Ecological and Human Health Risk Assessment of Heavy Metal Pollution in the Soil of the Ger District in Ulaanbaatar, Mongolia
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Selection of Sampling Locations and Sampling
2.3. Laboratory Experiment at Kanazawa University
2.4. Pollution Indices of Soil Contamination
2.5. Potential Human Health Risk Assessment
2.6. Potential Ecological Risk Assessment
Contamination index of heavy metal | |
Measured concentration of heavy metal in the present study | |
Literature concentration of heavy metal in soil sample |
Ecological risk potential of i-th element in soil sample | |
Toxicity response factor of heavy metal (TRF) |
3. Results and Discussion
3.1. Measurement Resulst of Heavy Metal Concentrations by ICP-OES and ICP-MS Methods
3.2. Comparison between Present and Literature Data
3.3. Result of Pollution Indices of Soil Contamination
3.4. Result of Health Risk Assessment
3.4.1. Noncarcinogenic Risk Assessment
3.4.2. Carcinogenic Risk Assessment
3.5. Result of Ecological Risk Assessment
3.5.1. Results of Contamination Index
3.5.2. Potential Ecological Risk Index of a Single Element
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Avid, B.; Sato, Y.; Maruyama, K.; Yamada, Y.; Purevsuren, B. Effective utilization of on Mongolian coal by upgrading in a solvent. Fuel Process. Technol. 2004, 85, 933–945. [Google Scholar] [CrossRef]
- Statistics Department of Capital City. Available online: http://www.ubstat.mn/ (accessed on 5 May 2020).
- Davaabal, B.; Batsetseg, B.; Zolzaya, T.S.; Temuujin, J. Properties of the ashes from ger district of Ulaanbaatar city and preliminary assessment of their applicability. News Mong. Acad. Sci. 2016, 1, 217. [Google Scholar] [CrossRef] [Green Version]
- Enkh Uchral, B.; Tomoo, S.; Enkhdul, T.; Yutaka, D. Characteristics of Household Waste and Coal Ash in Ulaanbaatar, Mongolia. In Proceedings of the The 27th Annual Conference of Japan Society of Material Cycles and Waste Management, Wakayama, Japan, 27–29 September 2016. [Google Scholar] [CrossRef]
- Batjargal, T.S.; Otgonjargal, E.; Baek, K.; Yang, J.S. Assessment of metals contamination of soils in Ulaanbaatar, Mongolia. J. Hazard. Mater. 2010, 184, 872–876. [Google Scholar] [CrossRef] [PubMed]
- Batkhishig, O. Soil contamination in Ulaabaatar. Proc. Mong. Acad. Sci. 2013, 53, 205. (In Mongolian) [Google Scholar] [CrossRef] [Green Version]
- Sonomdagva, C.H.; Byambatseren, C.H.; Davaadorj, D. Results of soil pollution impact in settlement area on Ulaanbaatar city. Proc. Mong. Acad. Sci. 2016, 56, 217. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Turiel, J.L.; De Carvalho, W.; Cabañas, M.; Querol, X.; Lopez-Soler, A. Mobility of heavy metals from coal fly ash. Environ. Geol. 1994, 23, 264–270. [Google Scholar] [CrossRef]
- Flues, M.; Sato, I.M.; Scapin, M.A.; Cotrim, M.E.B.; Camargo, I.M.C. Toxic elements mobility in coal and ashes of Figueira coal power plant, Brazil. Fuel 2013, 103, 430–436. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.; Khan, E.; Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019. [Google Scholar] [CrossRef] [Green Version]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Barbara, G.; Steven, G.; Gilbert Lisa, G.E.T. The toxic threat to our health and environment. In A Report from Physicians for Social Responsibility and Earth Justice; Earthjustice: Washington, DC, USA, 2010. [Google Scholar]
- Environmental Protection Agency. Available online: https://www.epa.gov/risk (accessed on 5 May 2020).
