Cardiopulmonary Rehabilitation Improves Respiratory Muscle Function and Functional Capacity in Children with Congenital Heart Disease. A Prospective Cohort Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Trial Design and Ethics
2.2. Participants
2.3. Safety Considerations
2.4. Measurements
2.4.1. Anthropometric Characteristics
2.4.2. Baseline Lung Function
2.4.3. Respiratory Muscle Function
2.4.4. Functional Capacity
2.5. Intervention
2.6. Statistical Analysis
3. Results
3.1. Population
3.2. Program Adherence and Safety
3.3. Respiratory Muscle Function
3.4. Functional Capacity
4. Discussion
4.1. Respiratory Muscle Function
4.2. Functional Capacity
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations and Acronyms
References
- Dolk, H.; Loane, M.; Garne, E. Congenital heart defects in Europe: Prevalence and perinatal mortality, 2000 to 2005. Circulation 2011, 123, 841–849. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, J.I.E.; Kaplan, S. The incidence of congenital heart disease. J. Am. Coll. Cardiol. 2002, 39, 1890–1900. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, J.I.E. The global burden of congenital heart disease: Review article. Cardiovasc J. Afr. 2013, 24, 141–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willems, R.; Tack, P.; François, K.; Annemans, L. Direct medical costs of pediatric congenital heart disease surgery in a belgian university hospital. World J. Pediatr. Congenit. Heart Surg. 2019, 10, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Erikssen, G.; LiestØl, K.; Seem, E.; Birkeland, S.; Saatwedt, K.J.; Hoel, T.N.; DØhlen, G.; Skulstad, H.; Svennevig, J.L.; Thaulow, E.; et al. Achievements in congenital heart defect surgery: A prospective, 40-year study of 7038 patients. Circulation 2015, 131, 337–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khairy, P.; Ionescu-Ittu, R.; MacKie, A.S.; Abrahamowicz, M.; Pilote, L.; Marelli, A.J. Changing mortality in congenital heart disease. J. Am. Coll. Cardiol. 2010, 56, 1149–1157. [Google Scholar] [CrossRef] [Green Version]
- Amedro, P.; Dorka, R.; Moniotte, S.; Guillaumont, S.; Fraisse, A.; Kreitmann, B.; Borm, B.; Bertet, H.; Barréa, C.; Owaert, C.; et al. Quality of life of children with congenital heart diseases: A multicenter controlled cross-sectional study. Pediatr. Cardiol. 2015, 36, 1588–1601. [Google Scholar] [CrossRef]
- Bertoletti, J.; Marx, G.C.; Hattge Júnior, S.P.; Pellanda, L.C. Quality of life and congenital heart disease in childhood and adolescence. Arq. Bras. Cardiol. 2014, 102, 192–198. [Google Scholar] [CrossRef]
- Abassi, H.; Gavotto, A.; Picot, M.C.; Bertet, H.; Matecki, S.; Guillaumont, S.; Auquier, P.; Moreau, J.; Amedro, P. Impaired pulmonary function and its association with clinical outcomes, exercise capacity and quality of life in children with congenital heart disease. Int. J. Cardiol. 2019, 285, 86–92. [Google Scholar] [CrossRef]
- Longmuir, P.E.; Brothers, J.A.; de Ferranti, S.D.; Hayman, L.L.; Wan Hare, G.F.; Matherne, G.P.; Davis, C.K.; Joy, E.A.; McCrindle, B.W. Promotion of physical activity for children and adults with congenital heart disease: A scientific statement from the american heart association. Circulation 2013, 127, 2147–2159. [Google Scholar] [CrossRef] [Green Version]
- Greutmann, M.; Le, T.L.; Tobler, D.; Biaggi, P.; Oechslin, E.N.; Silver Sides, C.K.; Granton, J.T. Generalised muscle weakness in young adults with congenital heart disease. Heart 2011, 97, 1164–1168. [Google Scholar] [CrossRef] [PubMed]
- Takken, T.; Giardini, A.; Reybrouck, T.; Gewillig, M.; Hövels-Gürich, H.H.; Longmuir, P.E.; McCrindle, B.W.; Hager, A. Recommendations for physical activity, recreation sport, and exercise training in paediatric patients with congenital heart disease: A report from the Exercise, Basic & Translational Research Section of the European Association of Cardiovascular Prevention and Rehabilitation, the European Congenital Heart and Lung Exercise Group, and the Association for European Paediatric Cardiology. Eur. J. Prev. Cardiol. 2012, 19, 1034–1065. [Google Scholar] [CrossRef]
