Maternal Sleep Quality is Associated with Personal and Parenting Weight-Related Behaviors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instruments
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chaput, J.; Gray, C.; Poitras, V.; Carson, V.; Gruber, R.; Birken, C.; MacLean, J.; Aubert, S.; Sampson, M.; Tremblay, M. Systematic review of the relationships between sleep duration and health indicators in the early years (0–4 years). BMC Public Health 2017, 17, 855. [Google Scholar] [CrossRef] [PubMed]
- Gruber, R.; Carrey, N.; Weiss, S.; Frappier, J.; Rourke, L.; Brouillett, R.; Wise, M. Position statement on pediatric sleep for psychiatrists. J. Can. Acad. Child. Adolesc. Psychiatry 2014, 23, 174–195. [Google Scholar] [PubMed]
- Omlin, S.; Bauer, G.; Brink, M. Effects of noise from non-traffic-related ambient sources on sleep: Review of the literature of 1990–2010. Noise Health 2011, 13, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Keating, X.; Guan, J.; Pinero, J.; Bridges, D. A meta-analysis of college students’ physical activity behaviors. J. Am. Coll. Health 2005, 54, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Shochat, T. Impact of lifestyle and technology developments on sleep. Nat. Sci. Sleep 2012, 4, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Pelletier, J.; Graham, D.; Laska, M. Social norms and dietary behaviors among young adults. Am. J. Health Behav. 2014, 38, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Lemke, M.; Hege, A.; Perko, M.; Sonmez, S.; Apostolopoulos, Y. Work patterns, sleeping hours and excess weight in commercial drivers. Occup. Med. 2015, 65, 725–731. [Google Scholar] [CrossRef] [Green Version]
- Schulte, E.; Kaffe, M.; Schormair, B.; Winkelmann, J. Iron in restless leg syndrome. Mov. Disord. Clin. Pract. 2014, 1, 161–172. [Google Scholar] [CrossRef]
- Gonnissen, H.; Adam, T.; Hursel, R.; Ruttgers, F.; Verhoef, S.; Westerterp-Plantenga, M. Sleep duration, sleep quality and body weight: Parallel developments. Physiol. Behav. 2013, 121, 112–116. [Google Scholar] [CrossRef]
- Cappuccio, F.P.; Taggart, F.M.; Ngianga-Bakwin, K.; Currie, A.; Peile, E.; Stranges, S.; Miller, M.A. Meta-analysis of short sleep duration and obesity in children and adults. Sleep 2008, 31, 619–626. [Google Scholar] [CrossRef] [Green Version]
- Hirshkowitz, M.; Whiton, K.; Albert, S.M.; Alessi, C.; Bruni, O.; DonCarlos, L.; Hazen, N.; Herman, J.; Katz, E.S.; Kheirandish-Gozal, L.; et al. National Sleep Foundation’s sleep time duration recommendations: Methodology and results summary. Sleep Health 2015, 1, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.; Cunningham, T.; Crof, J. Trends in Self-Reported Sleep Duration among US Adults from 1985 to 2012. Sleep 2015, 38, 829–832. [Google Scholar] [CrossRef]
- Bruce, E.; Lunt, L.; McDonagh, J. Sleep in adolescents and young adults. Clin. Med. 2017, 17, 424–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hart, C.; Jelalian, E. Shortened sleep duration is associated with pediatric overweight. Behav. Sleep Med. 2008, 4, 251–267. [Google Scholar] [CrossRef] [PubMed]
- Chaput, J.; Gray, C.; Poitras, V.; Carson, V.; Gruber, R.; Olds, T.; Weiss, S.; Gorber, S.; Kho, M.; Sampson, M.; et al. Systematic review of the relationships between sleep duration and health indicators in school-aged children and youth. Appl. Physiol. Nutr. Metab. 2017, 41, S266–S282. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Gong, Q.; Zou, Z.; Li, H.; Zhang, X. Short sleep duration and obesity among children: A systematic review and meta-analysis of prospective studies. Obes. Res. Clin. Pract. 2017, 11, 140–150. [Google Scholar] [CrossRef]
- Beccuti, G.; Pannain, S. Current opinion in clinical nutrition and metabolic care. Sleep Obes. 2011, 14, 402–412. [Google Scholar]
- Amagai, Y.; Ishikawa, S.; Gotoh, T.; Kayaba, K.; Nakamura, Y.; Kajii, E. Sleep duration and incidence of cardiovascular events in a Japanese population: The Jichi Medical School cohort study. J. Epidemiol. 2010, 20, 106–110. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, B.; NMakarem, N.; RShah, R.; Emin, M.; Wei, Y.; St-Onge, M.-P.; Jelic, S. Effects of Inadequate Sleep on Blood Pressure and Endothelial Inflammation in Women: Findings From the American Heart Association Go Red for Women Strategically Focused Research Network. J. Am. Heart Assoc. 2018, 7, JAHA–118. [Google Scholar] [CrossRef] [Green Version]
- Alhola, P.; Polo-Kantola, P. Sleep deprivation: Impact on cognitive performance. Neuropsychiatr. Dis. Treat. 2007, 3, 553–567. [Google Scholar]
