Regional Heterogeneity of Application and Effect of Telemedicine in the Primary Care Centres in Rural China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample and Data Collection
2.2. Study Design and Statistical Variables
2.3. Statistical Analysis
3. Results
3.1. Application of Telemedicine among the Investigated Township Health Centres
3.2. Characteristics of the Township Health Centres in Different Regions and between Groups
3.3. Effect of Telemedicine on Number of Annual Outpatient Visits and Bed Occupancy Rate
4. Discussion
4.1. Application of Telemedicine among the THCs and Regional Disparities
4.2. Effects of Telemedicine on the Inpatient and Outpatient Service of THCs
4.3. Regional Heterogeneity of the Effect of Telemedicine on the THCs
4.4. Implications
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Heymann, J.; Hertzman, C.; Evans, R.G.; Barer, M.L. Healthier Societies: From Analysis to Action; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Liu, X.; Zhu, A.; Tang, S. Attraction and Retention of Rural Primary Health-care Workers in the Asia Pacific Region. World Health Organization. Regional Office for South-East Asia. 2018. Available online: https://apps.who.int/iris/handle/10665/272663 (accessed on 18 June 2020).
- World Health Organization. The World Health Report 2006: Working Together for Health; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Anticona Huaynate, C.F.; Pajuelo Travezaeo, M.J.; Correa, M.; Mayta Malpartida, H.; Oberhelman, R.; Murphy, L.L.; Paz-Soldan, V.A. Diagnostics barriers and innovations in rural areas: Insights from junior medical doctors on the frontlines of rural care in Peru. Bmc Health Serv Res. 2015, 15, 454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Zhang, Z. Skilled doctors in tertiary hospitals are already overworked in china. Lancet Glob. Health 2015, 3, e737. [Google Scholar] [CrossRef] [Green Version]
- Bashshur, R.L.; Howell, J.D.; Krupinski, E.A.; Harms, K.M.; Bashshur, N.; Doarn, C.R. The empirical foundations of telemedicine interventions in primary care. Telemed. E-Health 2016, 22, 342–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. A Health Telematics Policy in Support of Who’s Health-for-All Strategy for Global Development: Report of the Who Group Consultation on Health Telematics 11–16 December; World Health Organization: Geneva, Switzerland, 1997. [Google Scholar]
- Craig, J.; Petterson, V. Introduction to the practice of telemedicine. J. Telemed. Telecare 2005, 11, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Wootton, R. The development of telemedicine. In Taking Health Telematics into 21st Century, 1st ed.; Rigby, M., Roberts, R., Thick, M., Eds.; Radcliffe Medical Press: Abingdon, Oxon, UK, 2000; pp. 17–26. [Google Scholar]
- Heinzelmann, P.J.; Lugn, N.E.; Kvedar, J.C. Telemedicine in the future. J. Telemed. Telecare 2005, 11, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gu, H. A review of telemedicine in china. J. Telemed. Telecare 2009, 15, 23–27. [Google Scholar] [CrossRef]
- Hsieh, R.K.; Hjelm, N.M.; Lee, J.C.; Aldis, J.W. Telemedicine in China. Int. J. Med. Inform. 2001, 61, 139–146. [Google Scholar] [CrossRef]
- Guidelines of the General Office of the State Council on Promoting the Construction and Development of Medical Alliance. Available online: http://www.gov.cn/zhengce/content/2017-04/26/content_5189071.htm (accessed on 19 May 2020).
