Particle-Bound PAHs and Elements in a Highly Industrialized City in Southern Italy: PM2.5 Chemical Characterization and Source Apportionment after the Implementation of Governmental Measures for Air Pollution Mitigation and Control
Abstract
:1. Introduction
1.1. State-of-the-Art of Scientific Studies in Taranto
1.2. Objective of the Present Study
2. Materials and Methods
2.1. Sampling Sites Description
2.2. PM2.5 Sampling Methodology
2.3. PAHs and Nitro-, Oxy-Derivatives Extraction and Analysis by GC-MS/MS
2.3.1. Chemicals
2.3.2. Standard Solutions
2.3.3. PAHs and Nitro-, Oxy-Derivatives Extraction Procedure
2.3.4. PAHs and Nitro-, Oxy-Derivatives Analysis by GC-MS/MS
2.4. Elements Extraction and Analysis by ICP-MS
2.4.1. Chemicals and Standard Solutions
2.4.2. Elements Extraction Procedure
2.4.3. Elements Analysis by ICP-MS
2.5. Source Apportionment Analysis
3. Results and Discussion
3.1. PAHs and Elements Results
3.2. Considerations on Nitro- and Oxy-PAHs
3.3. Statistical Analysis Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Feng, S.; Gao, D.; Liao, F.; Zhou, F.; Wang, X. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol. Environ. Saf. 2016, 128, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Mishra, N.; Ayoko, G.A.; Morawska, L. Atmospheric polycyclic aromatic hydrocarbons in the urban environment: Occurrence, toxicity and source apportionment. Environ. Pollut. 2016, 208, 110–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walgraeve, C.; Demeestere, K.; Dewulf, J.; Zimmermann, R.; Van Langenhove, H. Oxygenated polycyclic aromatic hydrocarbons in atmospheric particulate matter: Molecular characterization and occurrence. Atmos. Environ. 2010, 44, 1831–1846. [Google Scholar] [CrossRef]
- Alam, M.S.; Keyte, I.J.; Yin, J.; Stark, C.; Jones, A.M.; Harrison, R.M. Diurnal variability of polycyclic aromatic compound (PAC) concentrations: Relationship with meteorological conditions and inferred sources. Atmos. Environ. 2015, 122, 427–438. [Google Scholar] [CrossRef]
- Idowu, O.; Semple, K.T.; Ramadass, K.; O’Connor, W.; Hansbro, P.; Thavamani, P. Beyond the obvious: Environmental health implications of polar polycyclic aromatic hydrocarbons. Environ. Int. 2019, 123, 543–557. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Meng, Z.; Yao, P.; Zhang, L.; Wang, Z.; Lv, Y.; Tian, Y.; Feng, Y. Sources-specific carcinogenicity and mutagenicity of PM2.5-bound PAHs in Beijing, China: Variations of contributions under diverse anthropogenic activities. Ecotoxicol. Environ. Saf. 2019, 183, 109552. [Google Scholar] [CrossRef] [PubMed]
- Musa Bandowe, B.A.; Meusel, H. Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in the environment–A review. Sci. Total Environ. 2017, 581–582, 237–257. [Google Scholar] [CrossRef]
- Xu, P.; Chen, Y.; He, S.; Chen, W.; Wu, L.; Xu, D.; Chen, Z.; Wang, X.; Lou, X. A follow-Up study on the characterization and health risk assessment of heavy metals in ambient air particles emitted from a municipal waste incinerator in Zhejiang, China. Chemosphere 2020, 246, 125777. [Google Scholar] [CrossRef]