- Ubeda Tikkanen, A.; Rodriguez Oyaga, A.; Riañ, O.A.; Maroto, E.; Rhodes, J. Paediatric cardiac rehabilitation in congenital heart disease: A systematic review. Cardiol Young. 2012, 22, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Duppen, N.; Takken, T.; Hopman, M.T.E.; ten Harkel, A.D.J.; Utens, E.M.W.J.; Helbing, W.A. Systematic review of the effects of physical exercise training programmes in children and young adults with congenital heart disease. Int. J. Cardiol. 2013, 168, 1779–1787. [Google Scholar] [CrossRef] [PubMed]
- Gomes-Neto, M.; Saquetto, M.B.; da Silva e Silva, C.M.; Conceição, C.S.; Carvalho, V.O. Impact of exercise training in aerobic capacity and pulmonary function in children and adolescents after congenital heart disease surgery: A systematic review with meta-analysis. Pediatr. Cardiol. 2016, 37, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Duppen, N.; Etnel, J.R.; Spaans, L.; Takken, T.; van den Berg-Emons, R.J.; Boersma, E.; Schokking, M.; Dulfer, K.; Utens, E.M.; Helbing, W.; et al. Does exercise training improve cardiopulmonary fitness and daily physical activity in children and young adults with corrected tetralogy of Fallot or Fontan circulation? A randomized controlled trial. Am. Heart. J. 2015, 170, 606–614. [Google Scholar] [CrossRef]
- Carrascosa, A.; Yeste, D.; Moreno-Galdó, A.; Gussinyé, M.; Ferrández, Á.; Clemente, M.; Fernández-Cancio, M. Pubertal growth of 1453 healthy children according to age at pubertal growth spurt onset. The Barcelona longitudinal growth study. An. Pediatr. 2018, 89, 144–152. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casabury, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, P.M.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [Green Version]
- Zapletal, A.; Paul, T.; Samánek, M. [Significance of contemporary methods of lung function testing for the detection of airway obstruction in children and adolescents (author’s transl)]. Z. Erkr. Atmungsorgane. 1977, 149, 343–371. [Google Scholar]
- Laveneziana, P.; Albuquerque, A.; Aliverti, A.; Babb, T.; Barreiro, E.; Dres, M.; Dubé, B.P.; Fauroux, B.; Gea, J.; Guenette, J.A.; et al. ERS statement on respiratory muscle testing at rest and during exercise. Eur. Respir. J. 2019, 53. [Google Scholar] [CrossRef] [Green Version]
- Gibson, G.J.; Whitelaw, W.; Siafakas, N. ATS/ERS Statement on respiratory muscle testing. Am. J. Respir. Crit. Care Med. 2002, 166, 518–624. [Google Scholar] [CrossRef]
- Heinzmann-Filho, J.P.; Vidal, P.C.V.; Jones, M.H.; Donadio, M.V.F. Normal values for respiratory muscle strength in healthy preschoolers and school children. Respir. Med. 2012, 106, 1639–1646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, R.; Selvadurai, H.; Coates, A.; Wilkes, D.L.; Schneiderman-Walker, J.; Corey, M. Determination of maximal voluntary ventilation in children with cystic fibrosis. Pediatr. Pulmonol. 2003, 35, 467–471. [Google Scholar] [CrossRef]
- Bartels, B.; de Groot, J.F.; Terwee, C.B. The six-minute walk test in chronic pediatric conditions: A systematic review of measurement properties. Phys. Ther. 2013, 93, 529–541. [Google Scholar] [CrossRef] [Green Version]
- Geiger, R.; Strasak, A.; Treml, B.; Gasser, K.; Kleinsasser, A.; Fischer, W.; Geiger, H.; Loeckinger, A.; Stein, J.I. Six-minute walk test in children and adolescents. J. Pediatr. 2007, 150, 395–399. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription. 10th ed. Wolters Kluwer. 2017. Available online: https://shop.lww.com/ACSM-s-Guidelines-for-Exercise-Testing-and-Prescription/p/9781496339065 (accessed on 1 March 2020).
