longer-possible-dr-lee
https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
https://www.malaymail.com/news/malaysia/2020/03/19/ismail-sabri-four-in-10-malaysians-violating-movement-control-order/1848077/
https://www.malaymail.com/news/malaysia/2020/03/19/ismail-sabri-four-in-10-malaysians-violating-movement-control-order/1848077/
https://www.malaymail.com/news/malaysia/2020/03/19/ismail-sabri-four-in-10-malaysians-violating-movement-control-order/1848077/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	SEIR Model for Peak Prediction 
	. Estimation Using GA 
	ANFIS for Short-Term Forecasting 

	Results 
	Infection Rate () Estimation 
	Epedimic Peak Prediction 
	Epidemic Peak after Possible Interventions 
	Short-Term Forecasting 

	Discussion 
	Conclusions 
	
	References