- Sonomdagva, C.H.; Chultem, B.; Byambatseren, C.H.; Enkhchimeg, B.; Batsuren, D.; Batdelger, B. Contamination and health risk assessment of heavy metals in the soil of major cities in Mongolia. Int. J. Environ. Res. Public Health 2019, 16, 2552. [Google Scholar] [CrossRef] [Green Version]
- Urban Environmental Agency in Mongolia. Report of Pollution of Heavy Metals in Soil of Ulaanbaatar; Urban Environmental Agency: Ulaanbaatar, Mongolia, 2017.
- National Standard MNS 5850:2008. Soil Quality. Soil Pollutants Elements and Substances; NSOM National Statistics Office of Mongolia: Ulaanbaatar, Mongolian, 2017.
- Solongo, T.; Fukushi, K.; Altansukh, O.; Takahashi, Y.; Akehi, A.; Baasansuren, G.; Ariuntungalag, Y.; Enkhjin, O.; Davaajargal, B.; Davaadorj, D.; et al. Distribution and Chemical Speciation of Molybdenum in River and Pond Sediments Affected by Mining Activity in Erdenet City. Mong. Miner. 2018, 8, 288. [Google Scholar] [CrossRef] [Green Version]
- Žemberyová, B.; Barteková, J.; Hagarová, I. The utilization of modified BCR three-step sequential extraction procedure for the fractionation of Cd, Cr, Cu, Ni, Pb and Zn in soil reference materials of different origins. Talanta 2006, 70, 973–978. [Google Scholar] [CrossRef] [PubMed]
- Abrahams, P.W. Soils: Their implications to human health. Sci. Total Environ. 2002, 291, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, S.M.; Cruz, N.; Coelho, C.; Henriques, B.; Carvalho, L.; Duarte, A.C.; Pereira, E.; Römkens, P.F. Risk assessment for Cd, Cu, Pb and Zn in urban soils: Chemical availability as the central concept. Environ. Pollut. 2013, 183, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, M. The Importance of Enrichment Factor (EF) and Geoaccumulation Index (Igeo) to Evaluation the Soil Contamination. J. Geol. Geophys. 2016, 5, 1. [Google Scholar] [CrossRef]
- Taylor, S.R. Abundance of chemical elements in the continental crust: A new table. Geochim. Cosmochim. Acta 1964, 28, 1273–1285. [Google Scholar] [CrossRef]
- Byambasuren, T.S.; Khuukhenkhuu, B.; Ochirbat, G.; Vasilyeva, I.E.; Shabanova, E.V.; Tsedenbaljir, D.; Korolkov, A.T. Background concentration of microelements in Ulaanbaatar regional natural surface soil. Proc. Mong. Acad. Sci. 2018, 15–24. [Google Scholar] [CrossRef]
- US Environmental Protection Agency (USEPA). Integrated Risk Information System. 1998. Available online: https://www.epa.gov/iris/basic-information-about-integrated-risk-information-system (accessed on 5 May 2020).
- US Environmental Protection Agency (USEPA). Human and Ecological Risk Assessment of Coal Combustion Wastes. U.S. Environmental Protection Agency Office of Solid Waste Research Triangle Park, 2007, NC 27709. Available online: http://www.southeastcoalash.org (accessed on 5 May 2020).
- Huang, S.H.; Li, Q.; Yang, Y.; Yuan, C.Y.; Ouyang, K.; You, P. Risk assessment of heavy metals in soils of a lead-zinc mining area in Hunan Province, China. Chem. Ind. 2017, 66, 173–178. [Google Scholar] [CrossRef]
- Kamunda, C.; Mathuthu, M.; Madhuku, M. Health risk assessment of heavy metals in soils from Witwatersrand gold mining basin, South Africa. Int. J. Environ. Res. Public Health 2016, 13, 663. [Google Scholar] [CrossRef]
- Ma, W.; Tai, L.; Qiao, Z.; Zhong, L.; Wang, Z.; Fu, K.; Chen, G. Contamination source apportionment and health risk assessment of heavy metals in soil around municipal solid waste incinerator: A case study in North China. Sci. Total. Environ. 2018, 631, 348–357. [Google Scholar] [CrossRef]
- US Environmental Protection Agency (USEPA). Standard Default Exposure Factors. Default for Resident Child and Adult. 1991. Available online: https://www.epa.gov (accessed on 5 May 2020).