- Ohayon, M.; Wickwire, E.M.; Hirshkowitz, M.; Albert, S.M.; Avidan, A.; Daly, F.J.; Dauvilliers, Y.; Ferri, R.; Fung, C.; Gozal, D. National Sleep Foundation’s sleep quality recommendations: First report. Sleep Health 2017, 3, 6–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jennings, J.; Muldoon, M.; Buysse, D.; Manuck, B. Self-reported sleep quality is associated with the metabolic syndrome. Sleep 2007, 30, 219–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gadie, A.; Shafto, M.; Leng, Y.; Kievit, R.A. How are age-related differences in sleep quality associated with health outcomes? An epidemiological investigation in a UK cohort of 2406 adults. BMJ Open 2017, 7, e014920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lallukka, T.; Sivertsen, B.; Kronholm, E.; Bin, Y.S.; Øverland, S.; Glozier, N. Association of sleep duration and sleep quality with the physical, social, and emotional functioning among Australian adults. Sleep Health 2018, 4, 194–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques, D.R.; Meia-Via, A.M.S.; da Silva, C.F.; Gomes, A.A. Associations between sleep quality and domains of quality of life in a non-clinical sample: Results from higher education students. Sleep Health 2017, 3, 348–356. [Google Scholar] [CrossRef] [Green Version]
- Twig, G.; Shina, A.; Afek, A.; Derazne, E.; Tzur, D.; Cukierman-Yaffe, T.; Shechter-Amir, D.; Gerstein, H.C.; Tirosh, A. Sleep quality and risk of diabetes and coronary artery disease among young men. Acta Diabetol. 2016, 53, 261–270. [Google Scholar] [CrossRef]
- Lee, S.W.H.; Ng, K.Y.; Chin, W.K. The impact of sleep amount and sleep quality on glycemic control in type 2 diabetes: A systematic review and meta-analysis. Sleep Med. Rev. 2017, 31, 91–101. [Google Scholar] [CrossRef]
- Madrid-Valero, J.J.; Martínez-Selva, J.M.; Ordoñana, J.R. Sleep quality and body mass index: A co-twin study. J. Sleep Res. 2017, 26, 461–467. [Google Scholar] [CrossRef] [Green Version]
- St-Onge, M.-P. Sleep-obesity relation: Underlying mechanisms and consequences for treatment. Obes. Rev. 2017, 18, 34–39. [Google Scholar] [CrossRef]
- Kwok, C.; Kontopantelis, E.; Kuligowski, G.; Gray, M.; Muhyaldeen, A.; Gale, C.; Peat, G.; Cleator, J.; Chew-Graham, C.; Loke, Y.; et al. Self-Reported sleep duration and quality and cardiovascular disease and mortality: A dose response meta-analysis. J. Am. Heart Assoc. 2018, 7, e008552. [Google Scholar] [CrossRef] [Green Version]
- Cappuccio, F.; D’Elia, L.; Strazzullo, P.; Miller, M. Quantity and quality of sleep and incidence of type 2 diabetes: A systematic review and meta-analysis. Diabetes Care 2010, 33, 414–420. [Google Scholar] [CrossRef] [Green Version]
- Spiegel, K.; Tasali, E.; Leproult, R.; Van Cauter, E. Effects of poor and short sleep on glucose metabolism and obesity risk. Nat. Rev. Endocrinol. 2009, 5, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Chaput, J. Sleep patterns, diet quality and energy balance. Physiol. Behav. 2014, 134, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Boros, Z. The effect of physical activity on sleep quality: A systematic review. Eur. J. Physiother. 2019, 1–8. [Google Scholar] [CrossRef]
- Bosy-Westphal, A.; Hinrichs, S.; Jauch-Chara, K.; Hitze, B.; Later, W.; Wilms, B.; Settler, U.; Peters, A.; Kiosz, D.; Muller, M. Influence of partial sleep deprivation on energy balance and insulin sensitivity in healthy women. Obes. Facts 2008, 1, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Nedeltcheva, A.; Kilkus, J.; Imperial, J.; Kasza, K.; Schoeller, D.; Penev, P. Sleep curtailment is accompanied by increased intake of calories from snacks. Am. J. Clin. Nutr. 2009, 89, 126–133. [Google Scholar] [CrossRef]
- Zuraikat, F.; Makarem, N.; Liao, C.; St-Onge, M.-P.; Aggarwal, B. Measures of Poor Sleep Quality Are Associated With Higher Energy Intake and Poor Diet Quality in a Diverse Sample of Women From the Go Red for Women Strategically Focused Research Network. J. Am. Heart Assoc. 2020, 9, JAHA–119. [Google Scholar] [CrossRef]
- Konttinen, H. Emotional eating and obesity in adults: The role of depression, sleep and genes. Proc. Nutr. Soc. 2020, 1–7. [Google Scholar] [CrossRef]
- Linares, J.; Perez-Fuentes, M.; Jurado, M.; Ruiz, N.; Marquez, M.; Saracostti, M. Sleep Quality and the Mediating Role of Stress Management on Eating by Nursing Personnel. Nutrients 2019, 11, 1731. [Google Scholar] [CrossRef] [Green Version]
- Blumfield, M.L.; Bei, B.; Zimberg, I.Z.; Cain, S.W. Dietary disinhibition mediates the relationship between poor sleep quality and body weight. Appetite 2018, 120, 602–608. [Google Scholar] [CrossRef]
- Theorell-Haglöw, J.; Lemming, E.; Michaëlsson, K.; Elmståhl, S.; Lind, L.; Lindberg, E. Sleep duration is associated with healthy diet scores and meal patterns: Results from the population-based EpiHealth study. J. Clin. Sleep Med. 2020, 16, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Chapman, D.P.; Wheaton, A.G.; Perry, G.S.; Sturgis, S.L.; Strine, T.W.; Croft, J.B. Household Demographics and Perceived Insufficient Sleep Among US Adults. J. Community Health 2012, 37, 344–349. [Google Scholar] [CrossRef]