- Skinner, J.S.; McLellan, T.H. The Transition from Aerobic to Anaerobic Metabolism. Res. Q Exerc. Sport. 1980, 51, 234–248. [Google Scholar] [CrossRef]
- García-Cuenllas, L.; del Campo Bujedo, F.; Centeno Garrido, M.A.; Oreja Sánchez, C.; Maroto Álvaro, E.; Medrano López, C.; Cadarso Mora, A.; Castillo Martín, J.; Plata Isquierdo, B.; Martín García, A.; et al. Protocolo de rehabilitación cardiorrespiratoria en pacientes con cardiopatías congénitas. Medicine 2017, 12, 2713–2721. [Google Scholar] [CrossRef]
- Laohachai, K.; Winlaw, D.; Selvadurai, H.; Gnanappa, G.K.; d’Udekem, Y.; Celermajer, D.; Ayer, J. Inspiratory muscle training is associated with improved inspiratory muscle strength, resting cardiac output, and the ventilatory efficiency of exercise in patients with a fontan circulation. J. Am. Heart. Assoc. 2017, 6, 1–12. [Google Scholar] [CrossRef]
- Meyer, M.; Brudy, L.; García-Cuenllas, L.; Hager, A.; Ewert, P.; Oberhoffer, R.; Müller, J. Current state of home-based exercise interventions in patients with congenital heart disease: A systematic review. Heart 2020, 106, 333–341. [Google Scholar] [CrossRef]
- Bohannon, R.W.; Crouch, R. Minimal clinically important difference for change in 6-min walk test distance of adults with pathology: A systematic review. J. Eval. Clin. Pract. 2017, 23, 377–381. [Google Scholar] [CrossRef]
- Lötters, F.; van Tol, B.; Kwakkel, G.; Gosselink, R. Effects of controlled inspiratory muscle training in patients with COPD: A meta-analysis. Eur. Respir. J. 2002, 20, 570–576. [Google Scholar] [CrossRef] [PubMed]
- Gosselink, R.; De Vos, J.; Van Den Heuvel, S.P.; Segers, J.; Decramer, M.; Kwakkel, G. Impact of inspiratory muscle training in patients with COPD: What is the evidence? Eur. Respir. J. 2011, 37, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Hill, K.; Cecins, N.M.; Eastwood, P.R.; Jenkins, S.C. Inspiratory muscle training for patients with chronic obstructive pulmonary disease: A practical guide for clinicians. Arch. Phys. Med. Rehabil. 2010, 91, 1466–1470. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.M.; Opotowsky, A.R.; Denhoff, E.R.; Gongwere, R.; Gurwitz, M.; Landzberg, M.J.; Shafer, K.M.; Valente, A.M.; Uluer, A.Z.; Rhodes, J. A pilot study of inspiratory muscle training to improve exercise capacity in patients with fontan physiology. Semin Thorac. Cardiovasc. Surg. 2018, 30, 462–469. [Google Scholar] [CrossRef]
- Fritz, C.; Müller, J.; Oberhoffer, R.; Ewert, P.; Hager, A. Inspiratory muscle training did not improve exercise capacity and lung function in adult patients with Fontan circulation: A randomized controlled trial. Int. J. Cardiol. 2020, 305, 50–55. [Google Scholar] [CrossRef]
- Ubeda Tikkanen, A.; Opotowsky, A.R.; Bhatt, A.B.; Landzberg, M.J.; Rhodes, J. Physical activity is associated with improved aerobic exercise capacity over time in adults with congenital heart disease. Int. J. Cardiol. 2014, 168. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, J.; Curran, T.J.; Camil, L.; Rabideau, N.; Fulton, D.R.; Geauthier, N.S.; Gauvreau, K.; Jenkins, K.J. Sustained effects of cardiac rehabilitation in children with serious congenital heart disease. Pediatrics 2006, 118, 586–593. [Google Scholar] [CrossRef]