- Liu, W.; Liu, Y.; Twum, P.; Li, S. National equity of health resource allocation in china: Data from 2009 to 2013. Int. J. Equity Health 2016, 15, 68. [Google Scholar] [CrossRef] [Green Version]
- The, L. What to expect for China’s health in the future. Lancet (Lond. Engl.) 2017, 389, 226. [Google Scholar]
- Da-dong, X. Defect and improvement of the administration management in health care system: From the perspective of medical resource allocation efficiency and equity. Chin. Hosp. Manag. 2013, 8, 5. [Google Scholar]
- Yu, M.; He, S.; Wu, D.; Zhu, H.; Webster, C. Examining the multi-scalar unevenness of high-quality healthcare resources distribution in china. Int. J. Environ. Res. Public Health 2019, 16, 2813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Chen, G.; Shen, M. Scattered rural settlements and development of mountainous regions in western sichuan, china. Wuhan Univ. J. Nat. Sci. 2007, 12, 737–742. [Google Scholar] [CrossRef]
- Dalkmann, H.; Hutfilter, S.; Vogelpohl, K.; Schnabel, P. Sustainable mobility in rural China. J. Environ. Manag. 2008, 87, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Araujo de Carvalho, I.; Epping-Jordan, J.; Pot, A.M.; Kelley, E.; Toro, N.; Thiyagarajan, J.A.; Beard, J.R. Organizing integrated health-care services to meet older people’s needs. Bull. World Health Organ. 2017, 95, 756–763. [Google Scholar] [CrossRef] [PubMed]
- Liu, J. Ageing, migration and familial support in rural china. Geoforum 2014, 51, 305–312. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Lu, J.; Hu, S.; Cheng, K.; De Maeseneer, J.; Meng, Q.; Mossialos, E.; Xu, D.R.; Yip, W.; Zhang, H. The primary health-care system in China. Lancet 2017, 390, 2584–2594. [Google Scholar] [CrossRef]
- Li, B.; Mohiuddin, M.; Liu, Q. Determinants and differences of township hospital efficiency among Chinese provinces. Int. J. Environ. Res. Public Health 2019, 16, 1601. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X. China Health Statistics Yearbook of 2019; National Health Commission of China: Beijing, China, 2019. [Google Scholar]
- Guidelines of the General Office of the State Council on Promoting the Construction of the Hierarchical Medical SYSTEM. Available online: http://www.gov.cn/zhengce/content/2015-09/11/content_10158.htm (accessed on 20 May 2020).
- Cai, H.; Wang, H.; Guo, T.; Bao, G. Application of telemedicine in Gansu province of China. PLoS ONE 2016, 11, e0158026. [Google Scholar] [CrossRef]
- He, C.; Zhou, Q.; Chen, W.; Tian, J.; Zhou, L.; Peng, H.; Luan, S.; Wang, S. Using an internet-based hospital to address maldistribution of health care resources in rural areas of Guangdong province, China: Retrospective and descriptive study. Jmir. Med. Inform. 2018, 6, e51. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, T.; Liu, Z.; Hatab, A.A.; Lan, J. Tripartite data analysis for optimizing telemedicine operations: Evidence from Guizhou province in China. Int. J. Environ. Res. Public Health 2020, 17, 375. [Google Scholar] [CrossRef] [Green Version]
- Kalankesh, L.R.; Pourasghar, F.; Nicholson, L.; Ahmadi, S.; Hosseini, M. Effect of telehealth interventions on hospitalization indicators: A systematic review. Perspect. Health Inf. Manag. 2016, 13. [Google Scholar]
- Wilcox, M.E.; Adhikari, N.K. The effect of telemedicine in critically ill patients: Systematic review and meta-analysis. Crit. Care 2012, 16, R127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalfrà, M.G.; Nicolucci, A.; Lapolla, A.; TISG. The effect of telemedicine on outcome and quality of life in pregnant women with diabetes. J. Telemed. Telecare 2009, 15, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Cleland, J.G. The trans-european network—Home-care management system (ten–hms) study: An investigation of the effect of telemedicine on outcomes in Europe. Dis. Manag. Health Outcomes 2006, 14, 23–28. [Google Scholar] [CrossRef]
- Khemapech, I.; Sansrimahachai, W.; Toachoodee, M. Telemedicine–meaning, challenges and opportunities. Siriraj Med. J. 2019, 71, 246–252. [Google Scholar] [CrossRef]
- Alumni, J. Maximizing Hospital Bed Utilization in Rural Communities Using a Telemedicine Hospitalist Model. Available online: https://digital.hbs.edu/platform-mhcdsolutions/submission/maximizing-hospital-bed-utilization-in-rural-communities-using-a-telemedicine-hospitalist-model/ (accessed on 29 April 2020).
