

Supplementary Materials

Investigation of the Environmental and Socio-Economic Characteristics of Counties with a High Asthma Burden to Focus Asthma Action in Utah

Maureen Vowles 1, Ruth Kerry 2, Ben Ingram 3 and Linda Mason 4

- Department of Public Health and Policy, University of Liverpool, Liverpool, L69 3GB, UK; mmvowles@gmail.com
- ² Department of Geography, Brigham Young University, Utah, 84602, USA; ruth_kerry@byu.edu
- ³ Faculty of Engineering, Universidad de Talca, Curicó, 3460000, Chile; ingrambr@gmail.com
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK; Linda.Mason@lstmed.ac.uk
- * Correspondence: mmvowles@gmail.com

1. Abbreviation Guide

AAP Adult Asthma Prevalence AER Asthma Emergency Room

AI Aridity Index

BRFSS US Behavioral Risk Factor Surveillance System

CAA Clean Air Act

CDC Centers for Disease Control and Prevention

CL PM_{2.5} County Level Particulate Matter with Diameter less than 2.5 micrometers
CT PM_{2.5} Census Tract Level Particulate Matter with diameter less than 2.5 micrometers

DEM Digital Elevation Model

EPA Environmental Protection Agency

EPHT Environmental Public Health Tracking Network

ER Emergency Room

HII Health Improvement Index

HH High value surrounded by high values

HP-2020 Health People 2020

HL High value surrounded by low values

KSL K Salt Lake Radio/TV network

LH Low value surrounded by high values LL Low value surrounded by low values

LMI Local Moran's I

MAE Mean Annual Potential Evapotranspiration

MAP Mean Annual Precipitation
MHHI Median Household Income
MLR Multiple Linear Regression

NAAQS National Ambient Air Quality Standards NHIS National Health Interview Survey

PM_{2.5} Particulate Matter with diameter less than 2.5 micrometers)
PM₁₀ Particulate Matter with diameter less than 10 micrometers)

RK Regression Kriging
RMSE Root Meat Square Error

SAHIE Small Area Health Insurance Estimates

SDH Social Determinants of Health SRTM Shuttle Radar Topography Model

USAD Utah Small Area Data

USGS United States Geological Survey

UT Utah

WHO World Health Organization

2. Methods

2.1. Questions used from BRFSS to determine AAP, smoking and obesity

AAP, smoking and obesity rates were determined from the BRFSS using the following questions:

1)"Have you ever been told by a doctor {nurse or other health professional} that you have asthma?" Current asthma is defined as an affirmative response to that question followed by an affirmative response to the subsequent question "Do you still have asthma?" [65] and 2) "Do you now smoke cigarettes every day, some days, or not at all?" [66], with individuals reporting any smoking being considered as smokers. Obesity was determined from BRFSS questions about height and weight and calculated based on a BMI of 30-99.8 [66].

2.2. CL PM2.5 Data limitations

The following statement of data limitations comes with the CL PM2.5 data: "measures estimate average annual concentration of fine PM pollution in the county, and can miss "important short-term fluctuations in air quality (such as stagnation events), local patterns (high concentrations near roads and other major sources), and other pollutants (such as ozone, etc.). Further, these estimates are based on seasonal averages. Even within counties with low average fine PM concentrations, locations can experience days of dangerously elevated levels. It should be noted that these data are derived from only one air quality model among several. Like all models, this air quality model has errors. There is also a large time lag (up to 5 years) between when these data are collected and when the modeled results become

https://www.countyhealthrankings.org/app/UT/2019/measure/factors/125/description

2.3. Socio-economic indicators used in HII calculation

1) adults (over 25) with <9 years education, 2) Adults (over 25) with at least a high school diploma, 3) median family income, 4) income disparity, 5) owner occupied houses, 6) unemployment, 7) families below poverty level, 8) population below 150% of poverty threshold and 9) single parent households with children.

3. Results

3.1. Classification of Utah Counties as Metro (M) and Non-metro (N)

Beaver	
	N
Box Elder	M
Cache	M
Carbon	M
Daggett	N
Davis	M
Duchesne	N
Emery	N
Garfield	N
Grand	N
Iron	M
Juab	M
Kane	N
Millard	N
Morgan	M
Piute	N
Rich	N
Salt Lake	M
San Juan	N
Sanpete	N
Sevier	N
Summit	M
Tooele	M
Uintah	M
Utah	M
Wasatch	M
	M
Washington	141
Washington Wayne	N

(M = Metropolitan/Micropolitan counties; N = Non-metropolitan counties. Source: USDA (2013))

United States Department of Agriculture USDA (2013) 'What is rural?' [Online] Available from: https://www.ers.usda.gov/topics/rural-economy-population/rural-classifications/what-is-rural.aspx [Accessed: 3 March 2017]