- Moalla, W.; Gauthier, R.; Maingourd, Y.; Ahmaidi, S. Six-minute walking test to assess exercise tolerance and cardiorespiratory responses during training program in children with congenital heart disease. Int. J. Sports Med. 2005, 26, 756–762. [Google Scholar] [CrossRef]
- Feltez, G.; Coronel, C.C.; Pellanda, L.C.; Lukrafka, J.L. Exercise capacity in children and adolescents with corrected congenital heart disease. Pediatr. Cardiol. 2015, 36, 1075–1082. [Google Scholar] [CrossRef]
- Schwaiblmair, M.; Reichenspurnen, H.; Müller, C.; Briegel, J.; Fürst, H.; Groh, J.; Reichart, B.; Vogelmeier, C. Cardiopulmonary exercise testing before and after lung and heart-lung transplantation. Am. J. Respir. Crit. Care Med. 1999, 159, 1277–1283. [Google Scholar] [CrossRef]
Total (n = 15) Mean ± SD (range) | Boys (n = 9) Mean ± SD (range) | Girls (n = 6) Mean ± SD (range) | p-Value | |
---|---|---|---|---|
Demographic/anthropometric | ||||
Age (years) | 14.4 ± 1.1 (12.4–15.7) | 14.4 ± 1.3 (12.4–15.7) | 14.5 ± 0.9 (13.3–15.8) | 0.43 |
Height (cm) | 161.9 ± 9.9 (143–182) | 164.9 ± 10.7 (143–182) | 157.4 ± 7.3 (145–165) | 0.05 |
Body mass (kg) | 52.8 ± 12.5 (33–74.2) | 55.5 ± 12.9 (41.3–74.2) | 48.9 ± 11.9 (33–63) | 0.29 |
BMI (kg/m2) | 20 ± 3.5 (14.8–25.4) | 20.3 ± 3.6 (14.8–25.4) | 19.5 ± 3.8 (15.7–24.3) | 0.11 |
Pulmonary function | ||||
FEV1 (L) | 2.29 ± 0.54 (1.26–3.53) | 2.34 ± 0.69 (1.26–3.53) | 2.23 ± 0.23 (1.89–2.44) | 0.43 |
Predicted FEV1 (%) | 0.77 ± 0.15 (0.38–0.93) | 0.72 ± 0.17 (0.38–0.90) | 0.85 ± 0.09 (0.71–0.93) | 0.05 |
FVC (L) | 2.81 ± 0.72 (1.64–4.15) | 2.93 ± 0.88 (1.64–4.15) | 2.64 ± 0.37 (2.12–3.09) | 0.30 |
Predicted FVC (%) | 0.80 ± 0.17 (0.40–1.03) | 0.75 ± 0.20 (0.40–1.03) | 0.86 ± 0.10 (0.72–1.03) | 0.10 |
FEV1/FVC ratio (%) | 81.84 ± 5.98 (72.0–92.6) | 79.86 ± 5.24 (72.00–88.00) | 84.82 ± 6.20 (77.00–92.60) | 0.06 |
Subject | MIP (% Predicted) | MEP (% Predicted) | 6MWT (% Predicted) | ||||||
---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T1 | T2 | T3 | T1 | T2 | T3 | |
1 | 40 | 49 | 48 | 70 | 76 | 70 | 53 | 75 | 80 |
2 | 94 | 102 | 100 | 75 | 97 | 102 | 49 | 60 | 62 |
3 | 136 | 112 | 124 | 111 | 106 | 104 | 96 | 99 | 100 |
4 | 129 | 158 | 172 | 121 | 100 | 123 | 98 | 101 | 109 |
5 | 69 | 82 | 93 | 79 | 101 | 114 | 115 | 119 | 117 |
6 | 87 | 123 | 109 | 70 | 79 | 79 | 94 | 96 | 94 |
7 | 100 | 95 | 108 | 105 | 116 | 121 | 90 | 101 | 97 |
8 | 56 | 71 | 67 | 76 | 50 | 66 | 93 | 97 | 101 |
9 | 59 | 98 | 107 | 69 | 83 | 112 | 88 | 90 | 93 |
10 | 91 | 133 | 129 | 81 | 114 | 102 | 99 | 101 | 102 |
11 | 52 | 88 | 86 | 52 | 67 | 70 | 99 | 109 | 116 |
12 | 82 | 111 | 100 | 75 | 125 | 107 | 103 | 102 | 102 |
13 | 57 | 93 | 87 | 107 | 98 | 91 | 105 | 104 | 104 |
14 | 72 | 77 | 68 | 82 | 79 | 94 | 96 | 124 | 104 |
15 | 92 | 154 | 114 | 129 | 138 | 150 | 109 | 109 | 107 |
Before Training | After Training | Change (%) | Mean Difference | p-Value | |
---|---|---|---|---|---|
MIP (cm H2O) | 94.3 ± 30.1 | 116.1 ± 24.6 | 23.1 | 21.8 | 0.001 |
Predicted MIP (%) | 81.4 ± 0.2 | 100.1 ± 0.3 | 23 | 18.7 | 0.001 |
MEP (cm H2O) | 119.3 ± 32.3 | 130.3 ± 31.4 | 9.2 | 11 | 0.12 |
Predicted MEP (%) | 87.3 ± 0.2 | 95.9 ± 0.2 | 9.8 | 8.6 | 0.11 |