- Yu, J.; Zhou, K.; Yang, S. Regional heterogeneity of China’s energy efficiency in “new normal”: A meta-frontier super-sbm analysis. Energy Policy 2019, 134, 110941. [Google Scholar] [CrossRef]
- Chai, K.-C.; Zhang, Y.-B.; Chang, K.-C. Regional disparity of medical resources and its effect on mortality rates in China. Front. Public Health 2020, 8, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Athey, S.; Imbens, G.W. The state of applied econometrics: Causality and policy evaluation. J. Econ. Perspect. 2017, 31, 3–32. [Google Scholar] [CrossRef] [Green Version]
- Akematsu, Y.; Tsuji, M. Measuring the effect of telecare on medical expenditures without bias using the propensity score matching method. Telemed. E-Health 2012, 18, 743–747. [Google Scholar] [CrossRef]
- Tsuji, M. In Analysis of the long-Run Effect of E-Health Intervention on Chronic Diseases: A Did-Psm Approach. In Proceedings of the IEEE 17th International Conference on E-health Networking, Application & Services (HealthCom), Boston, MD, USA, 14–17 October 2015; pp. 511–516. [Google Scholar]
- Dehejia, R.H.; Wahba, S. Propensity score-matching methods for nonexperimental causal studies. Rev. Econ. Stat. 2002, 84, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Paudel, G.P.; Krishna, V.V.; McDonald, A.J. Apparent gains, hidden costs: Examining adoption drivers, yield, and profitability outcomes of rotavator tillage in wheat systems in Nepal. J. Agric. Econ. 2019, 71, 199–218. [Google Scholar] [CrossRef] [PubMed]
- Oh, I.; Lee, J.-D.; Heshmati, A.; Choi, G.-G. Evaluation of credit guarantee policy using propensity score matching. Small Bus. Econ. 2009, 33, 335–351. [Google Scholar] [CrossRef]
- Essama-Nssah, B. Propensity Score Matching and Policy Impact Analysis-a Demonstration in Eviews; The World Bank: Washington, DC, USA, 2006. [Google Scholar]
- Zeng, Y.; Xu, W.; Chen, L.; Chen, F.; Fang, Y. The influencing factors of health-seeking preference and community health service utilization among patients in primary care reform in Xiamen, China. Patient Prefer. Adherence 2020, 14, 653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutton, D. Financial, organizational and professional factors affecting health care utilization. Soc. Sci Med. 1986, 23, 721–735. [Google Scholar] [CrossRef]
- Liu, Y.; Kong, Q.; Yuan, S.; van de Klundert, J. Factors influencing choice of health system access level in China: A systematic review. PLoS ONE 2018, 13, e0201887. [Google Scholar]
- Lu, S.; Zhang, L.; Klazinga, N.; Kringos, D. Evolution of the output-workforce relationship in primary care facilities in China from 2009 to 2017. Int. J. Env. Res. Public Health 2020, 17, 3043. [Google Scholar] [CrossRef]
- Khandker, S.; Koolwal, G.B.; Samad, H. Handbook on Impact Evaluation: Quantitative Methods and Practices; The World Bank: Washington, DC, USA, 2009. [Google Scholar]
- Opinions of National Health Commission on Promoting Telemedicine Services in Medical Institutions. Available online: http://www.gov.cn/gongbao/content/2014/content_2792664.htm (accessed on 22 May 2020).
