Hematological and Running Performance Modification of Trained Athletes after Reverse vs. Block Training Periodization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Testing Protocol
2.4. Blood Sample Collection
2.5. Running-Based Anaerobic Sprint Test (RAST)
2.6. Treadmill Running Test
2.7. Countermovement Jump
2.8. Ten Kilometer Time Trial Test
2.9. Training Program
2.10. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Joyner, M.J.; Coyle, E.F. Endurance exercise performance: The physiology of champions. J. Physiol. (Lond.) 2008, 586, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Suarez, V.J. Changes in biochemical, strength, flexibility, and aerobic capacity parameters after a 1700 km ultraendurance cycling race. Biomed. Res. Int. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- Clemente Suarez, V.J.; González-Ravé, J.M. Four weeks of training with different aerobic workload distributions–Effect on aerobic performance. Eur. J. Sport Sci. 2014, 14, S1–S7. [Google Scholar] [CrossRef] [PubMed]
- Dellavalle, D.M.; Haas, J.D. Iron status is associated with endurance performance and training in female rowers. Med. Sci. Sports Exerc. 2012, 44, 1552–1559. [Google Scholar] [CrossRef]
- Clemente-Suarez, V.J.; Muñoz Fernandez-Arroyo, V.E.; Ramos-Campo, D.; Navarro, F.; Gonzalez-Rave, J.M.; Juarez Santos-Garcia, D. Analysis of selected physiological performance determinants and muscle damage in a 24-hour ultra-endurance relay race: Brief clinical report. Int. Sport Med. J. 2011, 12, 179–186. [Google Scholar]
- Clemente-Suárez, V.J.; Fernandes, R.J.; de Jesus, K.; Pelarigo, J.; Arroyo-Toledo, J.J.; Vilas-Boas, J.P. Do traditional and reverse swimming training periodizations lead to similar aerobic performance improvements? J. Sports Med. Phys. Fit. 2018, 58, 761–767. [Google Scholar]
- Clemente-Suárez, V.J.; Arroyo-Toledo, J.J. The use of autonomic modulation device to control training performance after high-intensity interval training program. J. Med. Syst. 2018, 42, 47. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Beltrán-Velasco, A.I.; Bellido-Esteban, A.; Ruisoto-Palomera, P. Autonomic adaption to clinical simulation in psychology students: Teaching applications. Appl. Psychophysiol. Biofeedback 2018, 43, 239–245. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Delgado-Moreno, R.; González, B.; Ortega, J.; Ramos-Campo, D.J. Amateur endurance triathletes’ performance is improved independently of volume or intensity based training. Physiol. Behav. 2018, 205, 2–8. [Google Scholar] [CrossRef]
- Clemente-Suarez, V.J. Periodized training archive better autonomic modulation and aerobic performance than non periodized training. J. Sports Med. Phys. Fitness. 2018, 58, 1559–1564. [Google Scholar] [CrossRef]