- US Environmental Protection Agency (USEPA). Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment). 2004. Available online: https://www.epa.gov (accessed on 5 May 2020).
- US Environmental Protection Agency (USEPA). Exposure factors handbook. Volume I- General factors. Page 5–24, 1997a. Available online: https://www.epa.gov (accessed on 5 May 2020).
- US Environmental Protection Agency (USEPA). Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. Office of Solid Waste and Emergency Response. Washington, DC. OSWER. 2001. Available online: https://www.epa.gov (accessed on 5 May 2020).
- US Environmental Protection Agency (USEPA). Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. Office of Emergency and Remedial Response, Washington. 2002. Available online: https://www.epa.gov (accessed on 5 May 2020).
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Backman, B.; Bodiš, D.; Lahermo, P.; Rapant, S.; Tarvainen, T. Application of a groundwater contamination index in Finland and Slovakia. Environ. Geol. 1998, 36, 55–64. [Google Scholar] [CrossRef]
- Huang, X.; Hu, J.; Li, C.; Deng, J.; Long, J.; Qin, F. Heavy-metal pollution and potential ecological risk assessment of sediments from Baihua Lake, Guizhou, PR China. Int. J. Environ. Health Res. 2009, 19, 405–419. [Google Scholar] [CrossRef]
- Maanan, M.; Saddik, M.; Maanan, M.; Chaibi, M.; Assobhei, O.; Zourarah, B. Environmental and ecological risk assessment of heavy metals in sediments of Nador lagoon, Morocco. Ecol. Indic. 2015, 48, 616–626. [Google Scholar] [CrossRef]
- Harkness, J.S.; Darrah, T.H.; Moore, M.T.; Whyte, C.J.; Mathewson, P.D.; Cook, T.; Vengosh, A. Naturally occurring versus anthropogenic sources of elevated molybdenum in groundwater: Evidence for Geogenic contamination from Southeast Wisconsin, United States. Environ. Sci. Technol. 2017, 51, 12190–12199. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Health and Human Services. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for arsenic (Draft. for Public Comment.); Department of Health and Human Services: Atlanta, GA, USA, 2005.
- Nriagu, J.O.; Azcue, J.M. Arsenic in the Environment. Part. I: Cycling and Characterization; John Wiley & Sons: New York, NY, USA, 1994; Volume 26, pp. 119–132. [Google Scholar]
- Guttikunda, S.K.; Lodoysamba, S.; Bulgansaikhan, B.; Dashdondog, B. Particulate pollution in Ulaanbaatar, Mongolia. Air Qual. Atmos. Health 2013, 6, 589–601. [Google Scholar] [CrossRef]
- IDE, C.W.; Bullough, G.R. Arsenic and old glass. Occup. Med. 1988, 38, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Toshiki, K.; Giang, P.Q.; Serrona, K.R.B.; Sekikawa, T.; Yu, J.S.; Choijil, B.; Kunikane, S. Effects of introducing energy recovery processes to the municipal solid waste management system in Ulaanbaatar, Mongolia. J. Environ. Sci. 2015, 28, 178–186. [Google Scholar] [CrossRef]