- Peck, R.; Mghamba, J.; Vanobberghen, F.; Kavishe, B.; Rugarabamu, V.; Smeeth, L.; Hayes, R.; Grosskurth, H.; Kapiga, S. Preparedness of tanzanian health facilities for outpatient primary care of hypertension and diabetes: A cross-sectional survey. Lancet Glob. Health 2014, 2, e285–e292. [Google Scholar] [CrossRef] [Green Version]
- Marahem, M.; Ghodraty, M.S.; Farzin, H.; Agamohammadi, D.; Erçelen, Ö. The Importance of Bed Occupancy Rate in Evaluate the Utilization of Hospitals; Aras Part Medical Int Press: Tabriz, Iran, 2018. [Google Scholar]
- Lotfi, F.; Nouraei Motlagh, S.; Mahdavi, G.; Keshavarz, K.; Hadian, M.; Abolghasem Gorji, H. Factors affecting the utilization of outpatient health services and importance of health insurance. Shiraz E-Med. J. 2017, 18, e57570. [Google Scholar] [CrossRef] [Green Version]
- Al-Omar, B.A.; Saeed, K.S.B. Factors influencing patient’s utilization of primary health care provider in Saudi Arabia. J. Fam. Community Med. 1998, 5, 23. [Google Scholar]
- GRIMSMO, A.; SIEM, H. Factors affecting primary health care utilization. Fam Pr. 1984, 1, 155–161. [Google Scholar] [CrossRef]
- Xu, J.; Wang, W.; Li, Y.; Zhang, J.; Pavlova, M.; Liu, H.; Yin, P.; Lu, Z. Analysis of factors influencing the outpatient workload at Chinese health centres. Bmc Health Serv Res. 2010, 10, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krall, S.; O’Connor, R.E.; Maercks, L. Higher inpatient medical surgical bed occupancy extends admitted patients’ stay. West. J. Emerg. Med. 2009, 10, 93–96. [Google Scholar]
- Li, Z.; Yang, J.; Wu, Y.; Pan, Z.; He, X.; Li, B.; Zhang, L. Challenges for the surgical capacity building of township hospitals among the central china: A retrospective study. Int. J. Equity Health 2018, 17, 55. [Google Scholar] [CrossRef] [Green Version]
- Caliendo, M.; Kopeinig, S. Some practical guidance for the implementation of propensity score matching. J. Econ. Surv. 2008, 22, 31–72. [Google Scholar] [CrossRef] [Green Version]
- Su, D.; Chen, Y.; Gao, H.; Li, H.; Chang, J.; Lei, S.; Jiang, D.; Hu, X.; Tan, M.; Chen, Z. Is there a difference in the utilisation of inpatient services between two typical payment methods of health insurance? Evidence from the new rural cooperative medical scheme in China. Int. J. Environ. Res. Public Health 2019, 16, 1410. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Kim, H.J.; Lonjon, G.; Zhu, Y. Balance diagnostics after propensity score matching. Ann. Transl. Med. 2019, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, P.R.; Rubin, D.B. Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. Am. Stat. 1985, 39, 33–38. [Google Scholar]
- Zhang, Y.; Chen, Q.; Yan, X.; Li, J.; Hu, H. Application status of information system functions in community health service settings and township health centers in china. Chin. Gen. Pr. 2016, 7, 766–770. [Google Scholar]
- Opinions of the General Office of the State Council on Promoting the Development of “Internet Plus Medical Health”. Available online: http://www.gov.cn/zhengce/content/2018-04/28/content_5286645.htm (accessed on 26 May 2020).
- Guizhou has realized the full coverage of telemedicine in township hospitals. Available online: http://www.xinhuanet.com/local/2017-12/25/c_1122165060.htm (accessed on 15 June 2020).
- Notice on Further Improving the Construction of the Hierarchical Medical System by National Health Commission and the Administration of Traditional Chinese Medicine. Available online: http://www.gov.cn/gongbao/content/2019/content_5361806.htm (accessed on 26 May 2020).
- Xiong, W.; Bair, A.; Sandrock, C.; Wang, S.; Siddiqui, J.; Hupert, N. Implementing telemedicine in medical emergency response: Concept of operation for a regional telemedicine hub. J. Med. Syst. 2012, 36, 1651–1660. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Lu, S.F.; Rui, H. In Does Telemedicine Reduce Ed. Congestion? Evidence from New York State. In Proceedings of the 52nd Hawaii International Conference on System Sciences, Maui, HI, USA, 22 September 2018. [Google Scholar]
- Basic Standards of Community Hospitals and Key Points of the Core System of Medical Quality and Safety (Trial). Available online: http://www.satcm.gov.cn/xinxifabu/shizhengyaowen/2019-06-27/10113.html (accessed on 29 May 2020).