- Arber, S.; Bote, M.; Meadows, R. Gender and socio-economic patterning of self-reported sleep problems in Britain. Soc. Sci. Med. 2009, 68, 281–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovejoy, J.; Sainsbury, A. Sex differences in obesity and the regulation of energy homeostasis. Obes. Rev. 2009, 10, 154–167. [Google Scholar] [CrossRef] [PubMed]
- Matricciani, L.; Fraysse, F.; Grobler, A.; Muller, J.; Wake, M.; Olds, T. Sleep: Population epidemiology and concordance in Australian children aged 11–12 years and their parents. BMC Open 2019, 9, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Nugent, C.N.; Black, L.I. Sleep Duration, Quality of Sleep, and Use of Sleep Medication, by Sex and Family Type, 2013–2014. NCHS Data Brief 2016, 230, 1–8. [Google Scholar]
- Phillips, N.; Sioen, I.; Michels, N.; Sleddens, E.; DeHenauw, S. The influence of parenting style on health related behavior of children: Findings from the ChiBS study. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 95. [Google Scholar] [CrossRef] [Green Version]
- Trost, S.G.; Sallis, J.F.; Pate, R.R.; Freedson, P.S.; Taylor, W.C.; Dowda, M. Evaluating a model of parental influence on youth physical activity. Am. J. Prev. Med. 2003, 25, 277–282. [Google Scholar] [CrossRef]
- Ferreira, I.; van der Horst, K.; Wendel-Vos, W.; Kremers, S.; van Lenthe, F.; Brug, J. Environmental correlates of physical activity in youth—A review and update. Obes. Rev. 2007, 8, 129–154. [Google Scholar] [CrossRef]
- Sallis, J.; Prochaska, J.; Taylor, W. A review of correlates of physical activity of children and adolescents. Med. Sci. Sports Exerc. 2000, 32, 963–975. [Google Scholar] [CrossRef]
- Andersen, S.; Witaker, R. Household Routines and Obesity in US Preschool-Aged Children. Pediatrics 2010, 125, 420–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gable, S.; Chang, Y.; Krull, J. Television watching and frequency of family meals are predictive of overweight onset and persistence in a national sample of school-aged children. J. Am. Diet. Assoc. 2007, 107, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Hearn, M.; Baranowski, T.; Baranowski, J.; Doyle, C.; Smith, M.; Lin, L.; Resnicow, K. Environmental influences on dietary behavior among children: Availability and accessibility of fruits and vegetables enable consumption. J. Health Educ. 1998, 29, 26–32. [Google Scholar] [CrossRef]
- Gattshall, M.; Shoup, J.; Marshall, J.; Crane, L.; Estabrooks, P. Validation of a survey instrument to assess home environments for physical activity and healthy eating in overweight children. Int. J. Behav. Nutr. Phys. Act. 2008, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Fisher, J.O.; Mitchell, D.C.; Smiciklas-Wright, H.; Birch, L.L. Maternal milk consumption predicts the tradeoff between milk and soft drinks in young girls’ diets. J. Nutr. 2000, 131, 246–250. [Google Scholar] [CrossRef]
- Klesges, R.; Stein, R.; Eck, L.; Isbell, T.; Klesges, L. Parental influence on food selection in young children and its relationships to childhood obesity. Am. J. Clin. Nutr. 1991, 53, 859–864. [Google Scholar] [CrossRef]
- Klesges, R.; Malott, J.; Boschee, P.; Weber, J. The effects of parental influences on children’s food intake, physical activity, and relative weight. Int. J. Eat. Disord. 1986, 5, 335–346. [Google Scholar] [CrossRef]
- Fisher, J.; Birch, L. Restricting access to palatable food affects children’s behavioral response, food selection, and intake. Am. J. Clin. Nutr. 1999, 69, 1264–1272. [Google Scholar] [CrossRef] [Green Version]
- Fisher, J.O.; Birch, L.L. Restricting access to foods and children’s eating. Appetite 1999, 32, 405–419. [Google Scholar] [CrossRef]
- Robinson, S.; Yardy, K.; Carter, V. A narrative literature review of the development of obesity in infancy and childhood. J. Child. Health Care 2012, 16, 339–354. [Google Scholar] [CrossRef]
- Martin-Biggers, J.; Cheng, C.; Spaccarotella, K.; Byrd-Bredbenner, C. The Physical Activity Environment in Homes and Neighborhoods. In Recent Advances in Obesity in Children; Avid Science Publications: Berlin, Germany, 2016; Available online: www.avidscience.com/wp-content/uploads/2016/05/OIC-15-04_May-06-2016.pdf (accessed on 28 May 2020).
- Martin-Biggers, J.M.; Worobey, J.; Byrd-Bredbenner, C. Interpersonal Characteristics in the Home Environment Associated with Childhood Obesity. In Recent Advances in Obesity in Children; Avid Science Publications: Berlin, Germany, 2016; Available online: www.avidscience.com/wp-content/uploads/2016/05/OIC-15-03_May-06-2016.pdf (accessed on 28 May 2020).
