Acute Effects of a Whole Body Vibration Session on the Vibration Perception Threshold in Patients with Type 2 Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Participants
2.3. Procedure
2.4. Outcome
2.5. Randomization
2.6. Blinding
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kerner, W.; Brückel, J. Definition, classification and diagnosis of diabetes mellitus. Exp. Clin. Endocrinol. Diabetes 2014, 122, 384–386. [Google Scholar] [CrossRef] [Green Version]
- Association, A.D. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014, 37, S81–S90. [Google Scholar] [CrossRef] [Green Version]
- Ogurtsova, K.; da Rocha Fernandes, J.D.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.H.; Cavan, D.; Shaw, J.E.; Makaroff, L.E. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 2017, 128, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Rojo-Martínez, G.; Valdés, S.; Soriguer, F.; Vendrell, J.; Urrutia, I.; Pérez, V.; Ortega, E.; Ocón, P.; Montanya, E.; Menéndez, E.; et al. Incidence of diabetes mellitus in Spain as results of the nation-wide cohort [email protected] study. Sci. Rep. 2020, 10, 1–9. [Google Scholar]
- Hicks, C.W.; Selvin, E. Epidemiology of Peripheral Neuropathy and Lower Extremity Disease in Diabetes. Curr. Diab. Rep. 2019, 19, 86. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabet. Med. 1998, 15, 539–553. [Google Scholar] [PubMed]
- Thomas, P.K. Classification, differential diagnosis, and staging of diabetic peripheral neuropathy. Proc. Diabetes 1997, 46, S54–S57. [Google Scholar] [CrossRef]
- Andersen, H.; Nielsen, S.; Mogensen, C.E.; Jakobsen, J. Muscle strength in type 2 diabetes. Diabetes 2004, 53, 1543–1548. [Google Scholar] [CrossRef] [Green Version]
- Van Deursen, R.W.M.; Simoneau, G.G. Foot and ankle sensory neuropathy, proprioception, and postural stability. J. Orthop. Sports Phys. Ther. 1999, 29, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Ducic, I.; Short, K.W.; Dellon, A.L.; Disa, J.J. Relationship between loss of pedal sensibility, balance, and falls in patients with peripheral neuropathy. Ann. Plast. Surg. 2004, 52, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Mustapa, A.; Justine, M.; Mohd Mustafah, N.; Jamil, N.; Manaf, H. Postural Control and Gait Performance in the Diabetic Peripheral Neuropathy: A Systematic Review. Biomed Res. Int. 2016, 2016, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Najafi, B.; Crews, R.T.; Wrobel, J.S. A novel plantar stimulation technology for improving protective sensation and postural control in patients with diabetic peripheral neuropathy: A double-blinded, randomized study. Gerontology 2013, 59, 473–480. [Google Scholar] [CrossRef]
- Rittweger, J. Vibration as an exercise modality: How it may work, and what its potential might be. Eur. J. Appl. Physiol. 2010, 108, 877–904. [Google Scholar] [CrossRef]
- Orr, R. The effect of whole body vibration exposure on balance and functional mobility in older adults: A systematic review and meta-analysis. Maturitas 2015, 80, 342–358. [Google Scholar] [CrossRef] [PubMed]
- Robinson, C.C.; Barreto, R.P.G.; Sbruzzi, G.; Plentz, R.D.M. The effects of whole body vibration in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Braz. J. Phys. Ther. 2016, 20, 4–14. [Google Scholar] [CrossRef] [Green Version]
- Gomes-Neto, M.; de Sá-Caputo, D.D.C.; Paineiras-Domingos, L.L.; Brandão, A.A.; Neves, M.F.; Marin, P.J.; Sañudo, B.; Bernardo-Filho, M. Effects of Whole-Body Vibration in Older Adult Patients With Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Can. J. Diabetes 2019, 43, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Robinson, C.C.; Barreto, R.P.G.; Plentz, R.D.M. Effects of whole body vibration in individuals with diabetic peripheral neuropathy: A systematic review. J. Musculoskelet. Neuronal Interact. 2018, 18, 382–388. [Google Scholar]
- Del Pozo-Cruz, B.; Hernández Mocholí, M.A.; Adsuar, J.C.; Parraca, J.A.; Muro, I.; Gusi, N. Effects of whole body vibration therapy on main outcome measures for chronic non-specific low back pain: A singleblind randomized controlled trial. J. Rehabil. Med. 2011, 43, 689–694. [Google Scholar]
