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Abstract

:

Since the Silk-road Economic belt initiatives were proposed, Xinjiang has provided a vital strategic link between China and Central Asia and even Eurasia. However, owing to the weak and vulnerable ecosystem in this arid region, even a slight climate change would probably disrupt vegetation dynamics and land cover change. Thus, there is an urgent need to determine the Normalized Difference Vegetation Index (NDVI) and Land-use/Land-cover (LULC) responses to climate change. Here, the extreme-point symmetric mode decomposition (ESMD) method and linear regression method (LRM) were applied to recognize the variation trends of the NDVI, temperature, and precipitation between the growing season and other seasons. Combining the transfer matrix of LULC, the Pearson correlation analysis was utilized to reveal the response of NDVI to climate change and climate extremes. The results showed that: (1) Extreme temperature showed greater variation than extreme precipitation. Both the ESMD and the LRM exhibited an increased volatility trend for the NDVI, with the significant improvement regions mainly located in the margin of basins. (2) Since climate change had a warming trend, the permanent snow has been reduced by 20,436 km2. The NDVI has a higher correlation to precipitation than temperature. Furthermore, the humid trend could provide more suitable conditions for vegetation growth, but the warm trend might prevent vegetation growth. Spatially, the response of the NDVI in North Xinjiang (NXC) was more sensitive to precipitation than that in South Xinjiang (SXC). Seasonally, the NDVI has a greater correlation to precipitation in spring and summer, but the opposite occurs in autumn. (3) The response of the NDVI to extreme precipitation was stronger than the response to extreme temperature. The reduction in diurnal temperature variation was beneficial to vegetation growth. Therefore, continuous concentrated precipitation and higher night-time-temperatures could enhance vegetation growth in Xinjiang. This study could enrich the understanding of the response of land cover change and vegetation dynamics to climate extremes and provide scientific support for eco-environment sustainable management in the arid regions.
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1. Introduction


Arid and semi-arid regions encompass nearly 40% of the Earth’s land surface, where about 20% of the human population of the world live [1]. As one of the largest arid and semi-arid regions in the Northern hemisphere, Central Asia is particularly influenced by drought [2,3,4]. Vegetation dynamics could reflect the changes in the ecological environment to some extent [5,6,7], and it might be extremely sensitive to climate change in fragile eco-environment [8,9,10]. As a previous study has found, the contribution of climate change to grassland degradation could reach up to 47.9% in the arid and semi-arid regions of China [11]. Therefore, research on vegetation dynamics and its response to climate change remains a vital strategic task in arid and semi-arid regions [12,13,14,15,16].



The Normalized Difference Vegetation Index (NDVI) has been regarded as a reliable index to monitor vegetation dynamics [17,18,19]. Additionally, the NDVI product supported by the Moderate-resolution Imaging Spectroradiometer (MODIS) has been used to widely prove the effectiveness of vegetation data collection and analysis from regional to global scales [20,21,22]. Consequently, a considerable amount of research has been conducted to quantitatively analyze the responses of vegetation activity and climate change, and great progress has been achieved in this area [23]. Recent studies point out that precipitation is considered to be the vital limiting factor in vegetation growth in Central Asia [8,24]. Furthermore, some studies have also suggested that the temperature decrease in spring or autumn could limit vegetation growth [25,26,27]. However, the responses of different vegetation types to climate change show great disparity, which undoubtedly increases the difficulty of quantitative analysis [28,29,30].



Over the past few decades, some researchers have found a warmer and more humid pattern displayed in the arid regions of Central Asia [24,31], but some studies have come to the opposite conclusion [32,33]. Meanwhile, some studies have also proposed the presence of enhanced vegetation greenness in Central Asia [28], and further studies have documented a significant spatial heterogeneity [31,34] and seasonal diversity [25,35] in the vegetation greenness. Several studies have tried to reveal the trends in climate indicators and NDVI based on linear trend regression [1,34]. However, this approach might be insufficient to reveal variations in nonlinear and non-stationary trends, so Extreme-Point Symmetric Mode Decomposition (ESMD) was proposed, which has been proven to be effective in revealing nonlinear trends such as those of climate and vegetation [36,37].



Previous studies have mainly focused on the fluctuation and trends of temperature and precipitation. However, both the frequency or severity of climate extremes have the potential to have widespread impacts on the natural ecology [38]. Particularly, the occurrence of climate extremes might threaten vegetation growth, which has attracted widespread attention [39,40]. Related studies show an intensifying trend in climate extremes in recent decades around the world, including in Europe [41], North America [42], Central Asia [43], East Asia [44,45], and Oceania [46]. Nevertheless, many unknowns remain regarding the correlation between vegetation dynamics and climate extremes. Thus, as for arid and semi-arid regions, the response of vegetation dynamics to climate change should give priority to climate extremes.



As the core area of the Silk Road Economic Belt, Xinjiang occupies a vital strategic position in China’s economic development. However, the vegetation could be very sensitive to climate change in such a weak ecological environment, which has attracted widespread attention from scientists, governments, and the public [24]. Therefore, the goals of this study were to: (1) monitor the spatiotemporal change of NDVI and Land-use/Land-cover (LULC); (2) analyze the effects on the NDVI and LULC by the climate change; and (3) reveal the response of NDVI to climate extremes.




2. Material and Methods


2.1. Study Area


The study site was the Xinjiang Uygur Autonomous Region of China (Xinjiang, for short), located on China’s northwest at 73.40°–96.18° E and 34.25°–48.10° N, see in Figure 1. The total land area is 1.66 million km2, accounting for almost one-sixth of China’s land area. Owing to its deep inland location on the border of Central Asia, Xinjiang is a typical arid region, with a long-term average annual precipitation of 150 mm, only about 25% of the average level in China. There are two main basins lying between three high mountains, with the order from north to south being Altay Mountains, Junggar Basin, Tianshan Mountains, Tarim Basin, Kunlun and A-erh-chin Mountains [47]. These high mountains could block the entrance of water vapor into the large basins [31]. Tianshan mountain lies in the central part of Xinjiang and divides it into North Xinjiang (NXC, for short) and South Xinjiang (SXC, for short) [39].



The vegetation is mainly distributed in the mountains and oases [17], while there is significant spatial heterogeneity between NXC (Grassland and Desert Vegetation dominant) and South Xinjiang (Alpine and Desert Vegetation dominant). Most vegetation stops growing in winter. So, we chose May to September as the vegetation growing season, and divided it into Spring (May), Summer (from June–August), and Autumn (September).




2.2. Data Collection and Processing


The data processing roadmap is shown in Figure 2i.



2.2.1. MODIS Time-Series Datasets


The MODIS-NDVI-16 day-1 km product (MOD13A2, with a spatial resolution of 1 km and a temporal resolution of 16 days) could be downloaded in the National Aeronautics and Space Administration (NASA, https://search.earthdata.nasa.gov). In total 1140 remote sensing images with orbit numbers H23V04, H23V05, H24V04, H24V05, H25V04, and H25V05 and covering the period from 2000–2018 were downloaded. Then the data were spliced and the coordinate system was registered to the World Geodetic System 1984 (WGS 84) in batches by the MODIS Reprojection Tool (MRT for short, NASA, Washington, DC, USA). The images were clipped using the boundary vector file of the study area. Furthermore, the NDVI value unit of the original data was 10−4, so they still needed to be multiplied by 10−4.



The Monthly Maximum NDVI (MjNDVI i) could be obtained by the tools of Maximum Value Composite in ENVI 5.3. The equation is shown in formula (1):


   M j    NDVI  i  = max (   NDVI   i j 1   ,   NDVI   i j 2   )  



(1)




where NDVIij1 and NDVIij2 represent the NDVI in the first and second halves of month j in year i, respectively; M jNDVIi denotes the maximum NDVI of month j in year i. The i represents 1 for the year 2000, 2 for the year 2001, and so on, while j is 5 for May, 6 for June, and so on.



Furthermore, MjNDVI i was averaged to obtain the average seasonal NDVI (SkNDVIi, k = 1,2,3 represents spring, summer, and autumn respectively) and the average NDVI in the growing season (GNDVIi). The i indicates the year from 2000–2018. Previous studies regarded areas of NDVI being less than 0.1 as non-vegetation covered areas (NVCA) [17,39], which could be extracted by Mask using ArcGIS 10.6 (Environmental Systems Research Institute, Redlands, CA, USA).



