Harbor and Intra-City Drivers of Air Pollution: Findings from a Land Use Regression Model, Durban, South Africa
Abstract
:1. Introduction
Study Background
2. Materials and Methods
2.1. Monitoring Site Selection
- Monitoring sites were not located within 25 m of a traffic intersection;
- Monitoring sites were at least 2 m from the roadside;
- Monitoring sites were not located with 100 m of construction activities; and
- Sampling points were selected such that airflow around the samplers were unrestricted by buildings.
2.2. Monitoring Equipment Installation
2.3. Geographic Predictor Variables
2.4. Land Use Regression Modelling
3. Results
3.1. Air Pollutant Measurements
3.2. Land Use Regression Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dias, D.; Tchepel, O. Spatial and Temporal Dynamics in Air Pollution Exposure Assessment. Int. J. Environ. Res. Public Health 2018, 15, 558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achakulwisut, P.; Brauer, M.; Hystad, P.; Anenberg, S.C. Global, national, and urban burdens of paediatric asthma incidence attributable to ambient NO2 pollution: Estimates from global datasets. Lancet Planet. Health 2019, 3, e166–e178. [Google Scholar] [CrossRef] [Green Version]
- Bauer, M.; Hoek, G.; Van Vliet, P.; Meliefste, K.; Fischer, P.; Gehring, U.; Heinrich, J.; Cyrys, J.; Bellander, T.; Lewné, M.; et al. Estimating Long-Term Average Particulate Air Pollution Concentrations: Application of Traffic Indicators and Geographic Information Systems. Epidemiology 2003, 14, 228–239. [Google Scholar] [CrossRef] [PubMed]
- Saucy, A.; Röösli, M.; Künzli, N.; Tsai, M.-Y.; Sieber, C.; Olaniyan, T.; Baatjies, R.; Jeebhay, M.F.; Davey, M.; Flückiger, B.; et al. Land Use Regression Modelling of Outdoor NO2 and PM2.5 Concentrations in Three Low Income Areas in the Western Cape Province, South Africa. Int. J. Environ. Res. Public Health 2018, 15, 1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jerrett, M.; Arain, A.; Kanaroglou, P.; Beckerman, B.; Potoglou, D.; Sahsuvaroglu, T.; Morrison, J.; Giovis, C.; Arain, M.A. A review and evaluation of intraurban air pollution exposure models. J. Expo. Sci. Environ. Epidemiol. 2005, 15, 185–204. [Google Scholar] [CrossRef]
- Bell, M. The use of ambient air quality modeling to estimate individual and population exposure for human health research: A case study of ozone in the Northern Georgia Region of the United States. Environ. Int. 2006, 32, 586–593. [Google Scholar] [CrossRef]
- Liao, D.; Peuquet, N.J.; Duan, Y.; Whitsel, E.A.; Dou, J.; Smith, R.L.; Lin, H.-M.; Chen, J.-C.; Heiss, G. GIS Approaches for the Estimation of Residential-Level Ambient PM Concentrations. Environ. Health Perspect. 2006, 114, 1374–1380. [Google Scholar] [CrossRef]
- Michanowicz, D.R.; Shmool, J.L.; Tunno, B.J.; Tripathy, S.; Gillooly, S.; Kinnee, E.; Clougherty, J. A hybrid land use regression/AERMOD model for predicting intra-urban variation in PM2. Atmos. Environ. 2016, 131, 307–315. [Google Scholar] [CrossRef]
- Hoek, G.; Beelen, R.; de Hoogh, K.; Vienneau, D.; Gulliver, J.; Fischer, P.; Briggs, D. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos Environ. 2008, 42, 7561–7578. [Google Scholar] [CrossRef]
- Kashima, S.; Yorifuji, T.; Tsuda, T.; Doi, H. Application of land use regression to regulatory air quality data in Japan. Sci. Total. Environ. 2009, 407, 3055–3062. [Google Scholar] [CrossRef] [PubMed]