- Antoun, J. Telemedicine in Primary Care. In Primary Care at a Glance-Hot Topics and New Insights, 1st ed.; Capelli, O., Ed.; IntechOpen: London, UK, 2012. [Google Scholar]
- Burke, B.L.; Hall, R.W. Telemedicine: Pediatric applications. Pediatrics 2015, 136, e293–e308. [Google Scholar] [CrossRef] [Green Version]
- Rimmer, R.A.; Christopher, V.; Falck, A.; de Azevedo Pribitkin, E.; Curry, J.M.; Luginbuhl, A.J.; Cognetti, D.M. Telemedicine in otolaryngology outpatient setting-single center head and neck surgery experience. Laryngoscope 2018, 128, 2072–2075. [Google Scholar] [CrossRef]
- Verduzco-Gutierrez, M.; Bean, A.C.; Tenforde, A.S.; Tapia, R.N.; Silver, J.K. How to conduct an outpatient telemedicine rehabilitation or prehabilitation visit. PM&R 2020. [Google Scholar] [CrossRef]
- World Health Organization. Regional Office for the Western, P. People’s Republic of China Health System Review; WHO Regional Office for the Western Pacific: Manila, Philippines, 2015. [Google Scholar]
- Liu, J.; Zhang, Y. Health status and health disparity in china: A demographic and socioeconomic perspective. China Popul. Dev. Stud. 2019, 2, 301–322. [Google Scholar] [CrossRef] [Green Version]
- Guan, Y.Q.; Zhang, M.; Zhao, X. [medical treatment seeking behaviors and its influencing factors in employed floating population in China]. Zhonghua Liu Xing Bing Xue Za Zhi Zhonghua Liuxingbingxue Zazhi 2019, 40, 301–308. [Google Scholar]
- Wu, Y. Research on Geographical Distribution of Health Service Utilization and Costs of Urban Hypertensive Patients under the Urbanization Background. Master’s Thesis, Huazhong University of Science and Technology, Wuhan, China, 24 May 2018. [Google Scholar]
- Zhang, X. China Health Statistics Yearbook of 2018; National Health Commission of China: Beijing, China, 2018. [Google Scholar]
- Comment of national health commission on the issue of idle equipments in the township hospitals: The skilled technicians matters. Available online: http://www.xinhuanet.com//politics/2017-02/08/c_129471398.htm (accessed on 15 June 2020).
- Mehrotra, A.; Jena, A.B.; Busch, A.B.; Souza, J.; Uscher-Pines, L.; Landon, B.E. Utilization of telemedicine among rural medicare beneficiaries. JAMA 2016, 315, 2015–2016. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, W.; Du, W.; Li, Y.; Lu, N. Research on core issues of telemedicine in China. Health Econ. Res. 2020, 37, 66–68. [Google Scholar]
Province | Number of THCs | THC with Telemedicine | Percent (%) | |
---|---|---|---|---|
Overall | 358 | 210 | 58.66 | |
Eastern region | 92 | 42 | 45.65 | |
Guangdong | 34 | 2 | 5.88 | |
Shandong | 58 | 40 | 68.97 | |