The continuously observed daily meteorological data in 2000–2018 were obtained from the National Meteorological Data Center of China (http://data.cma.cn/). The climate indices in the year i could be calculated based on daily data, including the yearly average temperature in spring (S1Temi), Summer (S2Temi), Autumn (S3Temi) and the Growing Season (GTemi); and the yearly precipitation in Spring (S1Prei), Summer (S2Prei), Autumn (S3Prei) and the Growing Season (GPrei). Then the climate indices from 42 meteorological stations (MS) were interpolated into planar raster by Inverse Distance Weighting (IDW). Notably, temperature could be affected by latitude, longitude, and altitude. Therefore, the interpolation of temperature should be combined the IDW modify with Digital Elevation Model (DEM) [48] by Equation (2):


   {     T h  =  T 0  + A × H      T  d e m   =  T s  − A ×  H  d e m        



(2)




where Th is the temperature modified to DEM = 0; T0 and H are the temperature and DEM of MS. A is temperature drop rate (= 0.491 °C/100 m) [48]. Ts is the results of IDW of Th. Hdem is the DEM raster data, which could be download from Resource and Environment Data Cloud Platform of China (http://www.resdc.cn/AchievementList1.aspx). Tdem is the results of temperature interpolation by IDW modified with DEM.




2.2.2. Land-Use/Land-Cover (LULC) Datasets


The LULC Dataset was collected from the Resource and Environment Data Cloud Platform (http://www.resdc.cn/data/), which was released by the Chinese Academy of Sciences. Then, we download the LULC datasets in 2000 and 2018, and extracted the study area by Mask using ArcGIS 10.6. The raster dataset had 25 types, with a spatial resolution of 1 km. For the actual situation in Xinjiang, the LULC types were re-divided into twelve types, including Forest, Shrub, Water, Grassland (high coverage), Grassland (moderated coverage), Grassland (low coverage), Permanent snow, Cultivated land, Construction land, Sandy desert, Gobi desert, and Bare land.





2.3. Methods


The technology roadmap is shown in Figure 2ii,iii.



2.3.1. Inter-Annual Change Analysis and Mann–Kendall Test


The Extreme-point Symmetric Mode Decomposition (ESMD) is an adaptive signal decomposition method developed by Hilbert-Huang transformation [37]. The data could be decomposed from high to low frequency to generate a series of intrinsic mode functions together with an adaptive global mean curve. [14]. The ESMD could separate the interannual and general climate trends [36]. The ESMD was implemented with the Java-based ESMD4j v1.8 software (Qingdao University of Technology, Qingdao, PRC). The main steps of the software: (1) Set the sampling interval equal to 1. (2) Select the minimum number of residual mode extremum points and the maximum number (≤40) of iterations, and then calculate the variance ratio to determine the optimal number of filters. (3) Decompose and calculate the mode and generate the adaptive global average (ESMD trend). Besides the ESMD, the Linear Regression Method (LRM) was used to analyze the trends of climate and NDVI [49].



The Mann–Kendall Test is a non-parametric method that is used to detect trends in a time series; it can eliminate outliers and reduce the impact of missing data [13,20]. Therefore, it has been widely used to test long time series trends [50].



For the sequence X = (x1, x2, …, xn ), the magnitude relation of xi and xj was first determined for all dual values. Then the null hypothesis denotes the data in the sequence are randomly arranged, with no significant trend. Otherwise, the alternative hypothesis denotes the sequence has a trend of increasing or decreasing. In this study, trends with p values less than 0.05 were considered to be significant. The Mann–Kendall statistic S is given by Equation (3):


  S =   ∑  i = 1   n − 1      ∑  j = i + 1  n   s i g n (  x j  −  x i  )      



(3)




where n is the number of sequence samples, and xi and xj are time points i and j, respectively. sign(xj − xi) is a sign function calculated by Equation (4):


  s i g n (  x j  −  x i  ) =  {    1    (   x j  −  x i   ) > 0      0    (   x j  −  x i   ) = 0      − 1    (   x j  −  x i   ) < 0       



(4)







The results of the Mann–Kendall statistic Z approximately follow a standard normal distribution and can be applied to test the significance of the trend. The Z value is given by Equation (5):


  Z =  {    ( S − 1 ) /   V a r ( S )     i f   S  > 0      0   i f   S  = 0      ( S + 1 ) /   V a r ( S )     i f   S  < 0       



(5)




where Var(S) is expressed by Equation (6).


  V a r  ( S ) =   1  18    [  n  (  n − 1  )   (  2 n + 5  )  −   ∑  i = 1  m    t i  (  t i  − 1 ) ( 2  t i  + 5 )    ]   



(6)




where m is the number of tied groups, and ti is the number of observations in the mth group.



In a bilateral trend test for a given confidence level α, if |Z| < Z1-α/2, then the null hypothesis is accepted, which indicates that the variation trend of the time series data is not significant at α. Conversely, the null hypothesis is rejected, which indicates that there is a significant increasing (Z > 0) or decreasing (Z < 0) trend at α.




2.3.2. Spatial Change Analysis


The NDVI’s slope (θslope) was the interannual variability of seasonally integrated NDVI over a specific time period using least-squares line fitting [26,51]. The equation is shown in formula (7):


   θ  slope   =   n ×   ∑  i = 1  n   ( i ×   NDVI   i q   )   −   ∑  i = 1  n  i  ×   ∑  i = 1  n     NDVI   i q       n ×   ∑  i = 1  n    i 2    −   (   ∑  i = 1  n  i  )  2     



(7)




where i is 1 for the year 2000, 2 for the year 2001, and so on. n is the total years (n = 19). NDVIiq is the NDVI of pixel q in year i, including the GNDVI, and SkNDVI. If θslope > 0, this indicates that NDVI increased in 2000–2018. Otherwise, it indicates a decreasing trend.



Similarly, the yearly spatial change of temperature and precipitation could also be calculated with the Equation (8):


   C  slope   =   n ×   ∑  i = 1  n   ( i ×  C  i q   )   −   ∑  i = 1  n  i  ×   ∑  i = 1  n    C  i q       n ×   ∑  i = 1  n    i 2    −   (   ∑  i = 1  n  i  )  2     



(8)




where C denotes the interpolation result of temperature or precipitation by Inverse Distance Weighting (IDW), including the GTem, GPre, SkTem, and SkPre. Ciq is the C of pixel q in year i. If Cslope > 0, this indicates that climate indices increased in 2000–2018. Otherwise, it indicates a decreasing trend.



The F test was applied to test the trend’s significance. We referred to the critical value table of F-distribution and calculated an F value equal to 4.38 at the level of α = 0.05. Combined with the results of θslope and F tests, the trend of the NDVI could be divided into four types: improved significantly (θslope > 0, p < 0.05), improved but not significantly (θslope > 0, p > 0.05), degraded but not significantly(θslope < 0, p > 0.05), degraded significantly (θslope < 0, p < 0.05).




2.3.3. Climate Extremes


In total, twenty-seven core indices have been defined exactly by the Expert Team on Climate Change Detection and Indices (ETCCDI) (http://etccdi.pacificclimate.org/) [20,44]. These indices could reflect the different aspects of extreme climate in different regions [43,52]. As not all indices were meaningful, some indices were eliminated and fifteen extreme climate indices were selected for analysis in this study (see Table 1). The definitions could be seen in the report by the ETCCDI (http://etccdi.pacificclimate.org/definition.shtml).



The extreme climate indices for each year were calculated by RClimdex 1.0 (Climate Research Branch of Meteorological Service of Canada, Downsview, ON, Canada), an R editor-based software. Moreover, to ensure the credibility of the results, the data were strictly quality controlled by RClimdex 1.0 before calculating.




2.3.4. Pearson Correlation Coefficient


Each pixel was analyzed spatially to obtain the correlation between the GNDVI and climate change, the GNDVI and extreme climate indices, respectively. The Pearson Correlation Coefficient (rxy) was measured using formula (9):


   r  x y   =     ∑  i = 1  n   (  x i  −  x ¯  ) (  y i  −  y ¯  )         ∑  i = 1  n     (  x i  −  x ¯  )  2          ∑  i = 1  n     (  y i  −  y ¯  )  2         



(9)




where xi and yi are the NDVI and climate index values in the growing season of the year i, respectively.    x ¯    and    y ¯    are the long-time average annual value of the GNDVI and climate index values, respectively. n is the time series length. The r values range from (−1)–1, and the larger the absolute value of r is, the stronger the correlation.