- Mukerjee, S.; Smith, L.A.; Johnson, M.M.; Neas, L.M.; Stallings, C.A. Spatial analysis and land use regression of VOCs and NO2 from school-based urban air monitoring in Detroit/Dearborn, USA. Sci. Total. Environ. 2009, 407, 4642–4651. [Google Scholar] [CrossRef] [PubMed]
- Ross, Z.; Jerrett, M.; Ito, K.; Tempalski, B.; Thurston, G. A land use regression for predicting fine particulate matter concentrations in the New York City region. Atmos. Environ. 2007, 41, 2255–2269. [Google Scholar] [CrossRef]
- Wheeler, A.J.; Smith-Doiron, M.; Xu, X.; Gilbert, N.L.; Brook, J.R. Intra-urban variability of air pollution in Windsor, Ontario—Measurement and modeling for human exposure assessment. Environ. Res. 2008, 106, 7–16. [Google Scholar] [CrossRef]
- Arain, M.A.; Blair, R.; Finkelstein, N.; Brook, J.; Sahsuvaroglu, T.; Beckerman, B.; Zhang, L.; Jerrett, M. The use of wind fields in a land use regression model to predict air pollution concentrations for health exposure studies. Atmos. Environ. 2007, 41, 3453–3464. [Google Scholar] [CrossRef]
- Ryan, P.H.; Lemasters, G.K. A Review of Land-use Regression Models for Characterizing Intraurban Air Pollution Exposure. Inhal. Toxicol. 2007, 19 (Suppl. 1), 127–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beelen, R.; Hoek, G.; Vienneau, D.; Eeftens, M.; Dimakopoulou, K.; Pedeli, X.; Tsai, M.-Y.; Künzli, N.; Schikowski, T.; Marcon, A.; et al. Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe—The ESCAPE project. Atmos. Environ. 2013, 72, 10–23. [Google Scholar] [CrossRef]
- Cyrys, J.; Eeftens, M.; Heinrich, J.; Ampe, C.; Armengaud, A.; Beelen, R.; Bellander, T.; Beregszászi, T.; Birk, M.; Cesaroni, G.; et al. Variation of NO2 and NOx concentrations between and within 36 European study areas: Results from the ESCAPE study. Atmos. Environ. 2013, 62, 374–390. [Google Scholar] [CrossRef]
- De Hoogh, K.; Wang, M.; Adam, M.; Badaloni, C.; Beelen, R.; Birk, M.; Cesaroni, G.; Cirach, M.; Declercq, C.; Dėdelė, A.; et al. Development of Land Use Regression Models for Particle Composition in Twenty Study Areas in Europe. Environ. Sci. Technol. 2013, 47, 5778–5786. [Google Scholar] [CrossRef] [PubMed]
- Eeftens, M.; Beelen, R.; de Hoogh, K.; Bellander, T.; Cesaroni, G.; Cirach, M.; Declarcq, C.; Dedele, A.; Dons, E.; de Nazalle, A.; et al. Development of Land Use Regression models for PM(2.5), PM(2.5) absorbance, PM(10) and PM(coarse) in 20 European study areas; results of the ESCAPE project. Environ. Sci. Technol. 2012, 46, 11195–11205. [Google Scholar] [CrossRef] [PubMed]
- Department of Environmental Affairs. National Environmental Management: Air Quality Act; Department of Environmental Affairs: Cape Town, South Africa, 2005.
- Department of Environmental Affairs. National Ambient Air Quality Standards; Department of Environmental Affairs: Cape Town, South Africa, 2009.
- Department of Environmental Affairs. List of Activities Which Result in Atmospheric Emissions Which Have or may Have a Significant Detrimental Effect on the Environment, including Health, Social Conditions, Economic Conditions, Ecological Conditions or Cultural Heritage; Department of Environmental Affairs: Cape Town, South Africa, 2010.
- Zunckel, M.; Perumal, S. eThekwini Municipality AQMP Review and Update: AQMP Goals and Implementation Plan; uMN088-15; uMoya-NILU Consulting (Pty) Ltd.: Durban, South Africa, 2015. [Google Scholar]
- Department of Environmental Affairs. The 2017 National Framework for Air Quality Management in the Republic of South Africa; Department of Environmental Affairs: Cape Town, South Africa, 2018.