- Clemente-Suarez, V.J.; Dalamitros, A.A.; Nikolaidis, P.T. The effect of a short-term training period on physiological parameters and running performance: Intensity distribution versus constant-intensity exercise. J. Sports Med. Phys. Fitness. 2018, 58, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sylta, Ø.; Tønnessen, E.; Hammarström, D.; Danielsen, J.; Skovereng, K.; Ravn, T.; Seiler, S. The effect of different high-intensity periodization models on endurance adaptations. Med. Sci Sports Exerc. 2016, 48, 2165–2174. [Google Scholar] [CrossRef] [Green Version]
- Clemente-Suárez, V.J.; Ramos-Campo, D.J. Effectiveness of reverse vs. traditional linear training periodization in triathlon. Int. J. Environ. Res. Public Health. 2019, 16, 2807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhea, M.R.; Phillips, W.T.; Burkett, L.N.; Stone, W.J.; Ball, S.D.; Alvar, B.A.; Thomas, A.B. A comparison of linear and daily undulating periodized programs with equated volume and intensity for local muscular endurance. J. Strength Cond Res. 2003, 17, 82–87. [Google Scholar] [PubMed]
- Gibala, M.J.; Little, J.P.; Van Essen, M. Short-term sprint interval versus traditional endurance training: Similar initial adaptations in human skeletal muscle and exercise performance. J. Physiol. 2006, 575, 901–911. [Google Scholar] [CrossRef]
- Terada, S.; Tabata, I.; Higuchi, M. Effect of high-intensity intermittent swimming training on fatty acid oxidation enzyme activity in rat skeletal muscle. Jpn. J. Physiol. 2004, 54, 47–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clemente-Suárez, V.J.; Arroyo-Toledo, J. Use of biotechnology devices to analyse fatigue process in swimming training. J. Med. Syst. 2017, 41, 94. [Google Scholar] [CrossRef]
- Banfi, G.; Lundby, C.; Robach, P.; Lippi, G. Seasonal variations of hematological parameters in athletes. Eur J. Appl. Physiol. 2011, 111, 9–16. [Google Scholar] [CrossRef]
- Boisnoir, A.; Decker, L.; Reine, B.; Natta, F. Validation of an integrated experimental set-up for kinetic and kinematic three-dimensional analyses in a training environment. Sports Biomech. 2007, 6, 215–223. [Google Scholar] [CrossRef]
- Bataller-Cervero, A.V.; Gutierrez, H.; DeRentería, J.; Piedrafita, E.; Marcén, N.; Valero-Campo, C.; Berzosa, C. Validity and reliability of a 10 Hz GPs for assessing variable and mean running speed. J. Hum. Kin. 2019, 67, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Hernando, D.; Garatachea, N.; Almeida, R.; Casajús, J.A.; Bailón, R. (Vlidation of heart rate monitor Polar RS800 for heart rate variability analysis during exercise. J. Strength Cond Res. 2018, 32, 716–725. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Suárez, V.J.; Dalamitros, A.; Ribeiro, J.; Sousa, A.; Fernandes, R.J.; Vilas-Boas, J.P. The effects of two different swimming training periodization on physiological parameters at various exercise intensities. Eur. J. Sport Sci. 2017, 17, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Santos-Lozano, A.; Gascón, R.; López, I.; Garatachea-Vallejo, N. Comparison of two systems designed to measure vertical jump height. Ricyde 2014, 10, 123–130. [Google Scholar]