Central region | 92 | 49 | 53.26 | |
Hubei | 37 | 14 | 37.84 | |
Henan | 55 | 35 | 63.64 | |
Western region | 174 | 119 | 68.39 | |
Chongqing | 118 | 68 | 57.63 | |
Guizhou | 56 | 51 | 91.07 |
Variables | Overall | Eastern | Central | Western | p |
---|---|---|---|---|---|
Travel time to the county seat | |||||
≤1 h | 255 (71.23%) | 83 (90.22%) | 82 (89.13%) | 90 (51.72%) | <0.001 |
>1 h | 103 (28.77%) | 9 (9.78%) | 10 (10.87%) | 84 (48.28%) | |
Global budget for CMA 1 | |||||
yes | 73 (20.39%) | 10 (10.87%) | 17 (18.48%) | 46 (26.44%) | 0.010 |
no | 285 (79.61%) | 82 (89.13%) | 75 (81.52%) | 128 (73.56%) | |
Surgical service provision | |||||
yes | 162 (45.25%) | 38 (41.40%) | 62 (67.39%) | 62 (35.63%) | <0.001 |
no | 196 (54.75%) | 54 (58.70%) | 30 (32.61%) | 112 (64.37%) | |
Population size (in thousand) 2 | 29.13 (29.53) | 35.89 (21.55) | 40.10 (35.16) | 19.75 (26.99) | <0.001 |
Proportion of the elders (%) | 11.72 (3.41) | 10.99 (1.88) | 10.59 (3.72) | 12.71 (3.58) | <0.001 |
Number of the staff | 43.70 (32.85) | 56.99 (34.95) | 55.79 (38.61) | 30.28 (21.16) | <0.001 |
Bed occupancy rate (%) | 63.42 (26.58) | 47.55 (24.28) | 73.80 (22.47) | 66.32 (26.14) | <0.001 |
Outpatient visits (in thousand) 3 | 31.54 (37.86) | 25.94 (23.82) | 62.17 (57.73) | 18.31 (14.64) | <0.001 |
Variables | Classification | Adopters 1 | Nonadopters 2 | p |
---|---|---|---|---|
Travel time 3 (>1 h) | Overall | 64 (30.48%) | 39 (26.35%) | 0.396 |
East | 2 (4.76%) | 7 (14.00%) | 0.137 | |
Central | 7 (14.29%) | 3 (6.98%) | 0.261 | |
West | 55 (46.22%) | 29 (52.73%) | 0.424 | |
Global budget for CMA 4 (yes) | Overall | 47 (22.38) | 26 (17.57%) | 0.266 |
East | 6 (14.29%) | 4 (8.00%) | 0.335 | |
Central | 8 (16.33%) | 9 (20.93%) | 0.570 | |
West | 33 (27.73%) | 13 (23.64%) | 0.569 | |
Surgical service provision (yes) | Overall | 103 (49.05%) | 59 (39.86%) | 0.086 |
East | 27 (64.29%) | 11 (22.00%) | <0.001 | |
Central | 32 (65.31%) | 30 (69.77%) | 0.649 | |
West | 44 (36.97%) | 18 (32.73%) | 0.586 | |
Population size (in thousand) 5 | Overall | 31.71 (2.48) | 25.46 (1.31) | 0.048 |
East | 49.25 (3.23) | 24.68 (2.07) | <0.001 | |
Central | 41.22 (6.67) | 38.83 (2.06) | 0.747 | |
West | 21.61 (2.91) | 15.72 (1.43) | 0.182 | |
Proportion of the elders (%) | Overall | 11.72 (0.18) | 12.11(0.28) | 0.073 |
East | 11.71 (0.34) | 10.38 (0.18) | <0.001 | |
Central | 9.86 (0.53) | 11.42 (0.55) | 0.044 | |
West | 12.02 (0.31) | 14.22 (0.47) | <0.001 | |
Number of the staff | Overall | 41.78 (2.20) | 46.42 (2.80) | 0.189 |
East | 67.57 (5.17) | 48.10 (4.80) | 0.007 | |
Central | 45.53 (5.45) | 67.49 (5.51) | 0.006 | |