Then, student’s t-tests (two-tailed) could be applied using SPSS Statistics 22 (IBM Corp., Armonk, NY, USA) [5], so as to detect whether rxy was significant or not.






3. Results


3.1. Spatiotemporal Distribution of Climate


3.1.1. Temperature


Figure 3A shows the average temperature in the growing season (GTem) of 2000–2018 in Xinjiang. Owing to the large altitude span, the distribution shows the characteristics of low GTem in mountains and high Gtem in basins, ranging from (−12.5 °C)–30.4 °C. Thereinto, the GTem were below 10 °C in most areas of Tianshan, Kunlun and A-erh-chin Mountains. The area of GTem exceeding 20 °C in Tarim Basin and Junggar Basin reached 89.26% and 64.25%, respectively.



The variation trends of temperature had different spatial pattern in different seasons, as presented in Figure 4A1–A4. For growing seasons, a high proportion of the area where the GTem has increased, accounted for about 70.93% of the total area of Xinjiang. The GTem of the Altai Mountains, the central Tarim Basin, and the western Kunlun Mountains showed decreasing trends, while the Junggar Basin, the Tianshan mountains, and the A-erh-chin Mountains showed increasing trends. Among these, Urumqi, Turpan, and Kashi had obvious increases in GTem, with growth rates of 0.11, 0.10, and 0.06 °C·a−1, respectively. In spring, the average temperature in spring (S1Tem) has decreased, with higher decreasing trend in NXC but lower in SXC. In summer, the increasing trend of average temperature in summer (S2Tem) in NXC was stronger than that in SXC. And the distribution of the average temperature in autumn (S3Tem) trend was approximately consistent with that of the GTem.



Figure 4B1–B4 display the temporal variation of temperature in 2000–2018. Both the ESMD and LRM showed increasing trends in the GTem. Furthermore, the ESMD observed that the GTem variation fluctuates, with a trend of first increasing (in 2000–2007 with a rate of 0.047 °C·a−1) and then decreasing (in 2008–2014, with a rate of −0.024 °C·a−1) and then increasing (in 2015–2018, with a rate of 0.012 °C·a−1). As for different seasons, the S1Tem showed a significant decline trend with a rate of 0.0553 °C·a−1 (p < 0.1), whereas the S2Tem and the S3Tem increased by 0.0245 °C·a−1 (p < 0.1) and 0.0139 °C·a−1, respectively.




3.1.2. Precipitation


The average precipitation in the growing season (GPre) of North Xinjiang (NXC) was higher than that of South Xinjiang (SXC), as illustrated in Figure 3B. In SXC, the proportion of area with GPre ≤ 100 mm accounted for about 87.65%, while the proportion of area with GPre ≤ 50 mm accounted for about 39.62%. By contrast, the GPre in NXC was mostly in the range of 100–150 mm. Moreover, the GPre around Urumqi and Tianchi reached the highest (426.86 mm).



Figure 4C depicts the change of the precipitation spatial pattern in 2000–2018. The GPre in Kezhou, Aksu, and Kashi increased significantly, reaching 0.6685, 0.6315, and 0.6173 mm·a−1, respectively. The GPre of Urumqi in NXC showed a decreasing trend, with a rate of 0.3251 mm·a−1.



However, the spatial variation of precipitation are different in different seasons.



	(a)

	
The S1Pre in the vicinity of the Tianshan Mountains tended to increase, while other distribution characteristics were similar to those in the growing season.




	(b)

	
The increasing trend of S2Pre in Xinjiang resembled that of GPre.




	(c)

	
The area with an increasing trend in S3Pre in Xinjiang, NXC, and SXC was roughly the same, with proportions of 81.62%, 82.93%, and 80.48%, respectively. Unlike other seasons, there was an obviously high value for the increasing trend of S3Pre around the Altai Mountains (1.476 mm·a−1).







The interannual variation in precipitation for Xinjiang in 2000–2018 is shown in Figure 4D. The GPre showed an increasing trend with a linear rate of 0.1871 mm·a−1. Moreover, the ESMD curve showed that the trend of GPre was smooth with a slight decrease from 2000–2007 and an increase from 2008–2018 (with a rate of 0.3483 mm·a−1). As for different seasons, the average precipitation for each year in Spring (S1Pre), Summer (S2Pre), and Autumn(S3Pre) indicated an increasing trend, among which the S3Pre increased by 0.2690 mm·a−1 (p < 0.1). The trend rates of S1Pre and S2Pre were 0.2053 and 0.1538 mm·a−1, respectively.




3.1.3. Climate Extremes


Figure 5 shows the average value of the 15 extreme climate indices during 2000–2018. The A1–A8 were temperature extremes. Thereinto, the distribution of TMINmean, SU25, and GSL was consistent with that of GTem, while the FD0 was opposite to that of GTem. The TMINmean has great spatial differentiation in Xinjiang, with the highest value of 11.33 °C and lowest value of −29.36 °C. Besides the high-altitude mountainous areas, the FD0 was mostly 120 d–180 d, with the frost period generally from November–March of the next year. The SU25 of NXC was mostly 60 d–120 d, and only the Turpan and Hami were more than 150 d. However, the SU25 varied greatly in SXC, ranging from 0 d–193 d with greater values in the Tarim Basin and lower values in the high-altitude mountainous areas. The DTR showed a large temperature difference between day and night in Xinjiang ranging from 9.04–18.31 °C, with the DTR of SXC was higher than that of NXC. There was no obvious difference (<1 d) for TN90p. Furthermore, it showed an east-west difference for the distribution of both the WSDI and the CSDI.



As for precipitation extremes (see B1–B7 in Figure 5), there was little difference between SDII (6.07 mm·d−1) and CWD (4.69 d), indicating the overall drought in the study area. The results of CDD indicated that SXC was drier than NXC, with higher than 100 d in most area of SXC and lower than 100 d in most area of NXC. Furthermore, the distribution of R10mm, R × 1day, PRCPTOT, and R95 was consistent with that of GPre. The results show that SXC had not only the lower precipitation but also the lower rainfall intensity than NXC. The areas with high rainfall intensity were mainly located around Urumqi.



Table 2 illustrates the variation in extreme indices of temperature was stronger than that of precipitation. The Mann–Kendall test showed that the number of frost days (FD0) significantly decreased (p < 0.05), the simple daily intensity index (SDII) significantly increased (p < 0.05), and the number of warm nights (TN90p) significantly increased (p < 0.1). These three indices—FD0, SDII, and TN90p—varied at rates of −4.221 d·(10a)−1, 0.315 mm·(d·10a)−1, and 0.744 d·(10a)−1, respectively. Furthermore, the trends in the extreme precipitation indices of wet day precipitation (PRCPTOT) and very wet day precipitation (R95p) also displayed quick but insignificant rates of increase, with rates of 13.909 mm·(10a)−1 and 7.318 mm·(10a)−1, respectively.





3.2. Spatiotemporal Distribution of NDVI


Figure 6 reveal evident variations in average NDVI in the Growing Season (GNDVI) in Xinjiang during 2000–2018, ranging from 0–0.83 with greater values in the north and lower values in the southwest. Areas with high vegetation coverage generally exhibited an NDVI of over 0.6. However, these areas only covered 2.61% of the total study area, which primarily found in Altay and Tianshan Mountains, such as Yili, Bozhou, Altay, and Tarbagatay. Furthermore, the NDVI of less than 0.1 could be regarded as the non-vegetation covered areas (NVCA), which accounted for 58.01% of the total area, mainly located in Tarim Basin and east of Junggar Basin.



Figure 7A,B presents the spatial map of NDVI variation trend and its significance (p < 0.05), respectively. The part of the study area except NVCA was vegetation coverage area (VCA). Overall, the tendency of NDVI were heterogeneous for the spatial patterns, but homogeneous for different seasons. In NXC, the areas with significantly improved GNDVI were mainly distributed in the northern margin of Tarim Basin and the southern margin of Junggar Basin, accounting for 29.90% and 33.54% of the VCA. In addition, the proportion of significantly degraded areas of GNDVI accounted for 1.72% of the VCA; these areas were scattered in the northern foothills of the Tianshan Mountains and at the edge of the Altai Mountains. The degraded areas were mainly located in the transition zone between desert and oasis. Owing to the Taklimakan Desert located in the Tarim Basin, the VCA of SXC was low, with area proportions of 29.84% for GNDVI. Even so, there was still a high proportion of improved areas GNDVI (90.63%) in SXC. Among them, significant increases (p < 0.05) in GNDVI (60.47%) also accounted for a high proportion of the area, which mainly distributed at the margin of Tarim Basin, especially along the Tarim River.