- Ramírez, O.; Sánchez de la Campa, A.M.; Sánchez-Rodas, D.; de la Rosa, J.D. Hazardous trace elements in thoracic fraction of airborne particulate matter: Assessment of temporal variations, sources, and health risks in a megacity. Sci. Total Environ. 2020, 710, 136344. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, B.; Wang, S.; Yang, F.; Xing, J.; Morawska, L.; Ding, A.; Kulmala, M.; Kerminen, V.-M.; Kujansuu, J.; et al. Particulate matter pollution over China and the effects of control policies. Sci. Total Environ. 2017, 584–585, 426–447. [Google Scholar] [CrossRef]
- Di Gilio, A.; Palmisani, J.; Trizio, L.; Saracino, G.; Giua, R.; de Gennaro, G. Total p-PAH levels nearby a complex industrial area: A tailored monitoring experiment to assess the impact of emission sources. Atmosphere 2020, 11, 469. [Google Scholar] [CrossRef]
- Di Gilio, A.; Palmisani, J.; de Gennaro, G. An innovative methodological approach for monitoring and chemical characterization of odors around industrial sites. Adv. Meteorol. 2018, 1567146, 1–8. [Google Scholar] [CrossRef]
- Chiari, M.; Del Carmine, P.; Orellana, I.G.; Lucarelli, F.; Nava, S.; Paperetti, L. Hourly elemental composition and source identification of fine and course PM10 in an Italian urban area stressed by many industrial activities. Nucl. Instrum. Methods Phys. Res. B 2006, 249, 584–587. [Google Scholar] [CrossRef] [Green Version]
- Amodio, M.; Andriani, E.; de Gennaro, G.; Di Gilio, A.; Ielpo, P.; Placentino, C.M.; Tutino, M. How a steel plant affects air quality of a nearby urban area: A study on metals and PAH concentrations. Aerosol Air Qual. Res. 2013, 13, 497–508. [Google Scholar] [CrossRef] [Green Version]
- Amodio, M.; Caselli, M.; de Gennaro, G.; Tutino, M. Particulate PAHs in two urban areas of Southern Italy: Impact of the sources, meteorological and background conditions on air quality. Environ. Res. 2009, 109, 812–820. [Google Scholar] [CrossRef]
- Bruno, P.; Caselli, M.; de Gennaro, G.; Tutino, M. Determination of Polyciclic Aromatic Hydrocarbons (PAHs) in particulate matter collected with low volume samplers. Talanta 2007, 72, 1357–1361. [Google Scholar] [CrossRef]
- Amodio, M.; Andriani, E.; Dambruoso, P.R.; de Gennaro, G.; Di Gilio, A.; Intini, M.; Palmisani, J.; Tutino, M. A monitoring strategy to assess the fugitive emission from a steel plant. Atmos. Environ. 2013, 79, 455–461. [Google Scholar] [CrossRef]
- Di Gilio, A.; Ventrella, G.; Giungato, P.; Tutino, M.; Giua, R.; Assennato, G.; de Gennaro, G. An intensive monitoring campaign of PAHs for assessing the impact of a steel plant. Chemosphere 2017, 168, 171–182. [Google Scholar] [CrossRef]
- Tutino, M.; Di Gilio, A.; Laricchiuta, A.; Assennato, G.; de Gennaro, G. An improved method to determine PM-bound nitro PAHs in ambient air. Chemosphere 2016, 161, 463–469. [Google Scholar] [CrossRef]
- Bruno, P.; Caselli, M.; de Gennaro, G.; de Gennaro, L.; Tutino, M. High spatial resolution monitoring of benzene and toluene in the urban area of Taranto (Italy). J. Atmos. Chem. 2006, 54, 177–187. [Google Scholar] [CrossRef]