- Martin-Biggers, J.; Quick, V.; Spaccarotella, K.; Byrd-Bredbenner, C. An Exploratory Study Examining Obesity Risk in Non-Obese Mothers of Young Children Using a Socioecological Approach. Nutrients 2018, 10, 781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quick, V.; Martin-Biggers, J.; Povis-Alleman, G.; Hongu, K.; Worobey, J.; Byrd-Bredbenner, C. A Socio-Ecological Examination ofWeight-Related Characteristics of the Home Environment and Lifestyles of Households with Young Children. Nutrients 2017, 9, 604. [Google Scholar] [CrossRef] [PubMed]
- Currie, C.; Molcho, M.; Boyce, W.; Holstein, B.; Torsheim, T.; Richter, M. Researching health inequalities in adolescents: The development of the Health Behaviour in School-Aged Children (HBSC) Family Affluence Scale. Soc. Sci. Med. 2008, 66, 1429–1436. [Google Scholar] [CrossRef] [PubMed]
- Hartley, J.; Levin, K.; Currie, C. A new version of the HBSC Family Affluence Scale-FAS III: Scottish qualitative findings from the international FAS developments study. Child Indic. Res. 2016, 9, 223–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buysse, D.; Reynolds, C.; Monk, T.; Berman, S.; Kupfer, D. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatr. Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Carpenter, J.; Andrykowski, M. Psychometric evaluation of the Pittsburgh Sleep Quality Index. J. Psychosom. Res. 1998, 45, 5–13. [Google Scholar] [CrossRef]
- Quick, V.; Byrd-Bredbenner, C.; Shoff, S.; White, A.; Lohse, B.; Horacek, T.; Kattlemann, K.; Phillips, B.; Hoerr, S.; Greene, G. A streamlined, enhanced self-report physical activity measure for young adults. Int. J. Health Promot. Educ. 2016, 54, 245–254. [Google Scholar] [CrossRef]
- Nelson, M.; Lytle, L. Development and evaluation of a brief screener to estimate fast-food and beverage consumption among adolescents. J. Am. Diet. Assoc. 2009, 109, 730–734. [Google Scholar] [CrossRef] [Green Version]
- West, D.; Bursac, Z.; Quimby, D.; Prewit, T.; Spatz, T.; Nash, C.; Mays, G.; Eddings, K. Self-reported sugar-sweetened beverage intake among college students. Obesity 2006, 14, 1825–1831. [Google Scholar] [CrossRef]
- Block, G.; Gillespie, C.; Rosenbaum, E.H.; Jenson, C. A rapid food screener to assess fat and fruit and vegetable intake. Am. J. Prev. Med. 2000, 18, 284–288. [Google Scholar] [CrossRef]
- Block, G.; Hartman, A.; Naughton, D. A reduced dietary questionnaire: Development and validation. Epidemiology 1990, 1, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Block, G.; Thompson, F.; Hartman, A.; Larkin, F.; Guire, K. Comparison of two dietary questionnaires validated against multiple dietary records collected during a 1-year period. J. Am. Diet. Assoc. 1992, 92, 686–693. [Google Scholar] [PubMed]
- Stunkard, A.; Messick, S. The three-factor eating questionnaire to measure dietary restraint, disinhibition and hunger. J. Psychosom. Res. 1985, 29, 71–83. [Google Scholar] [CrossRef]
- Karlsson, J.; Persson, L.-O.; Sjostrom, L.; Sullivan, M. Psychometric properties and factor structure of the Three-Factor Eating (TFEQ) in obese men and women. Results from the Swedish Obese Subjects (SOS) study. Int. J. Obes. 2000, 24, 1715–1725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pliner, P.; Hobden, K. Development of a scale to measure the trait of food neophobia in humans. Appetite 1992, 19, 105–120. [Google Scholar] [CrossRef]
- Pliner, P.; Loewen, E. Temperament and food neophobia in children and their mothers. Appetite 1997, 28, 239–254. [Google Scholar] [CrossRef]
- Ullrich, N.V.; Touger-Decker, R.; O’Sullivan-Maillet, J.; Tepper, B.J. PROP taster status and self-perceived food adventurousness influence food preferences. J. Am. Diet. Assoc. 2004, 104, 543–550. [Google Scholar] [CrossRef]
- Birch, L.; Fisher, J.; Grimm-Thomas, K.; Markey, C.; Sawyer, R.; Johnson, S. Confirmatory factor analysis of the Child Feeding Questionnaire: A measure of parental attitudes, belief and practices about child feeding and obesity proneness. Appetite 2001, 36, 202–210. [Google Scholar] [CrossRef]
- Spurrier, N.; Magarey, A.; Golley, R.; Curnow, F.; Sawyer, M. Relationships between the home environment and physical activity and dietary patterns of preschool children: A cross-sectional study. Int. J. Behav. Nutr. Phys. Act. 2008, 5, 31. [Google Scholar] [CrossRef] [Green Version]
- Bryant, M.; Ward, D.; Hales, D.; Vaughn, A.; Tabak, R.; Stevens, J. Reliability and validity of the Healthy Home Survey: A tool to measure factors within homes hypothesized to relate to overweight in children. Int. J. Behav. Nutr. Phys. Act. 2008, 5, 23. [Google Scholar] [CrossRef] [Green Version]
- Hughes, S.; Cross, M.; Hennessy, E.; Tovar, A.; Economos, C.; Power, T. Caregiver’s Feeding Styles Questionnaire. Establishing cutoff points. Appetite 2012, 58, 393–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wardle, J.; Sanderson, S.; Guthrie, C.A.; Rapoport, L.; Plomin, R. Parental feeding style and the inter-generational transmission of obesity risk. Obes. Res. 2002, 10, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Ogden, J.; Reynolds, R.; Smith, A. Expanding the concept of parental control: A role for overt and covert control in children’s snacking behaviour? Appetite 2006, 47, 100–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, C.; Mash, E.J. A Measure of Parenting Satisfaction and Efficacy. J. Clin. Child Psychol. 1989, 18, 167–175. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. HRQOL Concepts. Why Is Quality of Life Important? Available online: www.cdc.gov/hrqol/concept.htm (accessed on 9 May 2016).
- Centers for Disease Control and Prevention. CDC HRQOL-14 Healthy Days Measure. Available online: www.cdc.gov/hrqol/hrqol14_measure.htm (accessed on 9 May 2016).
