Effect of Simulated Matches on Post-Exercise Biochemical Parameters in Women’s Indoor and Beach Handball
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach
2.2. Participants
2.3. Ethics Approval
2.4. Biochemical Analyses
2.5. Simulated Matches
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cunniffe, B.; Fallan, C.; Yau, A.; Evans, G.H.; Cardinale, M. Assessment of physical demands and fluid balance in elite female handball players during a 6-day competitive tournament. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 78–88. [Google Scholar] [CrossRef]
- Karcher, C.; Buchheit, M. On-court demands of elite handball, with special reference to playing positions. Sports Med. 2014, 44, 797–814. [Google Scholar] [CrossRef] [PubMed]
- Georgescu, A.; Rizescu, C.; Varzaru, C. Improving Speed to Handball Players. RREM 2019, 11, 73–87. [Google Scholar] [CrossRef]
- Nuccio, R.P.; Barnes, K.A.; Carter, J.M.; Baker, L.B. Fluid Balance in Team Sport Athletes and the Effect of Hypohydration on Cognitive, Technical, and Physical Performance. Sports Med. 2017, 47, 1951–1982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maughan, R.J.; Watson, P.; Evans, G.H.; Broad, N.; Shirreffs, S.M. Water balance and salt losses in competitive football. Int. J. Sport Nutr. Exerc. Metab. 2007, 17, 583–594. [Google Scholar] [CrossRef]
- Adams, J.D.; Sekiguchi, Y.; Suh, H.G.; Seal, A.D.; Sprong, C.A.; Kirkland, T.W.; Kavouras, S.A. Dehydration Impairs Cycling Performance, Independently of Thirst: A Blinded Study. Med. Sci. Sports Exerc. 2018, 50, 1697–1703. [Google Scholar] [CrossRef] [PubMed]
- Montain, S.J.; Coyle, E.F. Influence of graded dehydration on hyperthermia and cardiovascular drift during exercise. J. Appl. Physiol. 1992, 73, 1340–1350. [Google Scholar] [CrossRef]
- Maughan, R.J.; Shirreffs, S.M. Dehydration and rehydration in competitive sport. Scan. J. Med. Sci. Sports 2010, 20, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Shirreffs, S.M.; Maughan, R.J. Whole body sweat collection in humans: An improved method with preliminary data on electrolyte content. J. Appl. Physiol. 1997, 82, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Poortmans, J.R. Exercise and renal function. Sports Med. 1984, 1, 125–153. [Google Scholar] [CrossRef]
- Hanon, C.; Bernard, O.; Rabate, M.; Claire, T. Effect of two different long-sprint training regimens on sprint performance and associated metabolic responses. J. Strength Cond. Res. 2012, 26, 1551–1557. [Google Scholar] [CrossRef] [PubMed]
- Wiacek, M.; Andrzejewski, M.; Chmura, J.; Zubrzycki, I.Z. The changes of the specific physiological parameters in response to 12-week individualized training of young soccer players. J. Strength Cond. Res. 2011, 25, 1514–1521. [Google Scholar] [CrossRef] [PubMed]
- Girard, O.; Mendez-Villanueva, A.; Bishop, D. Repeated-sprint ability—Part. I: Factors contributing to fatigue. Sports Med. 2011, 41, 673–694. [Google Scholar] [CrossRef]
- López-Sánchez, G.F.; Smith, L.; Díaz-Suárez, A.; Towner, A.; Gordon, D. Do novice and experienced rowers adopt different pacing strategies and do their physiological and metabolic responses show optimisation? SPORT TK-Eur. J. Sport Sci. 2018, 7, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Lejeune, T.M.; Willems, P.A.; Heglund, N.C. Mechanics and energetics of human locomotion on sand. J. Exp. Biol. 1998, 201, 2071–2080. [Google Scholar] [PubMed]