- Trizio, L.; Angiuli, L.; Menegotto, M.; Fedele, F.; Giua, R.; Mazzone, F.; Carducci, A.G.C.; Bellotti, R.; Assennato, G. Effect of the Apulia air quality plan on PM10 and benzo(a)pyrene exceedances. Glob. J. Environ. Sci. Manag. 2016, 2, 95–104. [Google Scholar] [CrossRef]
- Martinelli, D.; Mincuzzi, A.; Minerba, S.; Tafuri, S.; Conversano, M.; Caputi, G.; Lopalco, P.L.; Quarto, M.; Germinario, C.; Prato, R. Malignant cancer mortality in Province of Taranto (Italy). Geographic analysis in an area of high environmental risk. J. Prev. Med. Hyg. 2009, 50, 181–190. [Google Scholar] [PubMed]
- Vigotti, M.A.; Mataloni, F.; Bruni, A.; Minniti, C.; Gianicolo, E.A.L. Mortality analysis by neighbourhood in a city with high levels of industrial air pollution. Int. J. Public Health 2014. [Google Scholar] [CrossRef] [PubMed]
- Hoh, E.; Mastovska, K. Large volume injection techniques in capillary gas chromatography. J. Chromatogr. A 2008, 1186, 2–15. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.J.C.; Jarvis, K.E.; Disch, B.A.; Goddard, S.L.; Adriaenssens, E.; Claeys, N. Comparison of ED-XRF and LA-ICP-MS with the European reference method of acid digestion-ICP-MS for the measurement of metals in ambient particulate matter. Accredit. Qual. Assur. 2010, 15, 493–502. [Google Scholar] [CrossRef]
- Viana, M.; Pandolfi, M.; Minguilló, M.C.; Querol, X.; Alastuey, A.; Monfort, E.; Celades, I. Inter-Comparison of receptor models for PM source apportionment: Case study in an industrial area. Atmos. Environ. 2008, 42, 3820–3832. [Google Scholar] [CrossRef]
- Reff, A.; Eberly, S.I.; Bhave, P.V. Receptor modeling of ambient particulate matter data using positive matrix factorization: A review of existing methods. J. Air Waste Manag. Assoc. 2007, 57, 146–154. [Google Scholar] [CrossRef] [Green Version]
- Paatero, P.; Hopke, P.K. Discarding or downwighting high noise variables in factor analysis. Anal. Chim. Acta 2003, 490, 277–289. [Google Scholar] [CrossRef]
- Carslaw, D.C.; Ropkins, K. Openair-An R package for air quality data analysis. Environ. Model. Softw. 2012, 27–28, 52–61. [Google Scholar] [CrossRef]
- Grange, S.K.; Lewis, A.C.; Carslaw, D.C. Source apportionment advances using polar plots of bivariate correlation and regression statistics. Atmos. Environ. 2016, 145, 128–134. [Google Scholar] [CrossRef]
- Chakraborty, S. Ferrous Metallurgical Process Industry, Visakhapatnam Steel Plant–From Conceptualization to Commissioning. In Treatise on Process Metallurgy; Elsevier Ltd: Amsterdam, The Netherlands, 2014; Volume 3, pp. 1341–1374. [Google Scholar] [CrossRef]
- Park, S.S.; Kim, Y.J.; Kang, C.H. Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea. Atmos. Environ. 2002, 36, 2917–2924. [Google Scholar] [CrossRef]
- Ravindra, K.; Bencs, L.; Wauters, E.; de Hoog, J.; Deutsch, F.; Roekens, E.; Bleux, N.; Bergmans, P.; Van Grieken, R. Seasonal and site-specific variation in vapour and aerosol phase PAHs over Flanders (Belgium) and their relation with anthropogenic activities. Atmos. Environ. 2006, 40, 771–785. [Google Scholar] [CrossRef] [Green Version]