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.W. The Patient Health Questionnaire-2: Validity of a two-item depression screener. Med. Care 2003, 41, 1284–1292. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A Global Measure of Percieved Stress. J. Health Soc. Behav. 1983, 24, 385–396. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discover rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar]
- National Sleep Foundation. Insomnia, Narcolepsy, Restless Leg Syndrome, Women’s Sleep Topics: Women and Sleep. Available online: https://www.sleepfoundation.org/articles/women-and-sleep (accessed on 7 April 2020).
- Kim, M.-J.; Yim, G.; Park, H.-Y. Vasomotor and physical menopausal symptoms are associated with sleep quality. PLoS ONE 2018, 13, e0192934. [Google Scholar] [CrossRef]
- National Sleep Foundation. Summary of Findings: NSF 2007 Sleep in America Poll. Available online: https://www.sleepfoundation.org/sites/default/files/inline-files/Summary_Of_Findings%20-%20FINAL.pdf (accessed on 7 April 2020).
- Petrovic, D.; Haba-Rubio, J.; de Mestral Vargas, C.; Kelly-Irving, M.; Vineis, P.; Kivimaki, M.; Nyberg, S.; Gandini, M.; Bochud, M.; Vollenweider, P.; et al. The contribution of sleep to social inequalities in cardiovascular disorders: A mult-cohort sutdy. Cardiovasc. Res. 2019, 116, 1514–1524. [Google Scholar] [CrossRef] [Green Version]
- Grandner, M.; Patel, N.; Gehrman, P.; Xie, D.; Sha, D.; Weaver, T.; Goonerante, N. Who gets the best sleep? Ethnic and socioeconomic factors related to sleep complaints. Sleep Med. 2010, 11, 470–478. [Google Scholar] [CrossRef] [Green Version]
- Jones, S.E.; Tyrrell, J.; Wood, A.R.; Beaumont, R.N.; Ruth, K.S.; Tuke, M.A.; Yaghootkar, H.; Hu, Y.; Teder-Laving, M.; Hayward, C. Genome-wide association analyses in 128,266 individuals identifies new morningness and sleep duration loci. PLoS Genet. 2016, 12, e1006125. [Google Scholar] [CrossRef] [PubMed]
- Dashti, H.S.; Jones, S.E.; Wood, A.R.; Lane, J.M.; Van Hees, V.T.; Wang, H.; Rhodes, J.A.; Song, Y.; Patel, K.; Anderson, S.G. Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates. Nat. Commun. 2019, 10, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madrid-Valero, J.J.; Rubio-Aparicio, M.; Gregory, A.M.; Sánchez-Meca, J.; Ordoñana, J.R. Twin studies of subjective sleep quality and sleep duration, and their behavioral correlates: Systematic review and meta-analysis of heritability estimates. Neurosci. Biobehav. Rev. 2020, 109, 78–89. [Google Scholar] [CrossRef] [PubMed]
- St-Onge, M.-P.; Grandner, M.A.; Brown, D.; Conroy, M.B.; Jean-Louis, G.; Coons, M.; Bhatt, D.L.; On behalf of the American Heart Association Obesity; Behavior Change, Diabetes; Nutrition Committees of the Council; et al. Sleep Duration and Quality: Impact on Lifestyle Behaviors and Cardiometabolic Health: A Scientific Statement From the American Heart Association. Circulation 2016, 134, e367–e386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semplonius, T.; Willoughby, T. Long-Term Links between Physical Activity and Sleep Quality. Med. Sci. Sports Exerc. 2018, 50, 2418–2424. [Google Scholar] [CrossRef]
- Kelder, S.; Hoelscher, D.; Perry, C. How individuals, environments, and health behavior interact; Social Cognitive Theory. In Health Behavior and Health Education. Theory, Research, and Practice, 4th ed.; Glanz, K., Rimer, B., Viswanath, K., Eds.; Jossey-Bass: San Francisco, CA, YSA, 2015. [Google Scholar]
- Brand, S.; Gerber, M.; Beck, J.; Hatzinger, M.; Pühse, U.; Holsboer-Trachsler, E. Exercising, sleep-EEG patterns, and psychological functioning are related among adolescents. World J. Biol. Psychiatry 2010, 11, 129–140. [Google Scholar] [CrossRef]
- Yang, P.Y.; Ho, K.H.; Chen, H.C.; Chien, M.Y. Exercise training improves sleep quality in middle-aged and older adults with sleep problems: A systematic review. J. Physiother. 2012, 58, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Rubio-Arias, J.Á.; Marín-Cascales, E.; Ramos-Campo, D.J.; Hernandez, A.V.; Pérez-López, F.R. Effect of exercise on sleep quality and insomnia in middle-aged women: A systematic review and meta-analysis of randomized controlled trials. Maturitas 2017, 100, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Ghaffarilaleh, G.; Ghaffarilaleh, V.; Sanamno, Z.; Kamalifard, M.; Alibaf, L. Effects of Yoga on Quality of Sleep of Women With Premenstrual Syndrome. Altern. Ther. Health Med. 2019, 25, 40–47. [Google Scholar]