West | 31.13 (1.98) | 28.42 (2.73) | 0.433 | |
Bed occupancy rate (%) | Overall | 66.10 (1.75) | 59.61 (2.29) | 0.022 |
East | 57.69 (3.67) | 39.04 (3.03) | <0.001 | |
Central | 72.00 (3.40) | 75.86 (3.19) | 0.414 | |
West | 66.65 (2.37) | 65.60 (3.63) | 0.807 | |
Outpatient visits (in thousand) 6 | Overall | 29.83 (2.15) | 33.97 (3.76) | 0.310 |
East | 26.86 (2.27) | 25.17 (4.17) | 0.736 | |
Central | 53.97 (7.33) | 71.52 (9.70) | 0.147 | |
West | 20.94 (1.43) | 12.60 (1.41) | <0.001 |
Outcome Indicators | Matching Algorithm | Mean of Indicators | Results of ATT | Quality of Matching | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | Control | ATT | t | S.E. 1 | p > z 1 | 95% CI 1 | Mean Bias | Media Bias | Pseudo R2 | LRχ 2 | p > χ 2 | ||
Overall | |||||||||||||
NOV 2 | Raw 3 | 29.83 | 33.97 | −4.13 | −1.02 | 15.4 | 14.1 | 0.051 | 24.90 | <0.001 | |||
NNM | 29.49 | 30.99 | −1.50 | −0.26 | 5.56 | 0.787 | (−12.40, 9.39) | 8.7 | 8.6 | 0.007 | 4.30 | 0.545 | |
RBM | 29.24 | 31.06 | −1.83 | −0.38 | 3.62 | 0.614 | (−8.93, 5.27) | 3.9 | 3.6 | 0.002 | 1.40 | 0.924 | |
KBM | 29.49 | 31.81 | −2.32 | −0.49 | 3.38 | 0.493 | (−8.95, 4.31) | 3.1 | 3.7 | 0.002 | 0.96 | 0.966 | |
BOR 4(%) | Raw | 66.10 | 59.61 | 6.50 | 2.29 | 15.9 | 16.3 | 0.061 | 29.42 | <0.001 | |||
NNM | 66.20 | 60.72 | 5.48 | 1.31 | 0.05 | 0.234 | (−0.11, 12.77) | 7.7 | 5.8 | 0.013 | 7.12 | 0.310 | |
RBM | 66.20 | 60.34 | 5.85 | 1.72 | 0.03 | 0.082 | (−1.06, 12.77) | 3.7 | 3.0 | 0.002 | 1.10 | 0.981 | |
KBM | 66.20 | 60.46 | 5.74 | 1.76 | 0.03 | 0.081 | (−0.2, 11.71) | 3.1 | 3.2 | 0.001 | 0.79 | 0.992 | |
Eastern China | |||||||||||||
NOV | Raw | 26.86 | 25.17 | 1.70 | 0.34 | 63.8 | 57.7 | 0.374 | 47.42 | <0.001 | |||
NNM | 23.83 | 32.52 | −8.69 | −0.73 | 12.01 | 0.469 | (−32.22, 14.84) | 14.7 | 9.2 | 0.060 | 4.80 | 0.570 | |
RBM | 24.49 | 37.56 | −13.07 | −1.27 | 12.44 | 0.294 | (−37.46,11.32) | 13.8 | 12.5 | 0.018 | 0.970 | 0.965 | |
KBM | 23.83 | 33.13 | −9.30 | −1.13 | 8.89 | 0.296 | (−26.72, 8.13) | 7.6 | 6.3 | 0.009 | 0.740 | 0.981 | |
BOR (%) | Raw | 57.69 | 39.04 | 18.65 | 3.95 | 68.7 | 65.7 | 0.405 | 51.37 | <0.001 | |||
NNM | 56.81 | 42.50 | 14.31 | 1.73 | 0.09 | 0.117 | (−4.05, 32.68) | 17.2 | 20.2 | 0.060 | 5.36 | 0.498 | |
RBM | 53.14 | 34.84 | 18.29 | 2.46 | 0.12 | 0.119 | (−4.82, 41.41) | 22.4 | 24.4 | 0.086 | 5.24 | 0.513 | |
KBM | 56.77 | 41.57 | 15.20 | 2.02 | 0.09 | 0.093 | (−3.69, 34.09) | 14.3 | 13.7 | 0.062 | 5.35 | 0.500 | |
Central China | |||||||||||||
NOV | Raw | 53.97 | 71.52 | −17.55 | −1.46 | 28.8 | 23.6 | 0.167 | 21.18 | 0.001 | |||
NNM | 53.11 | 52.97 | 0.14 | 0.01 | 13.55 | 0.992 | (−26.41, 26.69) | 5.8 | 6.0 | 0.008 | 1.02 | 0.961 | |