- Dickhut, R.M.; Canuel, E.A.; Gustafson, K.E.; Liu, K.; Arzayus, K.M.; Walker, S.E.; Edgecombe, G.; Gaylor, M.O.; Macdonald, E.H. Automotive sources of carcinogenic polycyclic aromatic hydrocarbons associated with particulate matter in the Chesapeake Bay region. Environ. Sci. Technol. 2000, 34, 4635–4640. [Google Scholar] [CrossRef]
- Manoli, E.; Kouras, A.; Samara, C. Profile analysis of ambient and source emitted particle-bound polycyclic aromatic hydrocarbons from three sites in northern Greece. Chemosphere 2004, 56, 867–878. [Google Scholar] [CrossRef] [PubMed]
- Kong, S.; Shi, J.; Lu, B.; Qiu, W.; Zhang, B.; Peng, Y.; Zhang, B.; Bai, Z. Characterization of PAHs within PM10 fraction for ashes from coke production, iron smelt, heating station and power plant stacks in Liaoning Province, China. Atmos. Environ. 2011, 45, 3777–3785. [Google Scholar] [CrossRef]
- Zhu, J.; Hsu, C.-Y.; Chou, W.-C.; Chen, M.-J.; Chen, J.-L.; Yang, T.-T.; Wu, Y.-S.; Chen, Y.-C. PM2.5- and PM10-bound polycyclic aromatic hydrocarbons (PAHs) in the residential area near coal-fired power and steelmaking plants of Taichung City, Taiwan: In vitro-Based health risk and source identification. Sci. Total Environ. 2019, 670, 439–447. [Google Scholar] [CrossRef]
- Tsai, P.-J.; Young, L.-H.; Hwang, B.-F.; Lin, M.-Y.; Chen, Y.-C.; Hsu, H.-T. Source and health risk apportionment for PM2.5 collected in Sha-Lu area, Taiwan. Atmos. Pollut. Res. 2020, 11, 851–858. [Google Scholar] [CrossRef]
- Dai, Q.-L.; Bi, X.-H.; Wu, J.-H.; Zhang, Y.-F.; Wang, J.; Xu, H.; Yao, L.; Jiao, L.; Feng, Y.-C. Characterization and Source Identification of Heavy Metals in Ambient PM10 and PM2.5 in an Integrated Iron and Steel Industry Zone Compared with a Background Site. Aerosol Air Qual. Res. 2015, 15, 875–887. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Ji, Y.; Zhao, J.; Lin, Y.; Lin, Z. Source apportionment and toxicity assessment of PM2.5-bound PAHs in a typical iron-steel industry city in northeast China by PMF-ILCR. Sci. Total Environ. 2020, 713, 136428. [Google Scholar] [CrossRef] [PubMed]
- Khaparde, V.V.; Bhanarkar, A.D.; Majumdar, D.; Chalapati Rao, C.V. Characterization of polycyclic aromatic hydrocarbons in fugitive PM10 emissions from an integrated iron and steel plant. Sci. Total Environ. 2016, 562, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Kalaiarasan, G.; Balakrishnan, R.M.; Khaparde, V.V. Receptor model based source apportionment of PM10 in the metropolitan and industrialized areas of Mangalore. Environ. Technol. Innov. 2016, 6, 195–203. [Google Scholar] [CrossRef]
- Taiwo, A.M.; Beddows, D.C.S.; Calzolai, G.; Harrison, R.M.; Lucarelli, F.; Nava, S.; Shi, Z.; Valli, G.; Vecchi, R. Receptor modelling of airborne particulate matter in the vicinity of a major steelworks site. Sci. Total Environ. 2014, 490, 488–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kfoury, A.; Ledoux, F.; Rochel, C.; Delmaire, G.; Roussel, G.; Courcot, D. PM2.5 source apportionment in a French urban coastal site under steelworks emission influences using constrained non-negative matrix factorization receptor model. J. Environ. Sci. 2016, 40, 114–128. [Google Scholar] [CrossRef] [PubMed]