Step 1 Solid | Solid sample | 0.05 g | 120 °C | 48 h (until dry) |
HNO3 60% | 3 mL | |||
Hydrofluoric 48% | 3 mL | |||
Step 2 | Hydrochloric acid 30% | 3 mL | 120 °C | 24 h (until dry) |
Step 3 Solution | Extracted solution of HNO3 0.6% | 10 mL | Mix motor | 24 h |
Step 4 Digestion | Extracted solution | 10 mL | All soil samples were filtered by 0.20 µm membrane cellulose filter | |
Step 5 Dilution (50 times) | Indium standard solution | 0.01 g | Total 10 mL diluted solutions were prepared for measurement of the ICP-MS and ICP-OES | |
Extracted solution | 0.2 g | |||
HNO3 | 9.79 g |
EF | Igeo | ||
---|---|---|---|
EF < 2 | no enrichment | 0 < Igeo | uncontaminated |
EF = 3–5 | moderate enrichment | 0 < Igeo < 1 | uncontaminated to moderately uncontaminated |
EF = 5–10 | moderately severe enrichment | 1 < Igeo < 2 | moderately contaminated |
EF = 10–25 | severe enrichment | 2 < Igeo < 3 | moderately to heavily contaminated |
EF = 25–50 | very severe enrichment | 3 < Igeo < 4 | heavily contaminated |
EF > 50 | extremely severe enrichment | 4 < Igeo < 5 | heavily to extremely contaminated |
5 > Igeo | extremely contaminated |
Elements | RfD [mg/kg day] | |||
Pathways | ||||
Ingestion | Dermal | Inhalation | ||
1 | Cr | 3 × 10−3 (a) | 3 × 10−3 (a) | 2.86 × 10−5 (a) |
2 | Pb | 1.4 × 10−3 (a) | 5.25 × 10−4 (a) | 3.52 × 10−3 (a) |
3 | Zn | 3 × 10−1 (c) | 6 × 10−2 (c) | 3 × 10−1 (a) |
4 | Cd | 3 × 10−1 (a) | 2.3 × 10−5 (a) | 1 × 10−5 (a) |
5 | As | 1 × 10−4 (a) | 1.23 × 10−4 (a) | 1.23 × 10−4 (a) |
6 | Co | 2 × 10−2 (a) | NA | NA |
7 | Cu | 4 × 10−2 (a) | 1.2 × 10−2 (a) | 4 × 10−2 (a) |
8 | Mo | 5 × 10−3 (a) | NA | NA |
Elements | SF [mg/kg day] | |||
Pathways | ||||
Ingestion | Dermal | Inhalation | ||
1 | Cr | 5 × 10−1 (a) | 20 (a) | 42 (a) |
2 | Pb | 8.5 × 10−3 (a) | NA | 4.2 × 10−2 (c) |
3 | Cd | NA | NA | 6.3 (a) |
4 | As | 1.5 (a) | 3.66 (a) | 4.3 × 10−3 (a) |
Parameters | Adult | Children | Unit | References |
---|---|---|---|---|
ADI, average daily intake | - | - | [mg/kg day] | - |
IngR, soil ingestion rate | 100 | 200 | [mg/day] | [29] |
EF, exposure frequency | 350 | 350 | [day/year] | [29] |
ED, exposure duration | 30 | 6 | [year] | [30] |
BW, body weight | 70 | 15 | [kg] | [30] |
SF, skin area exposed to soil contact | 5700 | 2800 | [cm2] | [30] |
AF, soil to skin adherence factor | 0.07 | 0.2 | [kg/cm day] | [30] |
ABS, contact factor | 0.1 | 0.1 | none | [30] |
InhR, inhalation rate | 15 | 10 | [m3/day] | [31] |
PEF, particle emission factor | 1.36 × 109 | 1.36 × 109 | [m3/kg] | [32] |
AT, average time non-carcinogenic | 10,950 | 2190 | [days] | [33] |
AT, average time carcinogenic | 25,550 | 25,550 | [days] | [33] |
CR, Conversion factor | 1 × 10−6 | 1 × 10−6 | [mg/kg] | [33] |