RBM | 55.53 | 51.66 | 3.87 | 0.33 | 16.87 | 0.819 | (−29.21, 36.95) | 8.1 | 6.1 | 0.030 | 3.41 | 0.637 | |
KBM | 53.11 | 54.98 | −1.87 | −0.18 | 12.25 | 0.879 | (−25.87, 22.13) | 5.7 | 6.2 | 0.010 | 1.25 | 0.940 | |
BOR (%) | Raw | 72.00 | 75.86 | −3.86 | −0.82 | 25.6 | 17.7 | 0.172 | 21.83 | 0.001 | |||
NNM | 72.66 | 76.79 | −4.13 | −0.69 | 0.08 | 0.626 | (−21.49, 13.23) | 14.5 | 13.0 | 0.041 | 5.31 | 0.504 | |
RBM | 73.84 | 74.82 | −0.97 | −0.16 | 0.09 | 0.914 | (−19.18, 17.22) | 10.1 | 9.8 | 0.029 | 3.43 | 0.754 | |
KBM | 72.66 | 76.47 | −3.81 | −0.66 | 0.08 | 0.620 | (−19.75, 12.14) | 8.5 | 8.1 | 0.019 | 2.45 | 0.874 | |
Western China | |||||||||||||
NOV | Raw | 20.94 | 12.60 | 8.34 | 3.61 | 24.8 | 13.0 | 0.087 | 19.00 | 0.002 | |||
NNM | 20.70 | 14.80 | 5.90 | 2.04 | 2.84 | 0.038 | (0.33, 11.5) | 12.5 | 12.9 | 0.047 | 14.83 | 0.011 | |
RBM | 20.79 | 15.28 | 5.51 | 2.07 | 2.50 | 0.027 | (0.61, 10.41) | 9.0 | 9.7 | 0.028 | 8.68 | 0.123 | |
KBM | 20.59 | 15.06 | 5.53 | 2.34 | 2.15 | 0.010 | (1.31, 9.75) | 6.4 | 8.5 | 0.018 | 5.57 | 0.350 | |
BOR (%) | Raw | 66.65 | 65.60 | 1.05 | 0.25 | 22.1 | 13.0 | 0.088 | 19.20 | 0.004 | |||
NNM | 66.92 | 68.65 | −1.73 | −0.29 | 0.07 | 0.769 | (−16.03, 11.73) | 10.3 | 8.4 | 0.035 | 10.62 | 0.101 | |
RBM | 66.84 | 69.08 | −2.23 | −0.38 | 0.07 | 0.746 | (−14.97, 10.50) | 6.3 | 6.3 | 0.017 | 4.74 | 0.577 | |
KBM | 66.96 | 66.03 | 0.93 | 0.18 | 0.06 | 0.873 | (−10.81, 12.68) | 5.6 | 6.5 | 0.015 | 4.45 | 0.616 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Pan, Z.; Lu, S.; Zhang, L. Regional Heterogeneity of Application and Effect of Telemedicine in the Primary Care Centres in Rural China. Int. J. Environ. Res. Public Health 2020, 17, 4531. https://doi.org/10.3390/ijerph17124531
Xu W, Pan Z, Lu S, Zhang L. Regional Heterogeneity of Application and Effect of Telemedicine in the Primary Care Centres in Rural China. International Journal of Environmental Research and Public Health. 2020; 17(12):4531. https://doi.org/10.3390/ijerph17124531
Chicago/Turabian StyleXu, Wanchun, Zijing Pan, Shan Lu, and Liang Zhang. 2020. "Regional Heterogeneity of Application and Effect of Telemedicine in the Primary Care Centres in Rural China" International Journal of Environmental Research and Public Health 17, no. 12: 4531. https://doi.org/10.3390/ijerph17124531
APA StyleXu, W., Pan, Z., Lu, S., & Zhang, L. (2020). Regional Heterogeneity of Application and Effect of Telemedicine in the Primary Care Centres in Rural China. International Journal of Environmental Research and Public Health, 17(12), 4531. https://doi.org/10.3390/ijerph17124531