- Gladtke, D.; Volkhausen, W.; Bach, B. Estimating the contribution of industrial facilities to annual PM10 concentrations at industrially influenced sites. Atmos. Environ. 2009, 43, 4655–4665. [Google Scholar] [CrossRef]
- Zhao, B.; Su, Y.; He, S.; Zhong, M.; Cui, G. Evolution and comparative assessment of ambient air quality standards in China. J. Integr. Environ. Sci. 2016, 13, 85–102. [Google Scholar] [CrossRef] [Green Version]
- Environmental Protection Administration Executive Yuan, R:O:C., Taiwan. Air Quality Standards. Available online: https://airtw.epa.gov.tw/ENG/Information/Standard/Rules.aspx (accessed on 15 May 2020).
- European Commission. Air Quality Standards. 2014. Available online: http://ec.europa.eu/environment/air/quality/standards.htm (accessed on 15 May 2020).
- WHO Regional Office for Europe. Air Quality Guidelines: Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur dioxide; World Health Organization, Regional Office for Europe: Copenhagen, Denmark, 2006. [Google Scholar]
- Musa Bandowe, B.A.; Meusel, H.; Huang, R.; Ho, K.; Cao, J.; Hoffmann, T.; Wilcke, W. PM2.5-Bound oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a Chinese megacity: Seasonal variation, sources and cancer risk assessment. Sci. Total Environ. 2014, 473–474, 77–87. [Google Scholar] [CrossRef]
- Wei, S.; Huang, B.; Liu, M.; Bi, X.; Ren, Z.; Sheng, G.; Fu, J. Characterization of PM2.5-bound nitrated and oxygenated PAHs in two industrial sites of South China. Atmos. Res. 2012, 109–110, 76–83. [Google Scholar] [CrossRef]
- Nyiri, Z.; Novák, M.; Bodai, Z.; Szabo, B.S.; Eke, Z.; Záray, G.; Szigeti, T. Determination of particulate phase polycyclic aromatic hydrocarbons and their nitrated and oxygenated derivatives using a gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2016, 1472, 88–98. [Google Scholar] [CrossRef]
Compound | CAS # | ISTD | TR (min) | Precursor Ion (m/z) | Quantifier Product Ion (m/z) | Qualifier Product Ion (m/z) | CE (eV) |
---|---|---|---|---|---|---|---|
Time segment 1: 11.6 min | |||||||
fluorene | 86-73-7 | 9.7 | 166 | 165 | 115 | 25 | |
phenanthrene | 85-01-8 | 11.5 | 178 | 178 | 152 | 15 | |
anthracene | 120-12-7 | 11.5 | 178 | 178 | 152 | 15 | |
phenanthrene-d10 | 1517-22-2 | x | 11.6 | 188 | 188 | 160 | 15 |
Time segment 2: 21.0 min | |||||||
pyrene | 129-00-0 | 16.0 | 202 | 202 | 176 | 25 | |
benzo[a]anthracene | 56-55-3 | 20.6 | 228 | 228 | 226 | 15 | |
chrysene | 1719-03-5 | 20.9 | 228 | 228 | 226 | 15 | |
chrysene-d12 | 1719-03-5 | x | 21.0 | 240 | 240 | 238 | 15 |
Time segment 3: 30.0 min | |||||||
benzo[b]fluoranthene | 205-99-2 | 26.0 | 252 | 252 | 250 | 25 | |
benzo[k]fluoranthene | 207-08-9 | 26.2 | 252 | 252 | 250 | 25 | |
benzo[a]pyrene | 50-32-8 | 29.1 | 252 | 252 | 250 | 25 | |
perylene-d12 | 1520-96-3 | x | 30.0 | 264 | 264 | 260 | 25 |
Time segment 4 45.0 min | |||||||
indeno[1,2,3-cd]pyrene | 193-39-5 | 40.3 | 276 | 276 | 274 | 25 | |
dibenzo[a,h]anthracene | 53-70-3 | 40.8 | 278 | 278 | 276 | 15 | |
benzo[g,h,i]perylene | 191-24-2 | 45.0 | 276 | 276 | 274 | 25 |