Figure 7C shows the temporal variation of NDVI in 2000–2018. Both LRM and ESMD displayed an increasing trend of GNDVI, with linear slopes of 0.0014 a−1 (p < 0.01). Additionally, The ESMD curve depicted an interannual growth trend was observed in all other years except for the slight decreases in 2006–2008 and 2013–2014. For different seasons, the average seasonal NDVI all increased and reached 1% significance level. The ESMD curves exhibited increasing but fluctuant trends in S1NDVI, S2NDVI, and S3NDVI, with the linear rates of 0.001, 0.0016, and 0.0012 a−1, respectively.




3.3. Spatiotemporal Distribution of LULC


Figure 8 and Table 3 shows the LULC of Xinjiang in 2000 (A) and 2018(B). Xinjiang had the highest proportion of grassland, accounting for about 1/3 of the total area. Among them, the grassland coverage of NXC (about 35%) was higher than that of SXC (about 26%). Low coverage grassland was mainly distributed in SXC. Additionally, the total area of Sandy desert, Gobi desert and Bare land accounted for about 2/3 of the total. Notably, the Sandy desert was mainly distributed in the Tarim Basin of SXC, while the area of Gobi Desert was mainly distributed in the Junggar Basin of NXC.



Table 4 depicted the transfer matrix of LULC during 2000–2018. The area of Cultivated land changed the most in Xinjiang, increasing by 30,834 km2 in 2000–2018, which indicated the rapid development of agriculture in Xinjiang. The area of Construction land had doubled, which mainly concentrated in NXC. Notably, the area of Permanent snow has been reduced by 20,436 km2 and more than 80% of them were in SXC. The proportion of Permanent snow transferred into Bare land and Grassland accounted for 71.5% and 28.0%, respectively. The Grassland (LC) was both the largest area of transfer-in and transfer-out for all LULC types in Xinjiang and SXC. Furthermore, the area of Grassland (HC) increased by 17,984 km2 with three main sources, including the transfer of Grassland (MC) and Grassland (LC), the transfer of Permanent snow and bare land from SXC, the transfer of Forest from NXC. The Sandy Desert and Gobi Desert areas seemed to be stable in Xinjiang, but the equilibrium is an illusion of due to the sharply decrease in SXC and great increase in NXC.




3.4. Climate Changes Affects on NDVI and LULC


3.4.1. Climate Change influences on NDVI


The NDVI responded differently to temperature and precipitation for different seasons in Xinjiang, as presented in Table 5. The GNDVI was positively correlated with temperature and precipitation in Xinjiang. However, NDVI had a stronger response to precipitation in the growing season, which indicates that the improvement of vegetation was mainly affected by the increase in precipitation. Furthermore, the response of NDVI to precipitation was much higher than that of temperature in spring and summer. The correlation between S1NDVI and temperature was very low in spring. This means the increase in precipitation in spring and summer was beneficial to the growth of vegetation. For autumn, the correlations between S3NDVI and temperature increased (p < 0.1). Meanwhile, the response of S3NDVI to temperature was slightly higher than that of precipitation.



Figure 9A illustrates that the GNDVI was insignificantly correlated to the inter-annual variability of GTem in the majority of the study area, with the average coefficient of 0.082. The correlation coefficients between GNDVI and GTem were negative in the majority of VCA and were significant negative, especially in the VCA of SXC. Conversely, the regions with significant positive correlation were mainly located in Tianshan, Hami and Aksu.



In the majority of the VCA, the GNDVI had significant and positive correlations to precipitation, as presented in Figure 9B, but it had weak and negatively correlations to temperature, indicating that the precipitation affected strongly on GNDVI than temperature during the past 19 years. Concretely, the significant and positive correlations of GNDVI and precipitation was observed greatly in the mountains and basins, such as in the Aksu, Hotan, Kashi, Hami, Bozhou, and Altay. Therefore, the restrain of rising temperature on vegetation will weaken the promoting of increasing precipitation, with the warming and wetting evolvement trend of the climate for Xinjiang in the future.




3.4.2. Climate Change influences on LULC


With the climate warming, the Permanent snow have melted in large area, resulting in an increase of 14,628 km2 of Bare land, 77.5% of which was located in SXC. Furthermore, the area of grassland increased by 5720 km2 due to the water nourishment of melting ice and snow. However, these areas were mainly located in the mountainous region of high altitude, such as Tianshan and Kunlun Mountains. Due to the increase of precipitation, the desert ecosystems such as sandy land, Gobi and bare land have also been improved, with a total of 12,863 km2 transferred into grassland. Moreover, the desert ecosystem seems to have become more suitable for cultivation, with 10,452 km2 converted into cultivated land.




3.4.3. Climate Extremes Influences on NDVI


Table 6 and Figure 10 show the correlation between GNDVI and climate extremes. As for the temperature extremes, the DTR was significantly negatively correlated with NDVI (with a correlation coefficient of 0.634), reaching a significance level of 0.01. Spatially, the DTR with higher negative correlations were mainly located in NXC, indicating that an increase in the temperature difference between day and night could have a bad effect on vegetation growth in NXC. Moreover, the TMINmean was significantly positively correlated with NDVI, reaching a significance level of 0.1 with coefficients of 0.429. These results indicate that night temperature is critical to vegetation growth in Xinjiang. The correlations between the NDVI and the other five extreme temperature indices were insignificant. Notably, the FD0 and TN90p showed negative correlations with NDVI, where the coefficient was equal to −0.341 and 0.311, respectively. It could support the view that the decrease in the frost period favored the growth of vegetation. The SU25 with higher negative correlations were mainly located in the southern margin of Tarim Basin, illustrating that the longer time of summer could inhibit the vegetation growth especially in SXC.



The GNDVI had a stronger correlation to extreme indices of precipitation than that of temperature. Six extreme precipitation indices were significantly positively correlated with NDVI, of which five indices (SDII, R10mm, R × 1day, R95p, and PRCPTOT) reached a significance level of 0.01. Among these, the indices SDII was the most closely correlated with the NDVI, with correlation coefficients of 0.772. Furthermore, the correlation coefficients between the NDVI and the indices of R × 1day, R10mm, R95p, and PRCPTOT were 0.758, 0.751, 0.721, and 0.689, respectively. Spatially, these areas were mainly located in the Tianshan mountain, the southern margin of Tarim Basin, and the western and eastern margin of Junggar Basin.



These values suggest that the concentrated rainfall could be conducive to vegetation growth in Xinjiang. One index (CWD) reached a significance level of 0.1 with a correlation coefficient of 0.267. This indicates that a continuous humid environment is more suitable for vegetation growth in Xinjiang.






4. Discussion


4.1. Response of NDVI and LULC to Climate Change


The variation in climate extremes was enhanced over the past 19 years, with the characteristics of more concentrated precipitation and higher temperatures at night. These results confirm that the climate gradually developed a warmer and more humid pattern in Xinjiang, which confirms previous claims [24,39,53,54,55]. Similar studies have reported a significant wetting tendency in northern Xinjiang [4,56], which is consistent with the trend observed in this study. However, unlike some studies revealed a trend of dryness in Xinjiang from 2000–2015 [32]. This might be caused by differences in the selection of research indicators and scales. Additionally, vegetation growth has improved significantly in the past 19 years in Xinjiang. The observation of a vegetation increase in recent decades is consistent with the results of the dynamic greening trend for vegetation in Eurasia, Central Asia, and Western China in previous studies [27,28,56,57]. These variations have led to the optimistic expectation that the fragile eco-environment in arid regions can be improved [24].



Spatially, both temperature and precipitation have tended to increase over the past 19 years, with the variation being higher in NXC than in SXC, which is consistent with previous studies [36,55]. Furthermore, the temperature increase in summer was particularly noticeable in NXC, especially in Urumqi, Turpan, and Hami. These urban areas might act as heat islands, exacerbating the warming trend [53]. The precipitation trend in autumn tended to be an increase in the Altay Mountains and a decline in Junggar Basin, which is consistent with previous research [24,36]. As a previous study reported [11,55], the regions of vegetation showing obvious restoration were mainly distributed in the Tianshan Mountains, Altay Mountains, and around the margins of Tarim Basin. A similar result was also found in this paper. The vegetation degradation area was mainly located at the intersection of desert and oasis, which might have been caused by the lack of water supply. A previous study found that the NDVI decreased significantly in Taklimakan Desert of Tarim Basin [55].