- Beelen, R.; Hoek, G.; Fischer, P.; van den Brandt, P.A.; Brunekreef, B. Estimated long-term outdoor air pollution concentrations in a cohort study. Atmos. Environ. 2007, 41, 1343–1358. [Google Scholar] [CrossRef]
- Tularam, H. Synoptic Influences on Air Pollution Events in the Durban South Basin, 2006 to 2010; University of KwaZulu-Natal: Durban, South Africa, 2013. [Google Scholar]
- Manqele, N.M. Evaluating the Contribution of Ship Exhaust Gas Emissions to Air Pollution and the Urban Carbon Footprint: A Case Study of Durban Port; University of KwaZulu-Natal: Durban, South Africa, 2014. [Google Scholar]
- Saxe, H.; Larsen, T. Air pollution from ships in three Danish ports. Atmos. Environ. 2004, 38, 4057–4067. [Google Scholar] [CrossRef]
- Tyson, P.D.; Preston-Whyte, R.A. The Weather and Climate of Southern Africa, 2nd ed.; Oxford University Press: Cape Town, South Africa, 2000. [Google Scholar]
- Gounden, Y. Ambient Sulphur Dioxide (SO2) and Particulate Matter (PM10) Concentrations Measured in Selected Communities of North and South Durban; University of KwaZulu-Natal: Durban, South Africa, 2006. [Google Scholar]
- Weichenthal, S.; Van Ryswyk, K.; Goldstein, A.; Shekarrizfard, M.; Hatzopoulou, M. Characterizing the spatial distribution of ambient ultrafine particles in Toronto, Canada: A land use regression model. Environ. Pollut. 2016, 208, 241–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.-H.; Wu, C.-F.; Hoek, G.; de Hoogh, K.; Beelen, R.; Brunekreef, B.; Chan, C.-C. Land use regression models for estimating individual NOx and NO2 exposures in a metropolis with a high density of traffic roads and population. Sci. Total Environ. 2014, 472, 1163–1171. [Google Scholar] [CrossRef]
- Morgenstern, V.; Zutavern, A.; Cyrys, J.; Brockow, I.; Gehring, U.; Koletzko, S.; Bauer, C.P.; Reinhardt, D.; Wichmann, H.-E.; Heinrich, J. Respiratory health and individual estimated exposure to traffic-related air pollutants in a cohort of young children. Occup. Environ. Med. 2007, 64, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Knibbs, L.D.; Wenyi, Z.; Li, S.; Cao, W.; Guo, J.; Ren, H.; Wang, B.; Wang, H.; Williams, G.; et al. Estimating spatiotemporal distribution of PM1 concentrations in China with satellite remote sensing, meteorology, and land use information. Environ. Pollut. 2018, 233, 1086–1094. [Google Scholar] [CrossRef]
- Rao, M.; George, L.A.; Shandas, V.; Rosenstiel, T.N. Assessing the Potential of Land Use Modification to Mitigate Ambient NO2 and Its Consequences for Respiratory Health. Int. J. Environ. Res. Public Health 2017, 14, 750. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.-D.; Chen, Y.-C.; Pan, W.-C.; Zeng, Y.-T.; Chen, M.-J.; Guo, Y.-L.; Lung, S.-C.C. Land-use regression with long-term satellite-based greenness index and culture-specific sources to model PM2.5 spatial-temporal variability. Environ. Pollut. 2017, 224, 148–157. [Google Scholar] [CrossRef]
- Briggs, D. The role of GIS: Coping with space (and time) in air pollution exposure assessment. J. Toxicol. Environ. Health 2005, 68, 1243–1261. [Google Scholar] [CrossRef]
- Smith, L.; Mukerjee, S.; Gonzales, M.; Stallings, C.; Neas, L.; Norris, G.; Özkaynak, H. Use of GIS and ancillary variables to predict volatile organic compound and nitrogen dioxide levels at unmonitored locations. Atmos. Environ. 2006, 40, 3773–3787. [Google Scholar] [CrossRef]