Compound | CAS # | ISTD | TR (min) | Precursor Ion (m/z) | Quantifier Product Ion (m/z) | Qualifier Product Ion (m/z) | CE (eV) |
---|---|---|---|---|---|---|---|
Time segment 1: 16.4 min | |||||||
phenanthrene-d10 | 1517-22-2 | x | 11.6 | 188 | 188 | 160 | 15 |
5-nitroacenaphtene | 602-87-9 | 14.6 | 152 | 151 | 126 | 15 | |
2-nitrofluorene | 607-57-8 | 15.7 | 165 | 165 | 115 | 15 | |
9-nitroanthracene | 602-60-8 | 16.4 | 223 | 223 | 193 | 5 | |
Time segment 2: 21.0 min | |||||||
9-nitrophenanthrene | 954-46-1 | 17.3 | 165 | 165 | 115 | 15 | |
benzo[a]fluorenone | 479-79-8 | 19.3 | 230 | 230 | 202 | 5 | |
chrysene-d12 | 1719-03-5 | x | 21.0 | 240 | 240 | 238 | 15 |
Time segment 3: 23.1 min | |||||||
3-nitrofluoranthene | 892-21-7 | 22.4 | 247 | 247 | 217 | 5 | |
3-nitrofluoranthene-d9 | 892-21-7 | x | 22.5 | 247 | 247 | 217 | 5 |
1,2-benzanthraquinone | 2498-66-0 | 23.1 | 258 | 258 | 230 | 5 | |
Time segment 4: 30.0 min | |||||||
1-nitropyrene | 5522-43-0 | 23.8 | 201 | 200 | 151 | 25 | |
7-nitrobenz[a]anthracene | 20268-51-3 | 27.2 | 215 | 215 | 189 | 15 | |
perylene-d12 | 1520-96-3 | x | 30.0 | 264 | 264 | 260 | 25 |
Site MACHIAVELLI | Site DIREZIONE | Site PARCHI | Site PORTINERIA | Site COKERIA | Site TAMBURI | Site RIV | Site ADIGE | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | |
PAHs (ng/m3) | ||||||||||||||||||||||||
Fluo | 0.73 | 4.30 | 2.36 | <LOQ | <LOQ | <LOQ | 0.21 | 0.40 | 0.30 | 0.17 | 0.36 | 0.25 | 0.64 | 8.60 | 2.48 | 0.21 | 0.66 | 0.42 | 0.37 | 0.57 | 0.45 | 0.23 | 0.47 | 0.32 |
Anth + Phen | 0.22 | 0.30 | 0.26 | 0.24 | 0.52 | 0.33 | 0.23 | 0.30 | 0.26 | 0.22 | 0.31 | 0.25 | 0.81 | 2.41 | 1.31 | 0.24 | 0.34 | 0.29 | 0.50 | 0.57 | 0.53 | 0.23 | 0.33 | 0.27 |
Pyr | 0.23 | 0.43 | 0.34 | 0.22 | 0.45 | 0.30 | 0.22 | 0.44 | 0.27 | 0.20 | 0.32 | 0.24 | 0.48 | 3.21 | 1.44 | 0.22 | 0.54 | 0.33 | 0.44 | 0.63 | 0.51 | 0.28 | 0.50 | 0.37 |
B[a]A | 0.24 | 0.42 | 0.34 | 0.25 | 0.58 | 0.36 | 0.26 | 0.62 | 0.33 | 0.22 | 0.52 | 0.30 | 0.67 | 16.50 | 3.83 | 0.27 | 0.51 | 0.39 | 0.51 | 0.84 | 0.58 | 0.27 | 0.65 | 0.36 |
Cry | 0.27 | 0.56 | 0.45 | 0.28 | 0.78 | 0.48 | 0.33 | 0.98 | 0.44 | 0.22 | 0.75 | 0.36 | 1.41 | 22.60 | 5.74 | 0.31 | 0.74 | 0.53 | 0.51 | 1.03 | 0.64 | 0.33 | 0.84 | 0.48 |
B[b+k]F | 0.39 | 0.86 | 0.54 | 0.38 | 0.82 | 0.52 | 0.39 | 0.86 | 0.52 | 0.35 | 0.67 | 0.47 | 0.83 | 30.50 | 6.52 | 0.40 | 0.75 | 0.53 | 0.78 | 1.09 | 0.89 | 0.41 | 0.73 | 0.50 |
B[a]P | 0.28 | 0.57 | 0.44 | 0.32 | 0.89 | 0.49 | 0.29 | 0.71 | 0.44 | 0.26 | 0.77 | 0.43 | 0.55 | 32.70 | 6.26 | 0.31 | 0.71 | 0.50 | 0.57 | 1.18 | 0.74 | 0.34 | 1.00 | 0.50 |
IP | 0.47 | 0.82 | 0.60 | 0.46 | 0.89 | 0.59 | 0.44 | 1.28 | 0.62 | 0.41 | 0.80 | 0.55 | 0.59 | 31.70 | 6.60 | 0.45 | 0.80 | 0.58 | 0.90 | 1.23 | 1.01 | 0.47 | 0.88 | 0.58 |
B[g,h,i]P | 0.48 | 0.83 | 0.64 | 0.44 | 0.92 | 0.60 | 0.42 | 1.35 | 0.61 | 0.37 | 0.72 | 0.51 | 0.61 | 30.00 | 6.42 | 0.45 | 0.90 | 0.65 | 0.79 | 1.15 | 0.94 | 0.46 | 0.97 | 0.62 |
Elements (ng/m3) | ||||||||||||||||||||||||
Fe | 5.66 | 474.00 | 129.00 | 5.44 | 1895.00 | 397.00 | 338.00 | 3815.00 | 1810.00 | 13.90 | 207.00 | 107.00 | 1629.00 | 12982.00 | 5727.00 | 87.30 | 1353.00 | 497.00 | 157.00 | 1700.00 | 472.00 | 46.30 | 168.00 | 106.00 |