Table 1. Correlation matrix to Pearson coefficients for all counties

Popu	Native Population American	ve can Estimated	ă.					Red Air				Wind Erosion				Unemploy	Total	
Der	Density Popula	Population Mine Area Median AI Min. AI	ea Median A	I Min. AI	AER	AAP	PM2.5	Days	Elevation Uninsured	Uninsured	Smoking	Risk	Poverty	МННІ	Obesity	ment	Mines	Ш
Population Density	1 -0	-0.098 -0.169	69 0.264	.455*	-0.136	0.010	0.276	.748**	384*	-0.252	-0.132	-0.165	-0.189	0.309	-0.111	-0.195	-0.128	-0.016
Native American Population		1 0.312	-0.232	2 -0.291	0.287	0.071	410*	-0.188	-0.109	.452*	.683***	0.314	.760**	-0.258	0.180	.608**	.832**	.389*
Estimated Mine Area			1533**	469*	0.250	.450*	-0.238	-0.269	-0.270	0.142	.434*	.999**	.395*	-0.258	0.266	0.295	.649**	.498**
Median AI				.894**	381*	479**	0.319	.631**	.501**	-0.358	401*	524**	387*	.602**	564**	425*	382*	525**
Min. AI				_	378*	-0.350	.433*	.753**	0.241	464*	422*	456*	418*	.610**	416*	550**	422*	433*
AER					_	0.045	-0.327	-0.307	-0.231	.374*	0.017	0.509	0.153	-0.170	-0.114	0.145	0.252	0.130
AAP						_	-0.057	-0.237	-0.298	0.086	.418*	.453*	0.354	-0.302	.370*	0.139	0.329	.492**
PM2.5							_	.412*	-0.065	478**	-0.340	-0.214	472**	.508**	0.103	586**	460*	369*
Red Air Days								_	-0.243	486**	-0.324	-0.261	388*	.631**	-0.320	-0.365	-0.267	-0.306
Elevation									_	0.055	-0.133	-0.266	-0.051	0.002	-0.353	-0.089	-0.142	-0.359
Uninsured										_	.439*	0.142	.640**	708**	0.095	.423*	0.313	.607**
Smoking											_	.439*	.756**	490**	.383*	.640**	.728**	.585**
Wind Erosion Risk												_	.398*	-0.251	0.269	0.291	.651**	.493**
Poverty													_	685**	0.218	.535**	.748**	.664**
МННІ														_	-0.325	451*	-0.326	658**
Obesity															_	0.103	0.234	0.312
Unemployment																	.690**	.396*
Total Mines																	_	.470*
																		_
*Correlation is significant at p =0.05 **Correlation is significant at p =0.01 level	.05 **Correlati	ion is significa	int at p=0.01	leve1														

Table 2 Pearson Correlation Matrix for Metro Counties

Pop. Density		American Estimated Populattion Mine Area Median AI Min.AI	Median AI	Min.AI	AER	AAP	PM 2.5	Red Air Days	Elevation	Elevation Uninsured	Smoking	Poverty	МННІ	Obesity	Unemploy ment	Total Mines	H
Pop.density	1 -0.145	-0.229	0.126	0.378	-0.102	0.056	0.288	.735**	-0.404	-0.131	-0.036	-0.140	0.138	-0.024	24	-0.158	0.139
Native American		0.284	-0.317	-0.276	.542*	0.076	0.127	-0.347	-0.014	0.311	0.208	0.082	-0.061	0.315	-0.262	0.011	0.005
Estimated Mine		_	588*	536*	-0.082	.561*	0.304	-0.380	-0.134	-0.009	0.387	0.368	-0.425	0.482	0.152	.821**	.573*
Median AI			_	.876**	-0.182	558*	-0.173	.517*	.674**	-0.124	-0.384	-0.377	.522*	724**	-0.253	-0.433	-0.488
Min.AI				_	-0.269	-0.425	-0.073	.670**	0.387	-0.268	-0.334	-0.341	0.475	-0.499	-0.398	-0.486	-0.295
AER						-0.338	-0.282	-0.304	-0.091	0.408	-0.310	-0.220	0.088	-0.109	-0.437	-0.368	-0.174
AAP						_	0.250	-0.271	-0.363	-0.144	.672**	0.434	-0.444	.533*	.531*	.695**	.562*
PM2.5							_	0.238	-0.236	-0.408	0.116	-0.399	0.408	0.391	0.348	0.227	0.042
Red Air Days								_	-0.156	-0.343	-0.242	-0.396	0.422	-0.226	-0.192	-0.383	-0.222
Elevation									_	0.101	-0.218	-0.034	0.246	691**	-0.121	0.052	-0.395
Uninsured										_	0.136	0.399	549*	0.089	-0.129	-0.081	0.377
smoking											_	0.474	-0.443	.551*	.554*	.527*	0.484
Poverty												_	899**	0.235	-0.006	0.495	.618*
MHHI													_	-0.438	-0.059	-0.465	773**
Obesity														1	0.359	0.289	.614*
Unemp loy ment															_	0.488	0.105
Total Mines																_	0.496
НП																	_