- Carek, P.J.; Laibstain, S.E.; Carek, S.M. Exercise for the treatment of depression and anxiety. Int. J. Psychiatry Med. 2011, 41, 15–28. [Google Scholar] [CrossRef]
- Stamatakis, K.A.; Brownson, R.C. Sleep duration and obesity-related risk factors in the rural Midwest. Prev. Med. 2008, 46, 439–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Çakir, B.; Nişancı Kılınç, F.; Özata Uyar, G.; Özenir, Ç.; Ekici, E.M.; Karaismailoğlu, E. The relationship between sleep duration, sleep quality and dietary intake in adults. Sleep Biol. Rhythm. 2020, 18, 49–57. [Google Scholar] [CrossRef]
- Katagiri, R.; Asakura, K.; Kobayashi, S.; Suga, H.; Sasaki, S. Low intake of vegetables, high intake of confectionary, and unhealthy eating habits are associated with poor sleep quality among middle-aged female Japanese workers. J. Occup. Health 2014, 56, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; Li, H.; Xu, G.; Ying, Y.; Gong, Q.; Zhao, J.; Zhang, X.; Zhang, L.; Liu, S.; Han, L. Association of Dietary Behaviors and Sleep Quality: Results from the Adults Chronic Diseases and Risk Factors Survey of 2015 in Ningbo, China. Int. J. Environ. Res. Public Health 2018, 15, 1823. [Google Scholar] [CrossRef] [Green Version]
- Sutanto, C.N.; Wang, M.X.; Tan, D.; Kim, J.E. Association of Sleep Quality and Macronutrient Distribution: A Systematic Review and Meta-Regression. Nutrients 2020, 12, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dashti, J.; Scheer, F.; Jaques, P.; Lamon-Fava, S.; Ordovas, J. Short sleep duration and dietary intake: Epidemiologic evidence, mechanisms, and health implications. Adv. Nutr. 2015, 6, 648–659. [Google Scholar] [CrossRef] [PubMed]
- St-Onge, M.P.; Mikic, A.; Pietrolungo, C.E. Effects of Diet on Sleep Quality. Adv. Nutr. 2016, 7, 938–949. [Google Scholar] [CrossRef]
- Dweck, J.S.; Jenkins, S.M.; Nolan, L.J. The role of emotional eating and stress in the influence of short sleep on food consumption. Appetite 2014, 72, 106–113. [Google Scholar] [CrossRef]
- Grandner, M.A.; Jackson, N.; Gerstner, J.R.; Knutson, K.L. Dietary nutrients associated with short and long sleep duration. Data from a nationally representative sample. Appetite 2013, 64, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Tu, K.M.; Elmore-Staton, L.; Buckhalt, J.A.; El-Sheikh, M. The link between maternal sleep and permissive parenting during late adolescence. J. Sleep Res. 2018, 27, e12676. [Google Scholar] [CrossRef] [Green Version]
- Brand, S.; Gerber, M.; Hatzinger, M.; Beck, J.; Holsboer-Trachsler, E. Evidence for similarities between adolescents and parents in sleep patterns. Sleep Med. 2009, 10, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- Bergmeier, H.J.; Skouteris, H.; Haycraft, E.; Haines, J.; Hooley, M. Reported and Observed Controlling Feeding Practices Predict Child Eating Behavior after 12 Months. J. Nutr. 2015, 145, 1311–1316. [Google Scholar] [CrossRef] [Green Version]
- Taher, A.K.; Evans, N.; Evans, C.E. The cross-sectional relationships between consumption of takeaway food, eating meals outside the home and diet quality in British adolescents. Public Health Nutr. 2019, 22, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Barnes, T.L.; French, S.A.; Mitchell, N.R.; Wolfson, J. Fast-food consumption, diet quality and body weight: Cross-sectional and prospective associations in a community sample of working adults. Public Health Nutr. 2016, 19, 885–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laraia, B.A.; Leak, T.; Tester, J.M.; Lenung, C.W. Biobehavioral factors that shape nutrition in low-income populations: A narrative review. Am. J. Prev. Med. 2017, 52, S118–S126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- João, K.A.D.R.; Jesus, S.N.D.; Carmo, C.; Pinto, P. The impact of sleep quality on the mental health of a non-clinical population. Sleep Med. 2018, 46, 69–73. [Google Scholar] [CrossRef]