FE, Dermal exposure ratio | 0.61 | 0.61 | - | [30] |
Cd | Cu | Pb | Zn | Cr | As |
---|---|---|---|---|---|
1 | 25 | 20 | 60 | 45 | 12 |
Pollution Level | ||
---|---|---|
1 | Non-pollution | |
2 | Low level of pollution | |
3 | Moderate level of pollution | |
4 | Strong level of pollution | |
5 | Very strong pollution |
Ecological Risk Level of Single-Factor Pollution | General Level of Potential Ecological Risk | ||
---|---|---|---|
Low | Low grade | ||
Moderate | Moderate | ||
Higher | 0 | Severe | |
High | Serious | ||
Serous | - | - |
No. | Elements N = 42 | Min [mg/kg] | Max [mg/kg] | Average [mg/kg] | Mongolian National Standard (MNS 5850: 2008) | ||
---|---|---|---|---|---|---|---|
Permissible Limit [mg/kg] | Toxic Level [mg/kg] | Dangerous Level [mg/kg] | |||||
1 | Cr | 10.6 | 110.4 | 29.0 | 150 | 400 | 1500 |
2 | Co | 3.2 | 13.0 | 7.6 | 50 | 500 | 1000 |
3 | Cu | 13.0 | 78.6 | 28.9 | 100 | 500 | 1000 |
4 | Zn | 54.8 | 384.0 | 135.6 | 300 | 600 | 1000 |
5 | As | 5.7 | 526.8 | 22.9 | 6 | 30 | 50 |
6 | Mo | 8.0 | 334.8 | 39.8 | 5 | 20 | 50 |
7 | Se | 0 | 1.5 | 0.1 | 10 | 50 | 100 |
8 | Cd | 0 | 1.9 | 0.2 | 3 | 10 | 20 |
9 | Pb | 17.3 | 77.3 | 34.5 | 100 | 500 | 1200 |
10 | V | 38.1 | 118.2 | 69.9 | 150 | 600 | 1000 |
11 | Sr | 271.2 | 531.9 | 353.2 | 800 | 3000.0 | 6000.0 |
12 | Al | 45,708.2 | 68,080.1 | 57,954.9 | - | - | - |
13 | Ag | 0.3 | 1.9 | 1.1 | - | - | - |
14 | Kr | 0.0 | 0.7 | 0.3 | - | - | - |
15 | Rb | 57.3 | 108.8 | 84.5 | - | - | - |
16 | Cs | 2.2 | 8.2 | 4.0 | - | - | - |
17 | Ba | 447.5 | 859.8 | 677.1 | - | - | - |
18 | Bi | 0.2 | 3.1 | 0.6 | - | - | - |
19 | Th | 8.6 | 34.1 | 12.7 | - | - | - |
20 | U | 1.5 | 4.0 | 2.5 | - | - | - |
21 | Ca | 1.6 | 41.5 | 19.7 | - | - | - |
22 | Fe | 11.2 | 54.0 | 24.5 | - | - | - |
23 | K | 13.0 | 28.3 | 22.9 | - | - | - |
24 | Mg | 1.1 | 107.1 | 30.3 | - | - | - |
25 | Mn | 0.1 | 1.1 | 0.5 | - | - | - |
26 | Na | 2.1 | 27.9 | 16.7 | - | - | - |
No. | Elements | Pathways | ||
---|---|---|---|---|
Ingestion | Dermal | Inhalation | ||
1 | Cr | 2.06 × 10−2 | 1.05 × 10−1 | 4.76 × 10−4 |
2 | Co | 8.06 × 10−4 | - | - |
3 | Cu | 1.54 × 10−3 | 2.63 × 10−2 | 3.39 × 10−7 |
4 | Zn | 9.63 × 10−4 | 2.47 × 10−2 | 2.13 × 10−7 |
5 | As | 1.63 × 10−1 | 2.03 | 8.75 × 10−5 |
6 | Mo | 1.70 × 10−2 | - | - |
7 | Cd | 3.65 × 10−2 | 8.14 × 10−2 | 8.06 × 10−6 |
8 | Pb | 2.4 × 10−3 | 7.18 × 10−1 | 4.61 × 10−6 |
Total HI | 2.59 × 10−1 | 2.99 | 5.77 × 10−4 |
No. | Elements | Pathways | ||
---|---|---|---|---|
Ingestion | Dermal | Inhalation | ||
1 | Cr | 3.55 × 10−9 | 4.60 × 10−2 | 1.53 × 10−4 |
2 | Co | 1.39 × 10−10 | - | - |
3 | Cu | 2.65 × 10−10 | 1.15 × 10−2 | 1.09 × 10−7 |
4 | Zn | 1.66 × 10−10 | 1.08 × 10−2 | 6.83 × 10−8 |
5 | As | 2.81 × 10−8 | 8.87 × 10−1 | 2.81 × 10−5 |
6 | Mo | 2.93 × 10−9 | - | - |