The spatial patterns of the NDVI were positively affected by both temperature and precipitation change. Spatially, NXC is more sensitive to precipitation than SXC. The little precipitation and strong evaporation rate in Xinjiang could have large effects on vegetation growth [24]. Furthermore, in dry conditions, vegetation might reduce the carbon supply to bacterial communities which, in turn, limits the growth of vegetation [58,59,60]. These results confirm previous findings concerning the drought risk in arid regions, which revealed that precipitation is the primary climatic driver for vegetation changes [2,25,33].



The rising temperatures might enhance the vegetation growth of Xinjiang by two aspects. Firstly, a properly increasing temperature might extend the growing season of vegetation. For example, the response of the NDVI to temperature was slightly higher than that of precipitation in autumn. This result agrees with previous work [12,35] and provides further evidence that precipitation and temperature have different effects on vegetation growth in different seasons. Secondly, an increasing temperature would accelerate the glacial ablation of the high mountains [54,55], and then the runoff might promote the growth of vegetation. The results of the transfer matrix of LULC could vindicate this judgment.



The response of NDVI to the extreme index of precipitation was stronger than that of temperature. Meanwhile, the response of the NDVI to the climate extremes was stronger than the response to climate change. Extreme drought might be more likely to decrease vegetation growth and even ecosystem productivity and stability [8]. Furthermore, the NDVI variation in arid regions was eventually determined by the precipitation increase, especially by precipitation extremes [39]. Therefore, extreme precipitation could be regarded as a vital factor in the variation of NDVI in Xinjiang, especially for continuous concentrated precipitation. As for temperature extremes, the results indicated that the mean minimum temperature (TMINmean) and warm nights (TN90p) had significant positive correlations with the NDVI, which is consistent with previous research [39,43,44,52]. Furthermore, we did find that the diurnal temperature range (DTR) was significantly negatively correlated with the NDVI, especially in NXC. This illustrates that the significant enhancement of vegetation was consistent with the significant increase in the night temperature in Xinjiang. Thus, higher night-time temperatures in the study area could regulate and enhance vegetation growth by reducing the frost risk and increasing vegetation respiration.




4.2. Suggestions, Limitaion, and Prospects


The vegetation in arid areas could be more sensitive to climate change, which might influence the eco-environment in the countries and regions of the Belt and Road [4]. The work could enrich the understanding of the effects of climate change on land cover change and vegetation dynamics, laying the basis for its sustainable management. Consequently, the advantages and disadvantages of climate change and its influence on vegetation should be fully comprehended by the local government.



	(a)

	
As for the advantages, climate change might create an environment that is more suitable for specific types of vegetation. For example, the grassland showed the highest levels of improvement, with these areas showing positive responses to an increase in precipitation. These findings could support a scientific basis for the implementation and management of ecological restoration programs to improve the fragile environment. The government could use the advantages of vegetation growth from climate change to implement some ecological restoration strategies (e.g., enhancing the protection of grassland especially during periods of increased precipitation).




	(b)

	
Regarding the disadvantages, an increase in temperature will accelerate the melting of glaciers on high mountains, which could nurture and enhance the vegetation growth. However, it could also exacerbate water shortages and increase the Bare land, which would threaten the fragile local arid ecosystems. Thus, the local government should carry out effective measures to tackle climate warming, such as increasing energy conservation and emission reduction efforts. Notably, Xinjiang is the National Large-scale Coal Mining Base of China, where the carbon emissions of coal consumption cannot be ignored. Therefore, the local government should actively optimize the structure of energy utilization.







Because of the complexity of the vegetation and its response to climate change, there were still some limitations in this study. Owing to the topographic relief, and the sparse MS which mainly in or around cities, which could affect the accuracy of the results. Notably, the irrational anthropogenic socioeconomic activity could disturb the growth of vegetation, such as the increment of Cultivated land occupied the grassland of 19,483 km2. Thus, further research should be done to quantitatively analyze the coupling mechanism between climate change, vegetation growth, and human activities.





5. Conclusions


This work proves and evidences the effect of climate change on land cover change and vegetation dynamics, laying the basis for its sustainable management. Since climate change showed a warming trend, the Permanent snow has been reduced by 20,436 km2. The NDVI exhibited an increased volatility trend, with the significant improvement regions mainly located in the margin of basins. The humid trend could provide more suitable conditions for vegetation growth and ecological restoration, but the warmer might prevent vegetation growth. The response of NDVI to precipitation was stronger than the response to temperature. Spatially, NXC was more sensitive to precipitation than SXC. Seasonally, the response of NDVI to precipitation was higher than the temperature in spring and summer; but in autumn, it was the opposite. Continuous concentrated precipitation could be considered as a vital factor for vegetation dynamics in Xinjiang. Furthermore, the significant enhancement of vegetation was consistent with the significant increase in night-time temperature. Therefore, the reduction in the diurnal temperature range and higher night-time temperatures could enhance vegetation dynamics.
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Figure 1. Location of the study area of Xinjiang (A) in China (B). The figure was mapping based on the Standard Map NO.GS (2016)2923, which could be downloaded from the Ministry of Natural Resources in China (http://bzdt.ch.mnr.gov.cn/). The elevation data was collected from Resource and Environment Data Cloud Platform of China (http://www.resdc.cn/AchievementList1.aspx). 
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Figure 2. Technical flow chart. (i) Data preprocessing, (ii) spatio-temporal characteristics of the NDVI and climate change, and (iii) the effects on the NDVI and LULC by the climate change. Tem and Pre denotes the temperature and precipitation, respectively. Sk includes S1, S2, S3, and S4, represents spring, summer, autumn, and growing seasons, respectively. IDW is the Inverse Distance Weighting; ESMD is the Extreme-point Symmetric Mode Decomposition; LRM is the Linear Regression Method. 
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Figure 3. Yearly average temperature (A) and precipitation (B) for growing season in Xinjiang during 2000–2018. The Figure was mapping based on the daily meteorological data in 2000–2018 from the National Meteorological Data Center of China (http://data.cma.cn/). 
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Figure 4. Spatial-temporal change for temperature and precipitation in Xinjiang during 2000–2018. (A,C) denote the spatial pattern for the change of temperature and precipitation, respectively. (B,D) are the interannual variations and the trends of temperature and precipitation, respectively. 1~4 denotes the in spring, summer, autumn, and the growing season, respectively. 
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Figure 5. Yearly average extreme climate indices in Xinjiang during 2000–2018. The meanings of the abbreviation are as follows: Mean Minimum Temperature (TMINmean); Diurnal temperature range (DTR); Frost day (FD0); Summer days (SU25); Growing season length (GSL); Warm nights (TN90p); Warm speel duration index (WSDI); Cold speel duration index (CSDI); Number of heavy precipitation days (R10mm); Consecutive dry days (CDD); Consecutive wet days (CWD); Simple daily intensity index (SDII); Maximum 1-day precipitation (R × 1day); Wet day precipitation (PRCPTOT); Very wet day precipitation (R95p). 
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Figure 6. Yearly average NDVI for growing season in Xinjiang during 2000–2018. 
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Figure 7. Spatial-temporal change of NDVI in Xinjiang during 2000–2018. (A) and (B) are the variation and its significance of NDVI. (C) denotes the interannual variations and the trends of NDVI. The NS represents the correlation is not significant. The NVCA denotes the non-vegetation covered areas. 
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Figure 8. The LULC of Xinjiang in 2000 (A) and 2018 (B). HC, MC, and LC denote the high coverage, moderated coverage, and low coverage, respectively. 
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Figure 9. Regional difference of the Pearson correlation coefficients between the GNDVI and climate in growing seasons of Xinjiang. (A) and (B) denote the temperature and precipitation, respectively. NS denotes the correlation is not significant. The NVCA denotes the non-vegetation covered areas. 
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Figure 10. Pearson correlation coefficients between GNDVI and extreme climate indices in Xinjiang. The meanings of the indices are same as Figure 5. NS denotes the correlation is not significant. The NVCA denotes the non-vegetation covered areas. 
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Table 1. Definitions of extreme climate indices used in this study.