- Seiler, K.S.; Kjerland, G.Ø. Quantifying training intensity distribution in elite endurance athletes: Is there evidence for an “optimal” distribution? Scand. J. Med. Sci. Sports. 2006, 16, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Foster, C.; Daines, E.; Hector, L.; Snyder, A.C.; Welsh, R. Athletic performance in relation to training load. Wis Med. J. 1996, 95, 370–374. [Google Scholar] [PubMed]
- Rhea, M.R. Determining the magnitude of treatment effects in strength training research through the use of the effect size. J. Strength Cond Res. 2004, 18, 918–920. [Google Scholar] [PubMed]
- Arroyo-Toledo, J.J.; Clemente Suárez, V.J.; González Ravé, J.M. Effects of traditional and reverse periodization on strength, body-composition and swim performance. Imp J. Interdiscip. Res. 2016, 2, 474–481. [Google Scholar]
- Arroyo-Toledo, J.J.; Clemente, V.J.; Gonzalez-Rave, J.M.; Ramos Campo, D.J.; Sortwell, A. Comparison between traditional and reverse periodization: Swimming performance and specific strength values. Int. J. Swim Kinet. 2013, 2, 87–96. [Google Scholar]
- Arroyo-Toledo, J.J.; Cantos-Polo, I.; Liedtke, J.; Palomo-Vélez, C. Concentrated load on A reverse periodization, propel higher positives effects on track test performance, than traditional sequence. Imp J. Interdiscip. Res. 2017, 3, 470–476. [Google Scholar]
- Galy, O.; Manetta, J.; Coste, O.; Maimoun, L.; Chamari, K.; Hue, O. Maximal oxygen uptake and power of lower limbs during a competitive season in triathletes. Scand. J. Med. Sci. Sports 2003, 13, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Clemente-Suárez, V.J.; Mielgo-Ayuso, J.; Quiles, J.L.; Varela-Lopez, A.; Aranda, P. Effect of α-tocopherol megadoses on hematologic parameters and antioxidant capacity of rats in an ultraendurance probe. Physiol. Int. 2017, 104, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Mercer, K.W.; Densmore, J.J. Hematologic disorders in the athlete. Clin. Sports Med. 2005, 24, 599–621. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.C.; Fattor, J.A.; Henderson, G.C.; Brooks, G.A. Lipid oxidation in fit young adults during postexercise recovery. J. Appl. Physiol. 2005, 99, 349–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petibois, C.; Deleris, G. Effects of short-and long-term detraining on the metabolic response to endurance exercise. Int. J. Sports Med. 2003, 24, 320–325. [Google Scholar] [PubMed]
- Laursen, P.B. Training for intense exercise performance: High-intensity or high-volume training? Scand J. Med. Sci Sports. 2010, 20, 1–10. [Google Scholar] [CrossRef]
- Curiel-Regueros, A.; Fernández-Lucas, J.; Clemente-Suárez, V.J. Effectiveness of an applied high intensity interval training as a specific operative training. Physiol. Behav. 2019, 201, 208–211. [Google Scholar] [CrossRef] [PubMed]
Periodization Model | Weeks 1–4 | Weeks 5–8 | Weeks 9–12 |
---|---|---|---|
Block periodization | 1 × 50 min Z1 3 × 2000 m/3 min Z2 | 6 × 1000 m/3 min Z3 2 × (5 × 400 m/90 s)/8 min/Z3 | 10 × 1000 m/3 min Z3 |