- Lee, K. Effects of whole-body vibration therapy on perception thresholds of type 2 diabetic patients with peripheral neuropathy: A randomized controlled trial. J. Phys. Ther. Sci. 2017, 29, 1684–1688. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Mocholi, M.A.; Dominguez-Muñoz, F.J.; Corzo, H.; Silva, S.C.; Adsuar, J.C.; Gusi, N. Whole body vibration training improves vibration perception threshold in healthy young adults: A randomized clinical trial pilot study. J. Musculoskelet. Neuronal Interact. 2016, 16, 12–17. [Google Scholar]
- Schlee, G.; Reckmann, D.; Milani, T.L. Whole body vibration training reduces plantar foot sensitivity but improves balance control of healthy subjects. Neurosci. Lett. 2012, 506, 70–73. [Google Scholar] [CrossRef] [PubMed]
- Gaßner, H.; Janzen, A.; Schwirtz, A.; Jansen, P. Random whole body vibration over 5 weeks leads to effects similar to placebo: A controlled study in Parkinson’s disease. Parkinsons. Dis. 2014, 2014, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Muñoz, F.J.; Adsuar, J.C.; Villafaina, S.; García-Gordillo, M.A.; Hernández-Mocholí, M.Á.; Collado-Mateo, D.; Gusi, N. Test-retest reliability of vibration perception threshold test in people with type 2 diabetes mellitus. Int. J. Environ. Res. Public Health 2020, 17, 1773. [Google Scholar] [CrossRef] [Green Version]
- Deng, H.; He, F.; Zhang, S.; Calleman, C.J.; Costa, L.G. Quantitative measurements of vibration threshold in healthy adults and acrylamide workers. Int. Arch. Occup. Environ. Health 1993, 65, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Earlbaum Associates: Hillsdale, NJ, USA, 1988; ISBN 978-0-12-179060-8. [Google Scholar]
- Duke, J.; McEvoy, M.; Sibbritt, D.; Guest, M.; Smith, W.; Attia, J. Vibrotactile threshold measurement for detecting peripheral neuropathy: Defining variability and a normal range for clinical and research use. Diabetologia 2007, 50, 2305–2312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iandolo, R.; Carè, M.; Shah, V.A.; Schiavi, S.; Bommarito, G.; Boffa, G.; Giannoni, P.; Inglese, M.; Mrotek, L.A.; Scheidt, R.A.; et al. A two alternative forced choice method for assessing vibrotactile discrimination thresholds in the lower limb. Somatosens. Mot. Res. 2019, 36, 162–170. [Google Scholar] [CrossRef] [PubMed]
- de Neeling, J.N.D.; Beks, P.J.; Bertelsmann, F.W.; Heine, R.J.; Bouter, L.M. Sensory thresholds in older adults: Reproducibility and reference values. Muscle Nerve 1994, 17, 454–461. [Google Scholar] [CrossRef]
- García-Piqueras, J.; García-Mesa, Y.; Cárcaba, L.; Feito, J.; Torres-Parejo, I.; Martín-Biedma, B.; Cobo, J.; García-Suárez, O.; Vega, J.A. Ageing of the somatosensory system at the periphery: Age-related changes in cutaneous mechanoreceptors. J. Anat. 2019, 234, 839–852. [Google Scholar] [CrossRef]
- CAUNA, N.; MANNAN, G. The structure of human digital pacinian corpuscles (corpus cula lamellosa) and its functional significance. J. Anat. 1958, 92, 1–20. [Google Scholar]
- Perret, E.; Regli, F. Age and the perceptual threshold for vibratory stimuli. Eur. Neurol. 1970, 4, 65–76. [Google Scholar] [CrossRef]
- Hyllienmark, L.; Brismar, T.; Ludvigsson, J. Subclinical nerve dysfunction in children and adolescents with IDDM. Diabetologia 1995, 38, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Louraki, M.; Karayianni, C.; Kanaka-Gantenbein, C.; Katsalouli, M.; Karavanaki, K. Peripheral neuropathy in children with type 1 diabetes. Diabetes Metab. 2012, 38, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Cinar, N.; Sahin, S.; Sahin, M.; Okluoglu, T.; Karsidag, S. Effects of anthropometric factors on nerve conduction an electrophysiologic study of feet. J. Am. Podiatr. Med. Assoc. 2013, 103, 43–49. [Google Scholar] [CrossRef]
- Campbell, W.W.; Ward, L.C.; Swift, T.R. Nerve conduction velocity varies inversely with height. Muscle Nerve 1981, 4, 520–523. [Google Scholar] [CrossRef] [PubMed]
- Soudmand, R.; Ward, L.C.; Swift, T.R.; Hawes, A. Effect of height on nerve conduction velocity. Neurology 1982, 32, 407–410. [Google Scholar] [CrossRef]
- Barohn, R.J.; Amato, A.A. Pattern-recognition approach to neuropathy and neuronopathy. Neurol. Clin. 2013, 31, 343–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noel, P. Sensory nerve conduction in the upper limbs at various stages of diabetic neuropathy. J. Neurol. Neurosurg. Psychiatry 1973, 36, 786–796. [Google Scholar] [CrossRef] [Green Version]