- Zamparo, P.; Perini, R.; Orizio, C.; Sacher, M.; Ferretti, G. The energy cost of walking or running on sand. Eur. J. Appl. Physiol. Occup. Physiol. 1992, 65, 183–187. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Michalsik, L.B.; Madsen, K.; Aagaard, P. Match performance and physiological capacity of female elite team handball players. Int. J. Sports Med. 2014, 35, 595–607. [Google Scholar] [CrossRef]
- Jones, B.; Till, K.; King, R.; Gray, M.; O’Hara, J. Are habitual hydration strategies of female rugby league players sufficient to maintain fluid balance and blood sodium concentration during training and match-alay? A research note from the field. J. Strength Cond. Res. 2016, 30, 875–880. [Google Scholar] [CrossRef]
- Zetou, E.; Giatsis, G.; Mountaki, F.; Komninakidou, A. Body weight changes and voluntary fluid intakes of beach volleyball players during an official tournament. J. Sci. Med. Sport 2008, 11, 139–145. [Google Scholar] [CrossRef]
- Osterberg, K.L.; Horswill, C.A.; Baker, L.B. Pregame urine specific gravity and fluid intake by National Basketball Association players during competition. J. Athl. Train. 2009, 44, 535–537. [Google Scholar] [CrossRef] [Green Version]
- Shirreffs, S.M.; Sawka, M.N.; Stone, M. Water and electrolyte needs for football training and match-play. J. Sports Sci. 2006, 24, 699–707. [Google Scholar] [CrossRef]
- Lippi, G.; Salvagno, G.L.; Danese, E.; Skafidas, S.; Tarperi, C.; Guidi, G.C.; Schena, F. Mean platelet volume (MPV) predicts middle distance running performance. PLoS ONE 2014, 9, e112892. [Google Scholar] [CrossRef] [PubMed]
- Kłapcińska, B.; Waśkiewicz, Z.; Chrapusta, S.J.; Sadowska-Krępa, E.; Czuba, M.; Langfort, J. Metabolic responses to a 48-h ultra-marathon run in middle-aged male amateur runners. Eur. J. Appl. Physiol. 2013, 113, 2781–2793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connell, S.M.; Woodman, R.J.; Brown, I.L.; Vincent, D.J.; Binder, H.J.; Ramakrishna, B.S.; Young, G.P. Comparison of a sports-hydration drink containing high amylose starch with usual hydration practice in Australian rules footballers during intense summer training. J. Int. Soc. Sports Nutr. 2018, 15, 46. [Google Scholar] [CrossRef] [Green Version]
- Bizjak, D.A.; Jacko, D.; Zimmer, P.; Gehlert, S.; Bloch, W.; Grau, M. Acute alterations in the hematological and hemorheological profile induced by resistance training and possible implication for microvascular functionality. Microvasc. Res. 2018, 118, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Knechtle, B.; Knechtle, P.; Rüst, C.A.; Gnädinger, M.; Imoberdorf, R.; Kohler, G.; Rosemann, T.; Ballmer, P. Regulation of electrolyte and fluid metabolism in multi-stage ultra-marathoners. Horm. Metab. Res. 2012, 44, 919–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boone, C.H.; Hoffman, J.R.; Gonzalez, A.M.; Jajtner, A.R.; Townsend, J.R.; Baker, K.M.; Fukuda, D.H.; Stout, J.R. Changes in Plasma Aldosterone and Electrolytes Following High-Volume and High-Intensity Resistance Exercise Protocols in Trained Men. J. Strength Cond. Res. 2016, 30, 1917–1923. [Google Scholar] [CrossRef] [Green Version]