Table 1. Definitions of extreme climate indices used in this study.





	
Temperature

	
Precipitation




	
Abbreviation

	
Index Name

	
Unit

	
Abbreviation

	
Index Name

	
Unit






	
TMINmean

	
Mean Minimum Temperature

	
°C

	
R10mm

	
Number of heavy precipitation days

	
d




	
DTR

	
Diurnal temperature range

	
°C

	
CDD

	
Consecutive dry days

	
d




	
FD0

	
Frost days

	
d

	
CWD

	
Consecutive wet days

	
d




	
SU25

	
Summer days

	
d

	
SDII

	
Simple daily intensity index

	
mm·d−1




	
GSL

	
Growing season length

	
d

	
R × 1day

	
Maximum precipitation per day

	
mm




	
TN90p

	
Warm nights

	
d

	
PRCPTOT

	
Wet day precipitation

	
mm




	
WSDI

	
Warm speel duration index

	
d

	
R95p

	
Very wet day precipitation

	
mm




	
CSDI

	
Cold speel duration index

	
d
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Table 2. The variation trends of the extreme climate indices.






Table 2. The variation trends of the extreme climate indices.





	
Table

	
Precipitation




	
Index

	
Rate

	
Unit

	
Index

	
Rate

	
Unit






	
TMINmean

	
0.294

	
°C·(10a)−1

	
R10mm

	
0.592

	
d·(10a)−1




	
DTR

	
−0.211

	
°C·(10a)−1

	
CDD

	
0.718

	
d·(10a)−1




	
FD0

	
−4.221 **

	
d·(10a)−1

	
CWD

	
0.013

	
d·(10a)−1




	
SU25

	
−0.578

	
d·(10a)−1

	
SDII

	
0.315 **

	
mm·(d·10a)−1




	
GSL

	
2.335

	
d·(10a)−1

	
R × 1day

	
2.254

	
mm·(10a)−1




	
TN90p

	
0.744 *

	
d·(10a)−1

	
PRCPTOT

	
13.909

	
mm·(10a)−1




	
WSDI

	
−0.205

	
d·(10a)−1

	
R95p

	
7.318

	
mm·(10a)−1




	
CSDI

	
−0.891

	
d·(10a)−1

	

	

	








Note: significant at *—p < 0.1, and **—p < 0.05, respectively. The meanings of the abbreviations are the same as in Figure 5.
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Table 3. Statistics of the LULC in 2000 and 2018 (km2).
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Area

	
ID

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10

	
11

	
12






	
Xinjiang

	
2000

	
59,419

	
20,941

	
17,260

	
114,276

	
116,699

	
246,208

	
9269

	
38,235

	
4295

	
404,838

	
294,385

	
309,218




	
2018

	
90,253

	
13,721

	
13,908

	
132,260

	
110,666

	
239,079

	
11,357

	
17,799

	
8621

	
405,168

	
294,932

	
297,279




	
Change

	
+30,834

	
−7220

	
−3352

	
+17,984

	
−6033

	
−7129

	
+2088

	
−20,436

	
+4326

	
+330

	
+547

	
−11,939




	
NXC

	
2000

	
32,477

	
17,328

	
6812

	
65,756

	
50,903

	
79,386

	
3474

	
5954

	
2858

	
58,502

	
168,582

	
104,617




	
2018

	
47,628

	
10,758

	
3880

	
75,667

	
47,614

	
87,372

	
4382

	
2215

	
5663

	
50,985

	
147,471

	
113,014




	
Change

	
+15,151

	
−6570

	
−2932

	
+9911

	
−3289

	
+7986

	
+908

	
−3739

	
+2805

	
−7517

	
−21,111

	
+8397




	
SXC

	
2000

	
26,930

	
3603

	
10,441

	
48,501

	
65,775

	
16,6794

	
5795

	
32,217

	
1437

	
346,335

	
125,753

	
204,813




	
2018

	
42,619

	
2961

	
10,022

	
56,550

	
63,036

	
15,1661

	
6975

	
15,556

	
2958

	
354,184

	
147,422

	
184,450




	
Change

	
+15,689

	
−642

	
−419

	
+8049

	
−2739

	
−15133

	
+1180

	
−16,661

	
+1521

	
+7849

	
+21,669

	
−20,363








Note: The ID means: 1, Cultivated land; 2, Forest; 3, Shrub; 4, Grassland (HC); 5, Grassland (MC); 6, Grassland (LC); 7, Water; 8, Permanent snow; 9, Construction land; 10, Sandy desert; 11, Gobi desert; 12, Bare land.
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Table 4. Transfer matrix of LULC in 2000 and 2018 (km2).






Table 4. Transfer matrix of LULC in 2000 and 2018 (km2).





	
Xinjiang

	
Year

	
2000

	
Transfer in




	
Year

	
ID

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10

	
11

	
12






	
2018

	
1

	
48,122

	
677

	
2567

	
3764

	
7983

	
13,073

	
525

	

	
1928

	
6171

	
4323

	
1120

	
42,131




	
2

	
46

	
6160

	
797

	
4672

	
1183

	
376

	
136

	
32

	
2

	
136

	
70

	
111

	
7561




	
3

	
1262

	
1450

	
2564

	
1958

	
2201

	
2530

	
122

	
3

	
69

	
1347

	
221

	
181

	
11,344




	
4

	
899

	
9930

	
3307

	
69,926

	
22,949

	
7944

	
479

	
3557

	
71

	
1641

	
1027

	
10,530

	
62,334




	
5

	
1766

	
1178

	
2809

	
18210

	
37,463

	
26,150

	
413

	
1147

	
83

	
4786

	
2539

	
14,122

	
73,203




	
6

	
2672

	
574

	
2448

	
6677

	
28,962

	
102,422

	
493

	
1765

	
188

	
13,273

	
23,438

	
56,167

	
136,657




	
7

	
320

	
201

	
184

	
420

	
675

	
808

	
5991

	
9

	
13

	
1479

	
806

	
451

	
5366




	
8

	

	
4

	
1

	
72

	
350

	
327

	

	
13180

	

	

	
5

	
3860

	
4619




	
9

	
3170

	
41

	
146

	
134

	
244

	
1050

	
80

	

	
1657

	
555

	
1276

	
268

	
6964




	
10

	
300

	
130

	
1625

	
998

	
3719

	
34,455

	
455

	

	
78

	
35,7077

	
4034

	
2297

	
48,091




	
11

	
652

	
93

	
587

	
476

	
2531

	
26,291

	
465

	
54

	
165

	
13,822

	
222,393

	
27,403

	
72,539




	
12

	
210

	
503

	
225

	
6969

	
8439

	
30,782

	
110

	
18,488

	
41

	
4551

	
34,253

	
192,708

	
104,571




	
Transfer out

	
11,297

	
14,781

	
14,696

	
44,350

	
79,236

	
143,786

	
3278

	
25,055

	
2638

	
47,761

	
71,992

	
116,510

	




	
NXC

	
Year

	
2000

	
Transfer in




	
Year

	
ID

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10

	
11

	
12




	
2018

	
1

	
26,023

	
309

	
859

	
1847

	
3530

	
7201

	
180

	

	
1097

	
3162

	
2597

	
823

	
21,605




	
2

	
36

	
5567

	
399

	
3853

	
612

	
87

	
79

	
2

	
2

	
33

	
32

	
56

	
5191




	
3

	
126

	
975

	
448

	
1078

	
480

	
443

	
29

	
1

	
9

	
50

	
120

	
121

	
3432




	
4

	
586

	
8657

	
2273

	
44,048

	
11,890

	
2817

	
189

	
427

	
49

	
522

	
449

	
3760

	
31,619




	
5

	
1273

	
818

	
1360

	
8113

	
20,770

	
10,347

	
129

	
62

	
66

	
833

	
1355

	
2488

	
26,844




	
6

	
1972

	
313

	
907

	
2518

	
10,861

	
39,154

	
157

	
74

	
144

	
3760

	
13,961

	
13,551

	
48,218




	
7

	
186

	
141

	
49

	
190

	
159

	
203

	
2491

	
3

	
10

	
534

	
266

	
150

	
1891




	
8

	

	
4

	

	
41

	
19

	
23

	

	
1469

	

	

	

	
659

	
746




	
9

	
1843

	
29

	
99

	
96

	
168

	
877

	
15

	