- Kimura, J.; Yamada, T.; Stevland, N.P. Distal slowing of motor nerve conduction velocity in diabetic polyneuropathy. J. Neurol. Sci. 1979, 42, 291–302. [Google Scholar] [CrossRef]
- Hall, J.E. Guyton and Hall Textbook of Medical Physiology: Enhanced E-Book, 13th ed.; Elsevier Health Sciences: Amsterdam, The Netherland, 2012; ISBN 9781455753451. [Google Scholar]
- Ozeki, M.; Sato, M. Changes in the membrane potential and the membrane conductance associated with a sustained compression of the non-myelinated nerve terminal in Pacinian corpuscles. J. Physiol. 1965, 180, 186–208. [Google Scholar]
- Gray, J.A.B.; Matthews, P.B.C. A comparison of the adaptation of the Pacinian corpuscle with the accommodation of its own axon. J. Physiol. 1951, 114, 454–464. [Google Scholar] [CrossRef]
- Iggo, A.; Ogawa, H. Correlative physiological and morphological studies of rapidly adapting mechanoreceptors in cat’s glabrous skin. J. Physiol. 1977, 266, 275–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- JÄnig, W.; Schmidt, R.F.; Zimmermann, M. Single unit responses and the total afferent outflow from the cat’s foot pad upon mechanical stimulation. Exp. Brain Res. 1968, 6, 100–115. [Google Scholar] [CrossRef] [PubMed]
- Selye, H. The Stress of Life; McGraw-Hill: New York, NY, USA, 1956; ISBN 9780070562066. [Google Scholar]
Intervention time (minutes) | 12 |
Number of series | 8 |
Time of each series (seconds) | 30 |
Vibration frequency (Hertz) | 12.5 |
Rest between series (seconds) | 30 |
All (n = 90) | WBV Group (n = 45) | Placebo Group (n = 45) | p | |
---|---|---|---|---|
Age (years) | 65.64 ± 8.65 | 65.00 ± 8.98 | 66.28 ± 8.36 | 0.510 * |
Height (cm) | 164.89 ± 10.01 | 163.91 ± 9.73 | 165.87 ± 10.28 | 0.357 ** |
Weight (kg) | 80.63 ± 16.19 | 81.78 ± 18.03 | 79.47 ± 14.22 | 0.926 * |
HbA1c (%) | 6.78 ± 1.02 | 6.77 ± 1.15 | 6.79 ± 0.88 | 0.572 * |
Years of Diagnosis | 9.96 ± 8.83 | 9.53 ± 9.21 | 10.38 ± 8.52 | 0.352 * |
VPT (vu) | 5.66 ± 2.55 | 5.33 ± 2.26 | 5.98 ± 2.80 | 0.235 ** |
WBV Group (n = 45) | Placebo Group (n = 45) | Differences between Interventions [Mean (95% CI)] | F | p * | Effect Size | |||
---|---|---|---|---|---|---|---|---|
Pre Mean (SD) | Post Mean (SD) | Pre Mean (SD) | Post Mean (SD) | |||||
VPT (vu) | 5.34 (2.27) | 5.75 (2.26) | 5.98 (2.80) | 5.99 (2.84) | 0.40 (From 0.003 to 0.801) | 4.027 | 0.030 | 0.42 |
Age | 4.792 | 0.031 | ||||||
VPT Baseline | 6.648 | 0.012 | ||||||
Gender | 2.048 | 0.156 | ||||||
Height | 4.254 | 0.042 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dominguez-Muñoz, F.J.; Hernandez-Mocholi, M.A.; Villafaina, S.; García-Gordillo, M.A.; Collado-Mateo, D.; Gusi, N.; Adsuar, J.C. Acute Effects of a Whole Body Vibration Session on the Vibration Perception Threshold in Patients with Type 2 Diabetes Mellitus. Int. J. Environ. Res. Public Health 2020, 17, 4356. https://doi.org/10.3390/ijerph17124356
Dominguez-Muñoz FJ, Hernandez-Mocholi MA, Villafaina S, García-Gordillo MA, Collado-Mateo D, Gusi N, Adsuar JC. Acute Effects of a Whole Body Vibration Session on the Vibration Perception Threshold in Patients with Type 2 Diabetes Mellitus. International Journal of Environmental Research and Public Health. 2020; 17(12):4356. https://doi.org/10.3390/ijerph17124356
Chicago/Turabian StyleDominguez-Muñoz, Francisco Javier, Miguel Angel Hernandez-Mocholi, Santos Villafaina, Miguel Angel García-Gordillo, Daniel Collado-Mateo, Narcis Gusi, and Jose Carmelo Adsuar. 2020. "Acute Effects of a Whole Body Vibration Session on the Vibration Perception Threshold in Patients with Type 2 Diabetes Mellitus" International Journal of Environmental Research and Public Health 17, no. 12: 4356. https://doi.org/10.3390/ijerph17124356
APA StyleDominguez-Muñoz, F. J., Hernandez-Mocholi, M. A., Villafaina, S., García-Gordillo, M. A., Collado-Mateo, D., Gusi, N., & Adsuar, J. C. (2020). Acute Effects of a Whole Body Vibration Session on the Vibration Perception Threshold in Patients with Type 2 Diabetes Mellitus. International Journal of Environmental Research and Public Health, 17(12), 4356. https://doi.org/10.3390/ijerph17124356