- Castro, L.S.; Castro, J.; Hoexter, M.Q.; Quarantini, L.C.; Kauati, A.; Mello, L.E.; Santos-Silva, R.; Tufik, S.; Bittencourt, L. Depressive symptoms and sleep: A population-based polysomnographic study. Psychiatry Res. 2013, 210, 906–912. [Google Scholar] [CrossRef]
- Kalmbach, D.A.; Pillai, V.; Roth, T.; Drake, C.L. The interplay between daily affect and sleep: A 2-week study of young women. J. Sleep Res. 2014, 23, 636–645. [Google Scholar] [CrossRef]
- Beccuti, G.; Pannain, S. Sleep and obesity. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 402–412. [Google Scholar] [CrossRef] [Green Version]
- Magee, L.; Hale, L. Longitudinal associations between sleep duration and subsequent weight gain: A systematic review. Sleep Med. Rev. 2012, 16, 231–241. [Google Scholar] [CrossRef] [Green Version]
- Vgontzas, A.; Bixler, E.; Basta, M. Obesity and sleep: A bidirectional association? Sleep 2010, 33, 573–574. [Google Scholar] [CrossRef] [PubMed]
- Ward, A.; Reynolds, A.; Kuroko, S.; Fangupo, L.; Galland, B.; Taylor, R. Bidirectional association between sleep and dietary intake in 0–5 year old children: A systematic review with evidence mapping. Sleep Med. Rev. 2019, 49, 101231. [Google Scholar] [CrossRef] [PubMed]
- Kline, C. The bidirectional relationship between exercise and sleep: Implications for exercise adherence and sleep improvement. Am. J. Lifestyle Med. 2014, 8, 375–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Measure | Number of Items | Possible Score Range | Cronbach Alpha | Sleep Quality Rating | F (df = 2, 532); Main Effects p-Value | Tukey Post Hoc Tests ** | ||
---|---|---|---|---|---|---|---|---|
Very Bad/Bad n = 87 | Fair n = 255 | Good/Very Good n = 193 | ||||||
Mean ± SD (Lower, Upper 95% CI) | Mean ± SD (Lower, Upper 95% CI) | Mean ± SD (Lower, Upper 95% CI) | ||||||
Maternal Sleep | ||||||||
Sleep Duration (hours/day) | 1 | 0 to 24 | * | 5.99 ± 1.18 (5.73, 6.23) | 7.00 ± 1.09 (6.87 ± 7.14) | 7.66 ± 1.08 (7.51, 7.82) | 70.74; <0.0001 | ABC |
Sleep Quality A | 1 | 1 to 5 | 1.84 ± 0.37 (1.76, 1.92) | 3.00 ± 0.00 (3.00, 3.00) | 4.19 ± 0.40 4.14, 4.25) | 2300.49; <0.0001 | ABC | |
Maternal Physical Activity | ||||||||
Physical Activity Level B | 3 | 0 to 42 | * | 12.34 ± 9.63 (10.29, 14.40) | 15.11 ± 9.85 (13.89, 16.32) | 16.55 ± 9.68 (15.18, 17.92) | 5.59; 0.004 | B |
Screentime (minutes/day) | 1 | 0 to 1440 | * | 369.48 ± 278.69 (310.09, 428.22) | 405.94 ± 315.45 (367.04, 444.84) | 347.80 ± 272.61 (309.09, 386.50) | 2.19; 0.113 | |
Physical Activity Modeling (days/week) | 1 | 0–7 | * | 2.73 ± 1.18 (2.48, 2.98) | 3.11 ± 1.27 (2.95, 3.26) | 3.17 ± 1.16 (3.00, 3.33) | 4.10; 0.017 | AB |
Screentime Modeling (days/week) | 1 | 0–7 | * | 2.76 ± 2.37 (2.26, 3.27) | 2.77 ± 2.11 (2.50, 3.03) | 2.93 ± 2.20 (2.62, 3.24) | 0.342; 0.710 | |
Maternal Dietary Intake | ||||||||
Sugar-Sweetened Beverage Intake C (servings/day) | 4 | 0 to 4.6 | * | 0.46 ± 0.50 (0.35, 0.57) | 0.58 ± 0.49 (0.52, 0.64) | 0.60 ± 0.49 (0.53, 0.67) | 2.60; 0.075 | |
Fruit and Vegetable Intake D (servings/day) | 7 | 0 to 12.17 | * | 4.05 ± 1.73 (3.68,4.42) | 4.48 ± 2.19 (4.21, 4.75) | 4.73 ± 2.31 (4.40, 5.05) | 2.95; 0.053 | |
% Calories from Total Fat E | 17 | 0 to 100 | * | 37.23 ± 5.21 (36.12, 38.34) | 37.32 ± 5.43 (36.65, 37.99) | 37.07 ± 6.21 (36.19, 37.95) | 0.10; 0.901 | |
Milk C (servings/day) | 1 | 0 to 8 | * | 3.77 ± 3.19 (3.09, 4.45) | 3.80 ± 3.04 (3.43, 4.18) | 4.11 ± 3.08 (3.67, 4.55) | 0.647; 0.524 | |
Maternal Eating Styles | ||||||||
Emotional Eating F | 3 | 1 to 4 | 0.75 | 2.12 ± 0.89 (1.93, 2.31) | 2.18 ± 0.89 (2.07, 2.29) | 1.88 ± 0.82 (1.76, 1.99) | 6.74; 0.001 | C |
Adventurous Eating F | 2 | 1 to 4 | 0.72 | 3.07 ± 0.67 (2.93, 3.21) | 3.18 ± 0.70 (3.09, 3.26) | 3.19 ± 0.66 (3.10, 3.29) | 1.07; 0.343 | |
Dietary Restraint F | 4 | 1 to 4 | 0.74 | 2.38 ± 0.77 (2.22, 2.55) | 2.41 ± 0.72 (2.32, 2.50) | 2.44 ± 0.74 (2.34, 2.55) | 0.26; 0.775 | |
Disinhibited Eating F | 3 | 1 to 4 | 0.81 | 2.03 ± 0.71 (1.88, 2.18) | 2.01 ± 0.77 (1.91, 2.10) | 1.83 ± 0.73 (1.73, 1.94) | 3.58; 0.028 | C |
Child Feeding Practices | ||||||||