Reverse periodization | 10 × 200 m/2 min Z3 3 × (10 × 100 m/30 s)/3′ Z3 | 8 × 1000 m/2 min Z2 2 × (10 × 300 m/90 s)/8 min Z3 | 10 × 1000 m/3 min Z3 |
Variables | Pre-Training | Post-Training | 95% CI for Difference | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ES | p | MD | Lower Bound | Upper Bound | |
Reverse Periodization | |||||||||
Erythrocytes (×106/L) | 4.5 | 0.1 | 4.4 | 0.1 | 0.98 | 0.299 | −0.1 | −0.3 | 0.1 |
Hematocrit (%) | 42.9 | 1.1 | 42.4 | 0.8 | 0.37 | 0.448 | −0.5 | −1.8 | 0.8 |
Hemoglobin (g/dL) | 14.2 | 0.4 | 13.8 | 0.2 | 0.81 | 0.129 | −0.4 | −0.9 | 0.1 |
Ferritin (g/L) | 129.8 | 31.8 | 124.1 | 19.4 | 0.16 | 0.627 | −5.7 | −30.1 | 18.5 |
Glucose (mg/dL) | 88.7 | 3.2 | 84.7 | 1.8 | 1.1 | 0.077 | −4 | −8.4 | 0.4 |
Triglycerides (mg/dL) | 70 | 5.4 | 75.7 | 4.5 | −0.94 | 0.037 | 5.7 | 1.1 | 10.3 |
Block Periodization | |||||||||
Erythrocytes (×106/L) | 4.5 | 0 | 4.5 | 0 | 0.89 | 0.164 | −0.1 | −0.2 | 0.1 |
Hematocrit (%) | 42.1 | 0.9 | 41 | 0.6 | 0.98 | 0.107 | −1.1 | −2.4 | 0.2 |
Hemoglobin (g/dL) | 14.1 | 0.3 | 13.6 | 0.2 | 1.55 | 0.1 | −0.5 | −1 | 0 |
Ferritin (g/L) | 118.5 | 19.7 | 108.3 | 14.7 | 0.46 | 0.396 | −10.2 | −34.5 | 14.2 |
Glucose (mg/dL) | 90.7 | 3.2 | 87.7 | 1.8 | 0.83 | 0.177 | −3.1 | −7.4 | 1.4 |
Triglycerides (mg/dL) | 82.7 | 5.6 | 83.6 | 4.3 | −0.14 | 0.698 | 0.9 | −3.7 | 5.5 |
Variables | Pre-Training | SD | Post-Training | ES | p | 95% CI for Difference | |||
---|---|---|---|---|---|---|---|---|---|
Mean | Mean | SD | MD | Lower Bound | Upper Bound | ||||
Reverse Periodization | |||||||||
HR VT1 (bpm) | 140.3 | 2.0 | 137.1 | 2.5 | 1.40 | 0.031 | −3.3 | −6.1 | −0.3 |
Speed VT1 (km/h) | 10.8 | 1.0 | 11.2 | 0.9 | −0.35 | 0.278 | 0.3 | −0.3 | 1 |
VT1 (% of VO2max) | 59.9 | 1.6 | 60.9 | 1.6 | −0.57 | 0.046 | 1 | 0 | 1.9 |
HR VT2 (bpm) | 177.0 | 2.8 | 172.9 | 2.4 | 1.32 | <0.001 | −4.1 | −5.7 | −2.7 |
Speed VT2 (km/h) | 15.4 | 0.8 | 15.7 | 0.9 | −0.27 | 0.322 | 0.3 | −0.2 | 0.7 |
VT2 (% of VO2max) | 71.3 | 1.4 | 71.6 | 1.5 | −0.24 | 0.548 | 0.4 | −0.9 | 1.6 |
HR VO2max (bpm) | 187.6 | 1.7 | 187.8 | 1.8 | −0.07 | 0.661 | 0.1 | −0.4 | 0.7 |
Speed VO2max (km/h) | 17.5 | 0.7 | 18.3 | 0.6 | −1.07 | <0.001 | 0.8 | −2.3 | −1.2 |
VO2max (ml/kg/min) | 59.4 | 2.6 | 60.8 | 2.6 | −0.47 | 0.004 | 1.4 | 0.5 | 2.1 |
Block Periodization | |||||||||
HR VT1 (bpm) | 138.8 | 2.5 | 141.2 | 1.8 | −0.83 | 0.106 | 2.4 | −0.5 | 5.3 |
Speed VT1 (km/h) | 11.3 | 0.5 | 11.2 | 0.9 | 0.13 | 0.364 | −0.1 | −1 | 0.3 |
VT1 (% of VO2max) | 62.6 | 1.4 | 62.9 | 1.2 | −0.16 | 0.602 | 0.3 | −0.7 | 1.2 |
HR VT2 (bpm) | 170.8 | 2.1 | 168.9 | 1.7 | 0.78 | 0.023 | −1.9 | −3.4 | −0.2 |
Speed VT2 (km/h) | 14.4 | 0.5 | 14.9 | 0.6 | −0.91 | 0.056 | 0.5 | 0 | 1 |
VT2 (% of VO2max) | 72.5 | 2.1 | 72.0 | 1.6 | 0.2 | 0.448 | −0.4 | −1.7 | 0.8 |
HR VO2max (bpm) | 183.8 | 1.6 | 183.9 | 1.7 | −0.07 | 0.661 | 0.1 | −0.4 | 0.7 |
Speed VO2max (km/h) | 16.8 | 0.5 | 17.4 | 0.6 | −0.92 | 0.016 | 0.6 | −2.5 | −1.3 |