Mn | 2.17 | 16.80 | 8.60 | 5.22 | 32.30 | 14.40 | 3.65 | 57.60 | 26.30 | 0.23 | 7.54 | 3.30 | 33.10 | 188.00 | 92.30 | 3.06 | 26.30 | 12.10 | 4.61 | 35.50 | 13.90 | 1.00 | 7.00 | 2.90 |
Ti | 4.88 | 33.90 | 12.60 | 3.40 | 19.30 | 9.82 | 3.49 | 24.10 | 11.60 | 3.31 | 9.79 | 6.17 | 32.00 | 76.00 | 48.70 | 2.41 | 12.30 | 7.98 | 8.34 | 42.30 | 19.40 | 2.10 | 11.90 | 5.40 |
Ni | 1.69 | 8.89 | 4.96 | 1.07 | 48.00 | 5.05 | 0.50 | 48.30 | 5.80 | 0.28 | 2.39 | 1.14 | 1.91 | 18.00 | 4.73 | 1.32 | 10.20 | 3.74 | 4.12 | 14.60 | 6.64 | 1.40 | 10.80 | 2.90 |
As | 0.08 | 1.72 | 0.74 | 0.23 | 1.27 | 0.56 | 0.12 | 1.75 | 0.63 | 0.09 | 0.91 | 0.30 | 0.59 | 13.80 | 4.30 | 0.10 | 1.09 | 0.46 | 0.13 | 2.98 | 1.02 | 0.10 | 0.30 | 0.20 |
Cd | 0.04 | 0.19 | 0.10 | 0.03 | 0.16 | 0.09 | 0.03 | 0.27 | 0.11 | 0.02 | 0.14 | 0.06 | 0.01 | 0.89 | 0.29 | 0.02 | 0.07 | 0.04 | 0.06 | 0.18 | 0.12 | 0.10 | 0.60 | 0.10 |
Zn | 6.66 | 241.39 | 99.86 | 5.53 | 89.77 | 31.49 | 7.54 | 149.27 | 43.77 | 2.03 | 34.39 | 12.72 | 20.22 | 230.35 | 95.02 | 1.76 | 355.45 | 92.28 | 25.12 | 121.33 | 58.43 | 16.02 | 90.39 | 39.13 |
Pb | 2.88 | 25.50 | 8.58 | 0.52 | 11.90 | 4.82 | 0.50 | 30.40 | 7.14 | 0.66 | 5.79 | 2.16 | 3.51 | 188.00 | 53.80 | 1.31 | 22.70 | 6.78 | 2.79 | 9.69 | 5.91 | 1.50 | 10.20 | 4.80 |
PM2.5 (µg/m3) | 11.4 | 24.2 | 15.5 | 6.80 | 34.5 | 18.9 | 7.40 | 22.5 | 16.0 | 5.00 | 24.9 | 11.2 | 14.0 | 98.5 | 47.4 | 7.20 | 26.5 | 17.4 | 9.70 | 36.0 | 21.9 | 6.10 | 31.0 | 15.8 |
B[a]P/B[g,h,i]P | IP/(IP+B[g,h,i]P) | IP/B[g,h,i]P | |
---|---|---|---|
Traffic | 0.5–0.6 [32] | 0.17 [33] | 0.33 [18,34] |
Lead smelter (coke burning) | 0.45 [35] | 0.36 [35,36] | 1.03 [18,34] |
Coke combustion | ≥1.25 [15] | 0.33 [15,36] | |
Coal burning | 0.9–6.6 [36] | 0.56 [33,36] | 1.09 [34] |
this study (mean value) | |||
Machiavelli | 0.68 | 0.49 | 0.95 |
Direzione | 0.82 | 0.50 | 1.00 |
Parchi | 0.73 | 0.50 | 1.02 |
Portineria | 0.85 | 0.52 | 1.10 |
Cokeria | 0.97 | 0.51 | 1.00 |
Tamburi | 0.76 | 0.47 | 0.90 |
RIV | 0.78 | 0.52 | 1.06 |
Adige | 0.82 | 0.49 | 0.95 |
Country | Steelworks-Related Industrial Site * | PM2.5 Mean Conc. ± SD | B[a]P Mean Conc. ± SD | Elements Mean Conc. ± SD (ng/m3) or Min–Max | Ref. | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
or Min–Max (µg/m3) | or Min–Max (ng/m3) | Mn | Fe | Pb | Zn | Cd | As | Ni | Ti | |||
Taiwan | Taichung City a,c | 26.6 ± 14.9 | 0.227 ± 0.166 | ¯ | ¯ | ¯ | ¯ | ¯ | ¯ | ¯ | ¯ | [37] |
Sha-Lu, Taichung e | 39.2 ± 23.6 | ¯ | 3.6 ± 2.5 | 60.9 ± 56.6 | 8.0 ± 22.0 | 34.5 ± 16.5 | 0.2 ± 0.2 | 8.0 ± 2.4 | 2.5 ± 2.1 | 8.4 ± 6.9 | [38] | |
China | Hangzhou City e | ¯ | ¯ | 54.2 ± 5.3 | 2321.0 ± 788.5 | 161.6 ± 33.0 | 729.2 ± 261.2 | 3.3 ± 0.4 | 16.8 ± 3.4 | 5.2 ± 1.4 | 24.9 ± 2.7 | [39] |
Anshan City e | 81.22 | 8.97 | ¯ | ¯ | ¯ | ¯ | ¯ | ¯ | ¯ | ¯ | [40] | |
India | not specified | ¯ | 0.8 ± 72 | ¯ | ¯ | ¯ | ¯ | ¯ | ¯ | ¯ | ¯ | [41] |
82.1 ± 129 | ||||||||||||
Mangalore e | ¯ | ¯ | ¯ | ¯ | 30 ± 530 | 300 ± 90 | 90 ± 40 | ¯ | 1820 ± 110 | ¯ | [42] | |
United Kingdom | Port Talbot b | 6.5 ± 2.5 | ¯ | 3.84 ± 4.8 | 104 ± 108 | 4.42 ± 3.88 | 33.98 ± 86.7 | 0.26 ± 0.55 | 0.12 ± 0.17 | |||