	
1250

	
190

	
854

	
242

	
4413




	
10

	
117

	
36

	
145

	
133

	
288

	
7213

	
120

	

	
69

	
41,209

	
1072

	
583

	
9776




	
11

	
217

	
41

	
150

	
101

	
297

	
5629

	
39

	

	
130

	
5873

	
124,909

	
10,085

	
22,562




	
12

	
98

	
438

	
123

	
3738

	
1829

	
5392

	
46

	
3916

	
32

	
2336

	
22,967

	
72,099

	
40,915




	
Transfer out

	
6454

	
11,761

	
6364

	
21,708

	
30,133

	
40,232

	
983

	
4485

	
1608

	
17,293

	
43,673

	
32,518

	




	
SXC

	
Year

	
2000

	
Transfer in




	
Year

	
ID

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10

	
11

	
12




	
2018

	
1

	
22,094

	
368

	
1708

	
1917

	
4453

	
5871

	
345

	

	
831

	
3009

	
1726

	
297

	
20,525




	
2

	
10

	
592

	
397

	
819

	
571

	
289

	
57

	
30

	

	
103

	
38

	
55

	
2369




	
3

	
1134

	
475

	
2115

	
879

	
1720

	
2086

	
93

	
2

	
60

	
1297

	
101

	
60

	
7907




	
4

	
310

	
1265

	
1029

	
25,868

	
11,050

	
5125

	
290

	
3130

	
22

	
1118

	
578

	
6765

	
30,682




	
5

	
492

	
360

	
1449

	
10,093

	
16,688

	
15,803

	
284

	
1085

	
17

	
3953

	
1184

	
11,628

	
46,348




	
6

	
699

	
260

	
1541

	
4157

	
18,095

	
63,254

	
336

	
1690

	
44

	
9513

	
9477

	
42,595

	
88,407




	
7

	
134

	
60

	
135

	
230

	
516

	
605

	
3500

	
6

	
3

	
945

	
540

	
301

	
3475




	
8

	

	

	
1

	
31

	
331

	
302

	

	
11,688

	

	

	
5

	
3198

	
3868




	
9

	
1327

	
12

	
47

	
38

	
76

	
173

	
65

	

	
407

	
365

	
422

	
26

	
2551




	
10

	
183

	
94

	
1480

	
865

	
3431

	
27,242

	
335

	

	
9

	
315,869

	
2962

	
1714

	
38,315




	
11

	
435

	
52

	
437

	
375

	
2234

	
20,661

	
426

	
54

	
35

	
7948

	
97,452

	
17,313

	
49,970




	
12

	
112

	
65

	
102

	
3229

	
6610

	
25,383

	
64

	
14,532

	
9

	
2215

	
11,268

	
120,861

	
63,589




	
Transfer out

	
4836

	
3011

	
8326

	
22,633

	
49,087

	
103,540

	
2295

	
20,529

	
1030

	
30,466

	
28,301

	
83,952

	








Note: The meaning of the ID is same as Table 3.
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Table 5. Pearson correlation coefficient between the NDVI and climate for different seasons in Xinjiang from 2000–2018.
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	Index
	Temperature
	Precipitation





	S1NDVI
	−0.082
	0.538 ***



	S2NDVI
	0.276 *
	0.747 ***



	S3NDVI
	0.321 *
	0.278 *



	GNDVI
	0.082
	0.797 ***







Note: significant at *—p < 0.1, **—p < 0.05, and ***—p < 0.01. The S1NDVI, S2NDVI, S3NDVI, and GNDVI denotes the NDVI in spring, summer, autumn, and growing season.
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Table 6. Statistics of the correlations between the GNDVI and extreme climate indices in the vegetation coverage area (VCA) of Xinjiang.
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Type

	
Extreme Indices

	
Percentage (%)

	
Pearson Correlation Coefficient




	
NC ***

	
NC **

	
NC *

	
NC

	
PC

	
PC *

	
PC **

	
PC ***






	
Temperature

	
TMINmean

	
0.10

	
0.61

	
1.01

	
26.67

	
54.89

	
6.25

	
6.85

	
3.62

	
0.429 *




	
DTR

	
15.45

	
19.87

	
10.98

	
39.95

	
12.44

	
0.43

	
0.72

	
0.17

	
−0.634 ***




	
FD0

	
1.02

	
3.57

	
4.08

	
59.80

	
29.82

	
0.87

	
0.68

	
0.16

	
−0.341




	
SU25

	
1.28

	
4.13

	
4.23

	
52.18

	
35.22

	
1.45

	
1.17

	
0.33

	
−0.082




	
GSL

	
0.34

	
1.52

	
1.75

	
45.86

	
47.04

	
1.83

	
1.40

	
0.26

	
0.133




	
TN90p

	
0.11

	
0.57

	
0.97

	
32.70

	
51.80

	
5.23

	
5.76

	
2.85

	
0.311




	
WSDI

	
0.16

	
1.22

	
2.16

	
52.96

	
40.16

	
1.76

	
1.35

	
0.23

	
−0.037




	
CSDI

	
0.20

	
1.19

	
1.77

	
44.98

	
48.45

	
2.02

	
1.23

	
0.16

	
−0.187




	
Precipitation

	
R10mm

	
0.09

	
0.40

	
0.50

	
11.72

	
46.43

	
9.70

	
15.06

	
16.10

	
0.751 ***




	
CDD

	
7.25

	
10.11

	
7.11

	
53.44

	
21.20

	
0.50

	
0.33

	
0.06

	
−0.317




	
CWD

	
0.12

	
0.50

	
0.71

	
25.03

	
57.86

	
6.09

	
6.48

	
3.21

	
0.286




	
SDII

	
0.08

	
0.32

	
0.41

	
13.26

	
56.78

	
10.12

	
12.74

	
6.28

	
0.771 ***




	
R × 1day

	
0.12

	
0.39

	
0.44

	
13.37

	
51.50

	
10.77

	
14.08

	
9.33

	
0.758 ***




	
PRCPTOT

	
0.12

	
0.41

	
0.46

	
10.32

	
42.05

	
9.97

	
15.71

	
20.96

	
0.689 ***




	
R95p

	
0.06

	
0.31

	
0.40

	
12.64

	
48.10

	
11.47

	
16.07

	
10.95

	
0.721 ***








Note: significant at *—p < 0.1, **—p < 0.05, and ***—p < 0.01, respectively. PC and NC represent the positive and negative correlations, respectively. The meanings of the abbreviations are the same as in Figure 7.














© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).






media/file13.jpg
Spring.

Summer
iy

Autumn

Growing Season

3

i)

s

o)

A

c1
W
Oy = 0.0016x+ 0.1570
07203

5

e

SN

g <

o167 ¥=0.0012¢+0,1283
B 06764

NN

N

FN

Y

S o e
W W Ui dinensionkss

004002 0 002 004 p<0l NS pe0l —— Vi
Uni Demaded  mproved LM
— Sdyaren Northsouth Boundary [ NVCA ESMD






media/file4.png
Daily Meteorological datasets HJ
(42 stations in 2000-2018)

v

Pre: IDW }—'

Tem: IDW & DEM ——

I
i
1
i
1
i
[
i
I
i
1
[Jan. to Dec.] :
i
i
i
I
i
1
I
1
i
i
i

joon.