VO2max (ml/kg/min) | 53.6 | 2.4 | 55.0 | 2.1 | −0.51 | 0.004 | 1.4 | 0.5 | 2.1 |
Variables | Pre-Training | Post-Training | 95% CI for Difference | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ES | p | MD | Lower Bound | Upper Bound | |
Reverse Periodization | |||||||||
Mean sprint RAST (s) | 5.8 | 0.3 | 5.6 | 0.3 | 0.59 | 0.01 | −0.2 | −0.1 | −0.3 |
Best sprint RAST (s) | 5.6 | 0.3 | 5.5 | 0.3 | 0.3 | 0.019 | −0.1 | −0.2 | 0 |
Total time sprint RAST (s) | 34.8 | 1.9 | 33.6 | 1.8 | 0.56 | 0.01 | −1.2 | −0.6 | −1.8 |
CMJ height (cm) | 33 | 1.5 | 34 | 1.2 | −0.6 | 0.044 | 1 | 0 | 1.9 |
10,000 m (s) | 2481.5 | 369.4 | 2429.2 | 363.6 | 0.13 | 0.089 | −52 | −113 | 9 |
Block Periodization | |||||||||
Mean sprint RAST (s) | 5.7 | 0.4 | 5.7 | 0.4 | 0 | 0.965 | 0 | 0.1 | −0.1 |
Best sprint RAST (s) | 5.6 | 0.4 | 5.6 | 0.4 | 0 | 1 | 0 | 0.1 | −0.1 |
Total time sprint RAST (s) | 34.2 | 2.7 | 34.2 | 2.4 | 0 | 0.965 | 0 | 0.6 | −0.6 |
CMJ height (cm) | 31.3 | 2.1 | 33.1 | 1.8 | −0.75 | 0.001 | 1.8 | 0.8 | 2.7 |
10,000 m (s) | 2728.8 | 522.3 | 2640 | 418.3 | 0.15 | 0.008 | −88.8 | −149.8 | −27.7 |
Total Time (min) | Time in Z1 (min) | Time in Z1 (%) | Time in Z2 (min) | Time in Z2 (%) | Time in Z3 (min) | Time in Z3 (%) | Training Load (TRIMPS) | |
---|---|---|---|---|---|---|---|---|
Reverse Periodization | 3246.1 ± 38.3 | 1963.0 ± 30.0 | 60.5 ± 0.5 | 715.6 ± 6.1 | 22.5 ± 0.3 | 567.6 ± 20.4 | 17.5 ± 0.5 | 19,932.1 ± 250.5 |
Block Periodization | 3319.9 ± 37.4 | 2009.4 ± 25.3 | 60.5 ± 0.2 | 774.4 ± 11.5 | 23.3 ± 0.2 | 536.1 ± 4.7 | 16.2 ± 0.1 | 20,292.3 ± 222.0 |
p | 0.002 | 0.005 | 0.780 | <0.001 | <0.001 | 0.001 | <0.001 | 0.009 |
ES (d) | 1.95 | 1.58 | 0 | 6.04 | 2.97 | 2.01 | 3.41 | 1.52 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez Martín, J.P.; Clemente-Suárez, V.J.; Ramos-Campo, D.J. Hematological and Running Performance Modification of Trained Athletes after Reverse vs. Block Training Periodization. Int. J. Environ. Res. Public Health 2020, 17, 4825. https://doi.org/10.3390/ijerph17134825
Gómez Martín JP, Clemente-Suárez VJ, Ramos-Campo DJ. Hematological and Running Performance Modification of Trained Athletes after Reverse vs. Block Training Periodization. International Journal of Environmental Research and Public Health. 2020; 17(13):4825. https://doi.org/10.3390/ijerph17134825
Chicago/Turabian StyleGómez Martín, Juan Pablo, Vicente Javier Clemente-Suárez, and Domingo Jesús Ramos-Campo. 2020. "Hematological and Running Performance Modification of Trained Athletes after Reverse vs. Block Training Periodization" International Journal of Environmental Research and Public Health 17, no. 13: 4825. https://doi.org/10.3390/ijerph17134825
APA StyleGómez Martín, J. P., Clemente-Suárez, V. J., & Ramos-Campo, D. J. (2020). Hematological and Running Performance Modification of Trained Athletes after Reverse vs. Block Training Periodization. International Journal of Environmental Research and Public Health, 17(13), 4825. https://doi.org/10.3390/ijerph17134825