- Morgan, R.M.; Patterson, M.J.; Nimmo, M.A. Acute effects of dehydration on sweat composition in men during prolonged exercise in the heat. Acta Physiol. Scand. 2004, 182, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, J.; Wang, J.; He, W.; Huang, H. Effects of high-intensity training and resumed training on macroelement and microelement of elite basketball athletes. Biol. Trace Elem. Res. 2012, 149, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Karakukcu, C.; Polat, Y.; Torun, Y.A.; Pac, A.K. The effects of acute and regular exercise on calcium, phosphorus and trace elements in young amateur boxers. Clin. Lab. 2013, 59, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Gerth, J.; Ott, U.; Fünfstück, R.; Bartsch, R.; Keil, E.; Schubert, K.; Hübscher, J.; Scheucht, S.; Stein, G. The effects of prolonged physical exercise on renal function, electrolyte balance and muscle cell breakdown. Clin. Nephrol. 2002, 57, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Lukaski, H.C. Micronutrients (Magnesium, Zinc, and Copper): Are Mineral Supplements Needed for Athletes? Int. J. Sport Nutr. 1995, 5, 74–83. [Google Scholar] [CrossRef]
- Stofan, J.R.; Zachwieja, J.J.; Horswill, C.A.; Murray, R.; Anderson, S.A.; Eichner, E.R. Sweat and sodium losses in NCAA football players: A precursor to heat cramps? Int. J. Sport Nutr. Exerc. Metab. 2005, 15, 641–652. [Google Scholar] [CrossRef] [PubMed]
- Horswill, C.A.; Stofan, J.R.; Lacambra, M.; Toriscelli, T.A.; Eichner, E.R.; Murray, R. Sodium balance during U.S. football training in the heat: Cramp-prone vs. reference players. Int. J. Sports Med. 2009, 30, 789–794. [Google Scholar] [CrossRef]
- Laires, M.J.; Monteiro, C. Exercise, magnesium and immune function. Magnes. Res. 2008, 21, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Chycki, J.; Golas, A.; Halz, M.; Maszczyk, A.; Toborek, M.; Zajac, A. Chronic Ingestion of Sodium and Potassium Bicarbonate, with Potassium, Magnesium and Calcium Citrate Improves Anaerobic Performance in Elite Soccer Players. Nutrients 2018, 10, 1610. [Google Scholar] [CrossRef] [Green Version]
- Wiecek, M.; Maciejczyk, M.; Szymura, J.; Szygula, Z. Changes in oxidative stress and acid-base balance in men and women following maximal-intensity physical exercise. Physiol. Res. 2015, 64, 93–102. [Google Scholar] [CrossRef]
- Wiewelhove, T.; Fernandez-Fernandez, J.; Raeder, C.; Kappenstein, J.; Meyer, T.; Kellmann, M.; Pfeiffer, M.; Ferrauti, A. Acute responses and muscle damage in different high-intensity interval running protocols. J. Sports Med. Phys. Fit. 2016, 56, 606–615. [Google Scholar]
- McKenna, M.J.; Harmer, A.R.; Fraser, S.F.; Li, J.L. Effects of training on potassium, calcium and hydrogen ion regulation in skeletal muscle and blood during exercise. Acta Physiol. Scand. 1996, 156, 335–346. [Google Scholar] [CrossRef]
Variable | Indoor (n = 24) | Beach (n = 12) | p-Value | ||
---|---|---|---|---|---|
95% CI | 95% CI | ||||
Age (years) | 21 ± 2 | 20–22 | 21 ± 2 | 19–22 | NS |
Body height (m) | 1.70 ± 0.05 | 1.68–1.72 | 1.69 ± 0.05 | 1.66–1.72 | NS |
Body mass (kg) | 63.2 ± 4.0 | 61.4–64.9 | 62.0 ± 4.3 | 59.2–64.7 | NS |
WHtR * | 43.0 ± 2.6 | 41.9–44.1 | 43.2 ± 2.7 | 41.6–44.9 | NS |