9.2 ± 1.7 | 12.76 ± 11.8 | 290 ± 229 | 8.12 ± 9.27 | 71.51 ± 117.2 | 0.88 ± 2.11 | 0.20 ± 0.33 | [43] | |||||
France | Dunkerque b,d | 24.9–33.2 | ¯ | 7.19 ± 12.7 | 92.9 ± 96.1 | 9.77 ± 8.19 | 38.7 ± 46.5 | 0.30 ± 0.63 | 0.77 ± 1.02 | 3.23 ± 4.93 | 1.00 ± 1.63 | |
8.11 ± 14.6 | 101 ± 174 | 13.9 ± 15.6 | 44.0 ± 88.5 | 0.35 ± 0.84 | 0.91 ± 0.68 | 4.63 ± 3.68 | 2.22 ± 2.25 | [44] | ||||
Germany | Duisburg e | ¯ | ¯ | 50–230 | 2970–17310 | 50–80 | 240–350 | 1.1–1.3 | 3.1 | 5.6–11.9 | 40–70 | [45] |
Italy | Taranto a | 11.2–47.4 | 0.43–6.26 | 2.90–92.30 | 106–5727 | 2.16–53.80 | 12.72–99.86 | 0.04–0.29 | 0.20–4.30 | 1.14–6.64 | 5.40–48.70 | this paper |
China | Ambient Air Quality Standards | 75 (24-h) | 2.5 (24-h) | ¯ | ¯ | 500 | ¯ | 5 | 6 | ¯ | ¯ | [46] |
35 (1-year) | 1 (1-year) | |||||||||||
Taiwan | Air Quality Standards | 35 (24-h) | ¯ | ¯ | ¯ | 1000 | ¯ | ¯ | ¯ | ¯ | ¯ | [47] |
15 (1-year) | ||||||||||||
WHO | WHO Air Quality Guidelines | 25 (24-h) | ¯ | 150 | ¯ | 500 | ¯ | 5 | 6.6 | 25 | ¯ | [48] |
10 (1-year) | ||||||||||||
EU LEGISLATION | EU Air Quality Standards | 25 (1-year) | 1 | 500 | 5 | 6 | 20 | [49] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palmisani, J.; Di Gilio, A.; Franchini, S.A.; Cotugno, P.; Miniero, D.V.; D’Ambruoso, P.; de Gennaro, G. Particle-Bound PAHs and Elements in a Highly Industrialized City in Southern Italy: PM2.5 Chemical Characterization and Source Apportionment after the Implementation of Governmental Measures for Air Pollution Mitigation and Control. Int. J. Environ. Res. Public Health 2020, 17, 4843. https://doi.org/10.3390/ijerph17134843
Palmisani J, Di Gilio A, Franchini SA, Cotugno P, Miniero DV, D’Ambruoso P, de Gennaro G. Particle-Bound PAHs and Elements in a Highly Industrialized City in Southern Italy: PM2.5 Chemical Characterization and Source Apportionment after the Implementation of Governmental Measures for Air Pollution Mitigation and Control. International Journal of Environmental Research and Public Health. 2020; 17(13):4843. https://doi.org/10.3390/ijerph17134843
Chicago/Turabian StylePalmisani, Jolanda, Alessia Di Gilio, Silvana Angela Franchini, Pietro Cotugno, Daniela Valeria Miniero, Paolo D’Ambruoso, and Gianluigi de Gennaro. 2020. "Particle-Bound PAHs and Elements in a Highly Industrialized City in Southern Italy: PM2.5 Chemical Characterization and Source Apportionment after the Implementation of Governmental Measures for Air Pollution Mitigation and Control" International Journal of Environmental Research and Public Health 17, no. 13: 4843. https://doi.org/10.3390/ijerph17134843
APA StylePalmisani, J., Di Gilio, A., Franchini, S. A., Cotugno, P., Miniero, D. V., D’Ambruoso, P., & de Gennaro, G. (2020). Particle-Bound PAHs and Elements in a Highly Industrialized City in Southern Italy: PM2.5 Chemical Characterization and Source Apportionment after the Implementation of Governmental Measures for Air Pollution Mitigation and Control. International Journal of Environmental Research and Public Health, 17(13), 4843. https://doi.org/10.3390/ijerph17134843