MVV (L/min) | 80.2 ± 19 | 85.7 ± 18.2 | 6.8 | 5.5 | 0.36 |
After Training | Follow-Up | Change (%) | Mean Difference | p-Value | |
---|---|---|---|---|---|
MIP (cmH2O) | 116.1 ± 24.6 | 116.6 ± 28.7 | 0.4 | 0.5 | 0.86 |
Predicted MIP (%) | 100.1 ± 0.3 | 101.2 ± 0.3 | 1.1 | 1.1 | 0.88 |
MEP (cmH2O) | 130.3 ± 31.4 | 137.7 ± 33.7 | 5.7 | 7.4 | 0.12 |
Predicted MEP (%) | 95.9 ± 0.2 | 100.8 ± 0.2 | 5.1 | 4.9 | 0.16 |
MVV (L/min) | 85.7 ± 18.2 | 85.9 ± 17.4 | 0.2 | 0.2 | 0.48 |
Before Training | After Training | Change (%) | Mean Difference | p-Value | |
---|---|---|---|---|---|
6MWT distance (m) | 642 ± 128 | 690 ± 115 | 7 | 48 | 0.001 |
Predicted 6MWT distance (%) | 92.5 ± 0.2 | 99.2 ± 0.1 | 7.2 | 6.5 | 0.001 |
Dyspnea after 6MWT (0–10) | 3.9 ± 3.3 | 2.8 ± 1.9 | 28 | 1.1 | 0.07 |
Muscle fatigue after 6MWT (0–10) | 4.9 ± 3.1 | 3.2 ± 1.9 | 35 | 1.7 | 0.017 |
After Training | Follow-Up | Change (%) | Mean Difference | p-Value | |
---|---|---|---|---|---|
6MWT distance (m) | 690 ± 115 | 688 ± 98 | −0,9 | −2 | 0.60 |
Predicted 6MWT distance (%) | 99.2 ± 0.1 | 99.1 ± 0.1 | −1 | −0.1 | 0.61 |
Dyspnea after 6MWT (0–10) | 2.8 ± 1.9 | 4.4 ± 2.1 | 16 | 1.6 | 0.03 |
Muscle fatigue after 6MWT (0–10) | 3.2 ± 1.9 | 6.3 ± 2.3 | 20 | 3.1 | 0.0002 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrer-Sargues, F.J.; Peiró-Molina, E.; Salvador-Coloma, P.; Carrasco Moreno, J.I.; Cano-Sánchez, A.; Vázquez-Arce, M.I.; Insa Albert, B.; Sepulveda Sanchis, P.; Cebrià i Iranzo, M.À. Cardiopulmonary Rehabilitation Improves Respiratory Muscle Function and Functional Capacity in Children with Congenital Heart Disease. A Prospective Cohort Study. Int. J. Environ. Res. Public Health 2020, 17, 4328. https://doi.org/10.3390/ijerph17124328
Ferrer-Sargues FJ, Peiró-Molina E, Salvador-Coloma P, Carrasco Moreno JI, Cano-Sánchez A, Vázquez-Arce MI, Insa Albert B, Sepulveda Sanchis P, Cebrià i Iranzo MÀ. Cardiopulmonary Rehabilitation Improves Respiratory Muscle Function and Functional Capacity in Children with Congenital Heart Disease. A Prospective Cohort Study. International Journal of Environmental Research and Public Health. 2020; 17(12):4328. https://doi.org/10.3390/ijerph17124328
Chicago/Turabian StyleFerrer-Sargues, Francisco José, Esteban Peiró-Molina, Pablo Salvador-Coloma, José Ignacio Carrasco Moreno, Ana Cano-Sánchez, María Isabel Vázquez-Arce, Beatriz Insa Albert, Pilar Sepulveda Sanchis, and Maria Àngels Cebrià i Iranzo. 2020. "Cardiopulmonary Rehabilitation Improves Respiratory Muscle Function and Functional Capacity in Children with Congenital Heart Disease. A Prospective Cohort Study" International Journal of Environmental Research and Public Health 17, no. 12: 4328. https://doi.org/10.3390/ijerph17124328
APA StyleFerrer-Sargues, F. J., Peiró-Molina, E., Salvador-Coloma, P., Carrasco Moreno, J. I., Cano-Sánchez, A., Vázquez-Arce, M. I., Insa Albert, B., Sepulveda Sanchis, P., & Cebrià i Iranzo, M. À. (2020). Cardiopulmonary Rehabilitation Improves Respiratory Muscle Function and Functional Capacity in Children with Congenital Heart Disease. A Prospective Cohort Study. International Journal of Environmental Research and Public Health, 17(12), 4328. https://doi.org/10.3390/ijerph17124328