HR mean (bpm) | 151.5 ± 3.9 | 149.9–153.2 | 152.1 ± 2.6 | 150.5–153.8 | NS |
Fluids intake (mL) | 561 ± 164 | 492–631 | 527 ± 162 | 424–630 | NS |
Indicator | Location | Pre-Exercise | Post-Exercise | p-Value | Effect Size |
---|---|---|---|---|---|
Body mass (kg) | Indoors | 63.2 ± 4.0 | 62.2 ± 4.0 | ≤0.001 | 0.24 |
Beach | 62.0 ± 4.3 | 61.4 ± 4.3 | ≤0.001 | 0.14 | |
Water Management | |||||
Hematocrit (L/L) | Indoors | 0.383 ± 0.020 | 0.378 ± 0.020 | NS | |
Beach | 0.381 ± 0.029 | 0.374 ± 0.023 | NS | ||
Urine specific gravity | Indoors | 1.016 ± 0.006 | 1.019 ± 0.004 | 0.013 | 0.58 |
Beach | 1.013 ± 0.004 | 1.019 ± 0.005 | 0.003 | 1.36 | |
Osmolality (mOsm/kg) | Indoors | 289.4 ± 2.4 | 289.5 ± 3.4 | NS | |
Beach | 289.5 ± 4.1 | 291.2 ± 4.2 | NS | ||
Electrolyte Management | |||||
Na+ (mmol/L) | Indoors | 142 ± 1 | 142 ± 2 | NS | |
Beach | 142 ± 2 | 143 ± 2 | NS | ||
K+ (mmol/L) | Indoors | 4.3 ± 0.5 | 4.1 ± 0.4 | 0.046 | 0.48 |
Beach | 4.4 ± 0.4 | 4.4 ± 0.7 | NS | ||
Ca2+ (mmol/L) | Indoors | 1.21 ± 0.03 | 1.19 ± 0.02 | ≤0.001 | 0.96 |
Beach | 1.23 ± 0.04 | 1.23 ± 0.05 | NS | ||
Cl− (mmol/L) | Indoors | 108 ± 2 | 107 ± 2 | NS | |
Beach | 107 ± 2 | 108 ± 2 | NS | ||
Magnesium (mmol/L) | Indoors | 0.89 ± 0.04 | 0.86 ± 0.08 | NS | |
Beach | 0.87 ± 0.02 | 0.85 ± 0.06 | NS | ||
Aldosterone (mmol/L) | Indoors | 124.6 ± 62.4 | 304.5 ± 168.9 | ≤0.001 | 1.41 |
Beach | 129.0 ± 102.1 | 213.7 ± 200.5 | 0.034 | 0.53 | |
Acid-base Balance | |||||
HCO3− (mmol/L) | Indoors | 24.6 ± 1.4 | 22.5 ± 1.8 | ≤0.001 | 1.28 |
Beach | 24.7 ± 1.7 | 23.4 ± 2.4 | 0.011 | 0.63 | |
Standard base excess (mmol/L) | Indoors | 0.3 ± 1.7 | −2.5 ± 2.5 | ≤0.001 | 1.33 |
Beach | 0.3 ± 2.3 | −1.5 ± 3.3 | 0.011 | 0.63 | |
Blood pH | Indoors | 7.42 ± 0.02 | 7.40 ± 0.03 | 0.002 | 0.90 |
Beach | 7.42 ± 0.02 | 7.40 ± 0.02 | 0.002 | 0.93 | |
Urine pH | Indoors | 6.21 ± 0.61 | 6.27 ± 0.69 | NS | |
Beach | 6.54 ± 0.62 | 5.46 ± 0.50 | 0.005 | 1.93 | |
Blood lactate (mmol/L) | Indoors | 1.26 ± 0.53 | 5.33 ± 3.01 | ≤0.001 | 1.89 |
Beach | 1.29 ± 0.41 | 5.75 ± 1.83 | ≤0.001 | 3.36 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamińska, J.; Podgórski, T.; Kryściak, J.; Pawlak, M. Effect of Simulated Matches on Post-Exercise Biochemical Parameters in Women’s Indoor and Beach Handball. Int. J. Environ. Res. Public Health 2020, 17, 5046. https://doi.org/10.3390/ijerph17145046
Kamińska J, Podgórski T, Kryściak J, Pawlak M. Effect of Simulated Matches on Post-Exercise Biochemical Parameters in Women’s Indoor and Beach Handball. International Journal of Environmental Research and Public Health. 2020; 17(14):5046. https://doi.org/10.3390/ijerph17145046
Chicago/Turabian StyleKamińska, Joanna, Tomasz Podgórski, Jakub Kryściak, and Maciej Pawlak. 2020. "Effect of Simulated Matches on Post-Exercise Biochemical Parameters in Women’s Indoor and Beach Handball" International Journal of Environmental Research and Public Health 17, no. 14: 5046. https://doi.org/10.3390/ijerph17145046
APA StyleKamińska, J., Podgórski, T., Kryściak, J., & Pawlak, M. (2020). Effect of Simulated Matches on Post-Exercise Biochemical Parameters in Women’s Indoor and Beach Handball. International Journal of Environmental Research and Public Health, 17(14), 5046. https://doi.org/10.3390/ijerph17145046