7 | Cd | 6.3 × 10−11 | 3.55 × 10−2 | 2.59 × 10−6 |
8 | Pb | 9.06 × 10−9 | 3.13 × 10−1 | 1.48 × 10−6 |
Total HI | 4.47 × 10−8 | 1.3 | 1.85 × 10−4 |
No. | Pathways | Cr | As | Cd | Pb | Total Cancer Risk |
---|---|---|---|---|---|---|
1 | Ingestion | 2.65 × 10−6 | 6.27 × 10−6 | - | 5.36 × 10−8 | 8.97 × 10−6 |
2 | Dermal | 5.42 × 10−4 | 7.84 × 10−5 | - | - | 6.2 × 10−4 |
3 | Inhalation | 2.78 × 10−11 | 2.15 × 10−7 | 1.1 × 10−12 | 3.31 × 10−8 | 2.48 × 10−7 |
No. | Pathways | Cr | As | Cd | Pb | Total Cancer Risk |
---|---|---|---|---|---|---|
1 | Ingestion | 2.87 × 10−7 | 6.27 × 10−6 | - | 5.74 × 10−9 | 9.62 × 10−7 |
2 | Dermal | 1.18 × 10−3 | 1.71 × 10−4 | - | - | 1.35 × 10−3 |
3 | Inhalation | 4.47 × 10−11 | 3.45 × 10−7 | 1.76 × 10−12 | 5.32 × 10−8 | 3.98 × 10−7 |
Descriptive | Cd | Cu | Pb | Zn | Cr | As |
---|---|---|---|---|---|---|
Min | 0.11 | 0.52 | 0.86 | 0.91 | 0.24 | 0.48 |
Max | 1.93 | 3.14 | 3.87 | 6.4 | 2.45 | 43.9 |
Mean | 0.17 | 1.16 | 1.73 | 2.26 | 0.64 | 1.91 |
Descriptive | Cd | Cu | Pb | Zn | Cr | As |
---|---|---|---|---|---|---|
Min | 0.11 | 13.05 | 17.25 | 54.82 | 10.63 | 5.74 |
Max | 1.93 | 78.59 | 77.32 | 383.96 | 110.42 | 526.75 |
Mean | 0.17 | 28.88 | 34.50 | 135.63 | 28.97 | 22.90 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Battsengel, E.; Murayama, T.; Fukushi, K.; Nishikizawa, S.; Chonokhuu, S.; Ochir, A.; Tsetsgee, S.; Davaasuren, D. Ecological and Human Health Risk Assessment of Heavy Metal Pollution in the Soil of the Ger District in Ulaanbaatar, Mongolia. Int. J. Environ. Res. Public Health 2020, 17, 4668. https://doi.org/10.3390/ijerph17134668
Battsengel E, Murayama T, Fukushi K, Nishikizawa S, Chonokhuu S, Ochir A, Tsetsgee S, Davaasuren D. Ecological and Human Health Risk Assessment of Heavy Metal Pollution in the Soil of the Ger District in Ulaanbaatar, Mongolia. International Journal of Environmental Research and Public Health. 2020; 17(13):4668. https://doi.org/10.3390/ijerph17134668
Chicago/Turabian StyleBattsengel, Enkhchimeg, Takehiko Murayama, Keisuke Fukushi, Shigeo Nishikizawa, Sonomdagva Chonokhuu, Altansukh Ochir, Solongo Tsetsgee, and Davaadorj Davaasuren. 2020. "Ecological and Human Health Risk Assessment of Heavy Metal Pollution in the Soil of the Ger District in Ulaanbaatar, Mongolia" International Journal of Environmental Research and Public Health 17, no. 13: 4668. https://doi.org/10.3390/ijerph17134668
APA StyleBattsengel, E., Murayama, T., Fukushi, K., Nishikizawa, S., Chonokhuu, S., Ochir, A., Tsetsgee, S., & Davaasuren, D. (2020). Ecological and Human Health Risk Assessment of Heavy Metal Pollution in the Soil of the Ger District in Ulaanbaatar, Mongolia. International Journal of Environmental Research and Public Health, 17(13), 4668. https://doi.org/10.3390/ijerph17134668