Table 3. Pearson Correlation Matrix for Non-Metro Counties

	Pop. Density	American Estimated Population Mine Area Median AI min.AI	Estimated Mine Area	Median AI	min.AI	AER	AAP	PM 2.5	PM 2.5 red air days Elevation	Elevation	Uninsured	smoking	Poverty	МННІ	Obesity	Unemp loy ment	Total Mines	HII
Pop.density	1	-0.123	552*	.593*	0.332	-0.446	0.042	0.372	0.091	0.396	0.075	-0.012	0.032	-0.028	0.054	-0.101	-0.263	-0.005
Native American			0.380	-0.246	-0.386	0.283	0.071	-0.407	-0.096	-0.303	.550*	.923**	.921**	-0.315	0.163	.635*	.873***	0.531
Estimated Mine Area			_	688**	588*	.535*	0.335	-0.492	-0.320	-0.531	0.265	0.485	0.422	-0.095	-0.019	0.383	.689**	0.442
Median AI				1	.795**	715**	-0.423	0.450	0.329	.861**	-0.256	-0.181	-0.215	0.123	0.106	-0.460	-0.478	-0.421
min.AI					_	-0.510	-0.252	.633*	.585*	.603*	-0.311	-0.335	-0.338	0.201	0.130	682**	-0.529	-0.452
AER						1	0.454	-0.292	-0.262	595*	0.244	0.218	0.324	-0.352	-0.277	0.236	0.437	0.359
AAP							_	-0.171	-0.272	-0.269	0.297	0.110	0.292	-0.082	0.072	-0.018	0.255	0.397
PM2.5								_	0.346	0.280	-0.294	-0.414	-0.376	0.321	0.276	595*	-0.509	-0.464
red air days									_	-0.074	-0.139	-0.053	-0.127	0.362	-0.205	-0.312	-0.259	0.084
Elevation										_	-0.342	-0.231	-0.269	0.038	0.127	-0.368	-0.417	591*
Uninsured											1	.573*	.739**	716**	-0.257	0.431	0.387	.760**
smoking												_	.930**	-0.362	0.007	.700**	.889**	.608*
Poverty													_	-0.488	0.063	.592*	.831**	.661*
МННІ														_	0.409	-0.471	-0.246	-0.367
Obesity															_	-0.216	0.206	-0.360
Unemployment																_	.694**	0.440
Total Mines																	_	0.505
HII																		_

3.2. Investigating USAD and census tract data through regression kriging

As data at the USAD level (n=99) and census tract level (n=588) were available for the HII [55] (Figure 5b) and CT PM2.5, respectively, it was decided to investigate whether these data could be used to gain further insight into AAP and AER patterns. The HII and CT PM2.5 data were aggregated to the county-level by averaging the values for the five nearest neighbor USAD/census tracts (Figure 5a-b not shown for CT PM2.5) to allow correlation analysis with AAP and AER data at the county-level. The correlations between HII and AAP and AER visits at the county-level were 0.49 and 0.13, respectively. Given the stronger correlation with AAP than AER visits, the HII data were used to regression krige the AAP data to the USAD level (n=99). The AER visit data correlated better with the CT PM2.5 data (Summer 2011 max. r=0.323 and Winter 2011-2014 mean r=-0.347) so the modelled PM2.5 data were used to regression krige AER visits. The county-level AAP was used as the dependent variable in regression with the county-level HII data as a single independent variable, then a variogram of the regression residuals was computed and modelled. The regression residuals were ordinary kriged to the USAD level. The regression equation from the county-level was then used to predict AAP ($AAP = 0.040558\alpha + 4.884658$ where α corresponds to HII county-level data) at the USAD level and the kriged residuals were added to these regressed values (Figure 2c). To determine the success of the regression kriging, the RK values were aggregated to the county-level using averaging of the five nearest neighbor values (Figure 2d). These values were then correlated and compared with the original county-level AAP values. The correlation coefficient was r=0.93 and the mean RMSE (Figure 2e) was 0.35%. This and the result that follows for AER visits suggests that the combination of using regression association and spatial association in regression kriging is successful at predicting AAP and AER visits at the USAD level and census tract level. The same procedure was followed with the AER data and the CT PM2.5 data. The regression equation used was AER=0.3965 β 0 - 1.4886 β 1 + 27.915 where β 0 and β 1 correspond to Summer2011Max and Winter2011to2014Mean, respectively. Once the RK AER data (Figure 2f) were aggregated to the county-level (Figure 2g), the correlation with the original county-level AER data was r=0.876 and the mean RMSE (Figure 2h) was 2.197.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).