Control of Child Food Intake G | 3 | 1 to 5 | 0.61 | 2.50 ± 0.91 (2.31-2.69) | 2.43 ± 0.89 (2.32-2.54) | 2.22 ± 0.89 (2.09-2.34) | 4.36; 0.013 | BC |
Child Pressuring G | 3 | 1 to 5 | 0.69 | 1.99 ± 0.83 (1.81, 2.17) | 2.13 ± 0.88 (2.02, 2.23) | 2.23 ± 1.04 (2.09, 2.38) | 2.12; 0.121 | |
Feeding Rewards G | 3 | 1 to 5 | 0.73 | 2.50 ± 0.85 (2.32, 2.68) | 2.54 ± 0.83 (44, 2.64) | 2.76 ± 0.96 (2.62, 2.90) | 4.29; 0.014 | C |
Healthy Eating Modeling G | 4 | 1 to 5 | 0.56 | 3.38 ± 0.68 (3.24, 3.52) | 3.47 ± 0.74 (3.38, 3.56) | 3.62 ± 0.74 (3.51, 3.72) | 3.88; 0.021 | B |
Family Meal Behaviors | ||||||||
Family Meal Frequency (meals/week) | 1 | 0–21 | * | 12.16 ± 5.40 (11.01, 13.31) | 13.49 ± 5.03 (12.87, 14.11) | 14.30 ± 4.83 (13.61, 14.99) | 5.50; 0.004 | B |
Family Meal Location (days/week) | ||||||||
Dining Table | 1 | 0–7 | * | 4.22 ± 2.61 (3.66, 4.78) | 4.55 ± 2.60 (4.23, 4.87) | 5.04 ± 2.29 (4.72, 5.37) | 3.86; 0.022 | B |
Car | 1 | 0–7 | * | 0.33 ± 0.97 (0.13, 0.54) | 0.32 ± 0.83 (0.22, 0.42) | 0.48 ± 1.34 (0.29, 0.67) | 1.41; 0.245 | |
Fast Food Restaurant | 1 | 0–7 | * | 0.71 ± 0.93 (0.52, 0.91) | 0.80 ± 0.90 (0.69, 0.91) | 1.06 ± 1.32 (0.87, 1.24) | 4.48; 0.012 | BC |
In Front of TV | 1 | 0–7 | * | 2.53 ± 2.57 (1.98, 3.08) | 2.36 ± 2.49 (2.05, 2.67) | 1.82 ± 2.33 (1.49, 2.15) | 3.62; 0.028 | |
Household Food Availability | ||||||||
Fruits/Vegetables C | 7 | 0–8 | 3.07 ± 1.55 (2.74, 3.40) | 3.39 ± 1.40 (3.22, 3.57) | 3.37 ± 1.45 (3.17, 3.58) | 1.75; 0.176 | ||
Salty/Fatty Snack Foods C | 4 | 0–32 | * | 7.15 ± 5.66 (5.94, 8.35) | 7.98 ± 6.72 (7.15, 8.81) | 8.84 ± 7.72 (7.74, 9.93) | 1.93; 0.146 | |
Sugar-Sweetened Beverages C | 4 | 0–8 | * | 1.57 ± 0.98 (1.36, 1.79) | 1.58 ± 1.23 (1.43, 1.73) | 1.82 ± 1.41 (1.62, 2.03) | 2.39; 0.101 | |
Milk C | 1 | 0–8 | * | 3.15 ± 3.13 (2.48, 3.82) | 2.81 ± 2.93 (2.45, 3.17) | 2.74 ± 2.70 (2.36, 3.12) | 0.627; 0.535 | |
Parenting Self-EfficacyH | 1 | 1–5 | * | 3.89 ± 0.88 (3.70, 4.07) | 4.00 ± 0.82 (3.90, 4.10) | 4.30 ± 0.71 (4.19, 4.40) | 10.96; <0.0001 | BC |
Maternal Health | ||||||||
General Health Rating I | 1 | 1 to 5 | * | 3.18 ± 0.90 (2.99, 3.37) | 3.43 ± 0.85 (3.33, 3.54) | 3.80 ± 0.79 (3.69, 3.91) | 19.18; <0.0001 | ABC |
Physical Health-related Quality of Life (unhealthy days/month) | 1 | 0 to 30 | * | 4.86 ± 6.89 (3.39, 6.33) | 2.27 ± 4.22 (1.75, 2.79) | 1.82 ± 3.76 (1.28, 2.35) | 13.81; <0.0001 | AB |
Mental health-related Quality of Life (unhealthy days/month) | 1 | 0 to 30 | * | 7.64 ± 8.71 (5.79, 9.50) | 4.35 ± 7.54 (3.42, 5.28) | 2.03 ± 4.65 (1.37, 2.69) | 20.53; <0.0001 | ABC |
Patient Health Questionnaire-2 (Depression Severity) J | 2 | 1 to 4 | 0.81 | 1.64 ± 1.59 (1.30, 1.98) | 1.03 ± 1.40 (0.86, 1.20) | 0.75 ± 1.25 (0.57, 0.93) | 12.53; <0.0001 | AB |
Perceived Stress J | 4 | 1 to 4 | 0.69 | 2.24 ± 0.768 (2.08, 2.40) | 1.97 ± 0.66 (1.89, 2.05) | 1.69 ± 0.60 (1.60, 1.77) | 23.10; <0.0001 | ABC |
Body Mass Index (BMI) | 1 | 2 | * | 29.04 ± 8.60 (27.20, 30.87) | 28.51 ± 8.13 (27.50, 29.51) | 26.08 ± 7.03 (25.08, 27.08) | 6.76; 0.001 | BC |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eck, K.M.; Santiago, E.; Martin-Biggers, J.; Byrd-Bredbenner, C. Maternal Sleep Quality is Associated with Personal and Parenting Weight-Related Behaviors. Int. J. Environ. Res. Public Health 2020, 17, 5312. https://doi.org/10.3390/ijerph17155312
Eck KM, Santiago E, Martin-Biggers J, Byrd-Bredbenner C. Maternal Sleep Quality is Associated with Personal and Parenting Weight-Related Behaviors. International Journal of Environmental Research and Public Health. 2020; 17(15):5312. https://doi.org/10.3390/ijerph17155312
Chicago/Turabian StyleEck, Kaitlyn M., Elena Santiago, Jennifer Martin-Biggers, and Carol Byrd-Bredbenner. 2020. "Maternal Sleep Quality is Associated with Personal and Parenting Weight-Related Behaviors" International Journal of Environmental Research and Public Health 17, no. 15: 5312. https://doi.org/10.3390/ijerph17155312
APA StyleEck, K. M., Santiago, E., Martin-Biggers, J., & Byrd-Bredbenner, C. (2020). Maternal Sleep Quality is Associated with Personal and Parenting Weight-Related Behaviors. International Journal of Environmental Research and Public Health, 17(15), 5312. https://doi.org/10.3390/ijerph17155312