5 -

. extremes

|

|

1

: LULC J MODIS datasets(MOD13A2)

: (2000/2018) (May. to Sept., 2000-2018

|

|

: v

i [ Clipping ] [ Mosaic, Clipping and Bandmath ] [May. to Sept. ]

l l v f——

| Maximum Monthly NDVI ] —

|

: [ i ] ’ ( p——— ) [ ai
i classitication [ Average ; (Climate 1mate ) 1mate
- | Con )

! ,L ; S, Tem

I

1

i

|

LULC

matrix

Transition |4

Mann-
1 Kendall
test

LRM for
each pixel

L (15 indices)

f Climate extremes }

\ 4

Climate change
influences on LULC

¥ s
"< GClimate > [ GNDVI )
Pearson correlation
: analysis
{ Student’s t-tests (two-tailed) }
Climate change
influences on NDVI

Climate extremes
influences on NDVI






media/file18.png
70°E

80°E

100°E 70°E

80°E

90°E 100°E

40°N 45°N

35°N

B

o

N

90°E
—— Study area

p-value (001 0.05

Negative correlation

80°E
- - -- North-south Boundary

0.1 NS 0.1

0

90°E
NVCA

0.05 0.01

Positive correlation






media/file3.jpg
e

Clipping Mosic, Clig |ms‘mm My toSept. | (3an0Dec.)






media/file19.jpg
P T T ——
T INmean

wis

A

Wt

L]

N __ON N NN SN _aN
H

(—— e






media/file7.jpg
Temperature Precipitation
wE s e ot s isan WE_w i

o,
‘I o BI

.
0.0139¢ + 17,187 s 1
an Ry [
. SR
,

20530+ 15375
B0 Eges

Spring.
SN N e

DI

w0153 0342
oo

Summer
PN

[

son N
z .
¥

DAy 01871+ 84908
e=otoss

S =

e o
Unit: mavar

sor oy
c
c
c3
c4f ™

T
Unic | -
o Tenpemre






media/file10.png
40°N___ 45°N

35°N

70°E

70°E____80°E____ 90°E

70°E 89°E 9Q°E
TMINmean :

DTR

80°E___ 90°E

A2

45°N

40°N  45°N  35°N 40°N  45°N 35°N  40°N  45°N

35°N

40°N

35°N

EER

PRCPTOT B6

mm
7589.4

W 1ol

N 80°E 90°E
A Study area

80°E 90°E ¢

500 km 80°E 90°E

- ---North-south Boundary |_| |





media/file14.png
Spring
40°N

Summer
40°N

Autumn

Season

wing
40°N

Gro
35°N

45°N

35°N

45°N

35°N

40°N  45°N

35°N

45°N

70°E 80°E 90°E __100°E 70°E 80°E 90°E _100°E

80°E 90°E

-0.04 —0.02 0 0.02 0.04

Unit: a’!

p<0.1 NS p<0.1
Degraded Improved

—— Study area - - -- North-south Boundary NVCA

0.17¢ ¥y =0.0010x + 0.1306
R?>=0.4509
| o.16
0.15}
{ 0.14}
0.13}
Al]] Lol . <A
, , 12000 2006 2012 2018
| | | 0201 1= 0.0016x +0.1570
0.19} R2=10.7203 /
0.18}
0.17}
0.16}
A2} 0.15 : 2
. . 2000 2006 2012 2018
' ' ' 0.16¢ y=0.0012x + 0.1283
2:
015k R-=0.6764 .
0.14}
0.14}
0.13}
A3
0.12Ls : : :
, — ~ 2000 2006 2012 2018
0-190 3= 0.0014x + 0.1460
0.18} R>=0.7211
0.17} J
0.16} -
Al 0.15} 4~ C4
' 0.145

2000 2006 2012 2018

Unit: dimensionless
—— NDVI

———————— LRM
ESMD





media/file11.jpg
70°E 80°E 90°E 100°

45°N

40°N

35°N

i

Study area A :
___North- soutl&ﬂ, .
Boundary s

NDVI

0 0.05"0.10 0.15 0.30 0.45 0.60 0.83
-

NoO¥ NoST

NoS€

80°E 90°E





media/file6.png
40°N 45°N

35°N

70°E

100°E

80°E 90°E 100°E 70°E 80°E
B

90°E

R0°F 90°E
—— Study area

80°E
- - -- North-south Boundary






media/file15.jpg
TO°E S0E 0E. 100°E 70°E. S0°E 0°E. 100°E

W T T
T —suyam Northsouth Boundary
E" M Forest I Grassland(HC) [Permanent snow [l Sandy desert

aslandMC)  Culivated land Gabi desrt
. Wter Grassland(LC) M Construction land 107 Bare land





nav.xhtml


  ijerph-17-04865


  
    		
      ijerph-17-04865
    


  




  





media/file16.png
70°E 80°E 90°E 100°E 70°E 80°E 90°E 100°E

B
Z|
e ]
#
Z
O i B
=
Z
| 1
e
N S0°E 90°E 80°E 90°E
Fg —— Study area - --- North-south Boundary
)
0 500 km o>  E@Forest M Grassland(HC) [ |Permanent snow Bl Sandy desert
| A | - I Shrub - Grassland(MC) Cultivated land - Gobi desert

" Water Grassland(LC) [ Construction land Bare land






media/file2.png
70°E

45°N

40°N

35°N

A
Tacheng
Kelamayi
Bozhou
Urumgqi
Kezhou

A-erh-chin
Mountains

8611
wa -155
0 150 300 km ]
I —

' Elevation

90°E

(J
0 800 1.600km ‘"¢ -
l I I ] 4, '2"

Legend .

e Meteorological station
—— National Boundary
—— Study area
- -- North-south Boundary

—— North-south Boundary





media/file20.png
40°N___ 45°N

35°N

70°E____ 80°E

90°E 70°E 80°E

TMINmean

45°N

40°N  45°N

35°N

40°N  45°N

35°N

40°N  45°N 35°N 40°N

35°N

PRCPTb '

80°E

Legend

N
A 0
L1 |

90°E 80°E 90°E R0°F 90°E
— Study area - - -- North-south Boundary NVCA
S00km  poyalue 001 0.05 0.1 NS 0.1 005 0.0l

Negative correlation 0 Positive correlation





media/file5.jpg
4N 4N

35N

0°E. SO°E 90 100°E 70°E. S0°E 90 100°]

W £ K S
—— Study area ===~ North-south Boundary






media/file1.jpg
AN

e

Tacheng
Kelamayi
Bozhou

Elevation
8611

0 w0 1s0km V2

g
Legend *
o Metsorlogia station

ETr——
— sudyana
-~ Nortbsoth Boundary

—— Northsouth Boundary





media/file12.png
40°N 45°N

35°N

Study areca Sg=%s L
_North-south S e fon S
Boundary £ e :

]
-
_________

NDVI .
0 0.05 0.10 0.15 0.30 0.45 0.60 0.83
—

NLST

NLO

NoS¢

30°F 00°F





media/file9.jpg





media/file0.png





media/file8.png
Temperature

Extreme-point symmetric mode decomposition (ESMD)

7Q°E 80f’E 90°'E 100°E o y=—0.0553x + 18.823
. B 2:
Oz R =0.0930
v | 20.0¢f
0
o0 19.0+
i Tt
& 1 18.0¢ v VR
Z, 17.0F
| Al {60l : __Bl
' — _ . 2000 2006 2012 2018
2447 y=0.0245x + 23.128
Z| R2=10.1422
Vo) ] 240
2
—
g - 23.6} _
£ o} |
2 23211 -
Z. 22.8F
z| B2
fu’? A2 | 224 : : .
: - _ : 2000 2006 2012 2018
> 20015, =0.0139x + 17.187
‘l’n i 19.0F+ R2 =0.0091
fa.
= 8.0
£z |
g og' 17.0
= 16.0
- .
el A3 15.0¢, : ’ B3
: - _ _ 2000 2006 2012 2018
15 ) = 0.0064x +21.079
Z| “[R2=10.0101
s 3 1 218}
4
R Z 21.4f
o0 S !
g < |
E i 21.0
- 20.6}
&) o Ad
- - 202 . : ;
R0°E 90°E 2000 2006 2012 2018
| . .0
T 008 —004 0 004 008 Unit: °C
) Unit: °C-a’! —e— T
S N : emperature
=% 0 500 1,000 km
~ | | |

Precipitation
y=0.2053x + 15.375

70°E___ 80°E 100°E

90°E

C4

80°C 90°E

~04 02
Unit: mm-a’!

0 02 04

28.0¢
| 25.8F
19:6:¢
| 154}

11.2¢

R*>=0.0527

70000 2006 2012 2018
98.0r »=0.1538x + 60.342
2 —
w0l R2=0.0443
72.0}
59.0}
46.0}
D2
1 3305 - - -
2000 2006 2012 2018
1y ¥=0.2690x +9.189
R?2=10.1149
18.3}
14.4}
105}
6.6}
D3
2l - : .
. 2000 2006 2012 2018
136.0f y=0.1871x + 84.905
R2=10.1058
1 120.0}
104.0}
88.0}
720t
56.0 b - - :
2000 2006 2012 2018
Unit: mm

—&— Precipitation

= = = Linear Regression Method (LRM)





media/file17.jpg
O°E S0°E 0°E 100°E 70°E SO°E 0°E 100°F

40N

35N

SOE 90E SOE W
A regena S - Nontsouth Boundary Nvea

Sookm  Pelue 00100501 Ns 00501

Ly

Negative corrclation 0 Positive correlation