- Tecer, I.H.; Tagil, S. Spatial-Temporal Variations of Sulphur Dioxide Concentration, Source, and Probability Assessment Using a GIS-Based Geostatistical Approach. Pol. J. Environ. Stud. 2013, 22, 1491–1498. [Google Scholar]
- Gulliver, J.; Morris, C.; Lee, K.; Vienneau, D.; Briggs, D.; Hansell, A. Land use regression modeling to estimate historic (1962–1991) concentrations of black smoke and sulfur dioxide for Great Britain. Environ. Sci. Technol. 2011, 45, 3526–3532. [Google Scholar] [CrossRef] [PubMed]
- Pryor, S.C.; Barthelmie, R.J.; Schoof, J.T.; Binkowski, F.S.; Delle Monache, L.; Stull, R. Modeling the impact of sea-spray on particle concentrations in a coastal city. Sci. Total Environ. 2008, 391, 132–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Junge, C.E.; Gustafson, P.E. On the Distribution of Sea Salt over the United States and its Removal by Precipitation. Tellus 1957, 9, 164–173. [Google Scholar] [CrossRef] [Green Version]
- Muttoo, S.; Ramsay, L.F.; Brunekreef, B.; Beelen, R.; Meliefste, K.; Naidoo, R. Land use regression modelling estimating nitrogen oxides exposure in industrial south Durban, South Africa. Sci. Total Environ. 2017, 610–611, 1439–1447. [Google Scholar] [CrossRef]
- Vizcaino, P.; Lavalle, C. Development of European NO2 Land Use Regression Model for present and future exposure assessment: Implications for policy analysis. Environ. Pollut. 2018, 240, 140–154. [Google Scholar] [CrossRef]
- Gu, H.; Cao, Y.; Elahi, E.; Jha, S.K. Human health damages related to air pollution in China. Environ. Sci. Pollut. Res. 2019, 26, 13115–13125. [Google Scholar] [CrossRef]
Pollutant | Season | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|---|
NO2 | Annual average | 17.0 | 3.9 | 6.5 | 24.0 |
Summer average | 10.5 | 2.8 | 4.1 | 17.3 | |
Winter average | 25.8 | 6.7 | 10.1 | 42.3 | |
Spring Average | 20.4 | 5.1 | 7.6 | 29.5 | |
SO2 | Annual average | 3.4 | 1.6 | 1.5 | 7.8 |
Summer average | 2.8 | 1.3 | 0.7 | 6.4 | |
Winter average | 4.2 | 1.9 | 1.8 | 9.2 | |
Spring average | 3.3 | 1.5 | 1.4 | 7.4 | |
PM10 | Annual average | 36.6 | 19.2 | 11.0 | 99.7 |
Summer average | 20.5 | 10.0 | 9.3 | 54.1 | |
Winter average | 50.3 | 27.0 | 15.2 | 138.1 | |
Spring average | 38.5 | 21.9 | 8.91 | 107.7 | |
PM2.5 | Annual average | 12.3 | 5.7 | 3.2 | 31.0 |
Summer average | 8.5 | 4.0 | 2.2 | 21.5 | |
Winter average | 17.0 | 8.0 | 4.5 | 43.1 | |
Spring average | 11.4 | 5.3 | 3.1 | 29.4 |
Season | Predictors | Unit | R2 | LOOCV | df | Beta | Standard Error | t | p |
---|---|---|---|---|---|---|---|---|---|
Annual | Intercept | - | 0.6 | 0.4 | 32 | 1.85 × 101 | 2.16 × 100 | 24.5 | 0.0 |
Total length major roads (100 m) | m | 2.07 × 10−2 | 1.12 × 10−1 | 4.4 | 0.0 | ||||
Harbor (2000 m) | m | 4.32 × 10−7 | 4.50 × 10−3 | 1.9 | 0.0 | ||||
Elevation | m | −3.68 × 10−2 | 2.24 × 10−7 | −3.6 | 0.0 | ||||
Summer | Intercept | - | 0.4 | 0.2 | 32 | 8.32 × 100 | 6.43 × 10−1 | 12.9 | 0.0 |
Distance to minor roads | m | 5.66 × 10−2 | 1.71 × 10−2 | 3.3 | 0.0 | ||||
Industrial (1000 m) | m | 1.98 × 10−6 | 8.79 × 10−7 | 2.3 | 0.0 | ||||
Harbor (2000 m) | m | 4.97 × 10−7 | 2.30 × 10−7 | 2.2 | 0.0 | ||||
Winter | Intercept | - | 0.6 | 0.5 | 30 | 2.44 × 101 | 1.43 × 100 | 17.1 | 0.0 |
Elevation | m | −5.25 × 10−2 | 1.58 × 10−2 | −3.3 | 0.0 | ||||
Population (1000 m) | m | 8.25 × 10−4 | 1.91 × 10−4 | 4.3 | 0.0 | ||||
Industrial (100 m) | m | 3.75 × 10−4 | 1.61 × 10−4 | 2.3 | 0.0 |
Season | Predictors | Unit | R2 | LOOCV | df | Beta | Standard Error | t | p |
---|---|---|---|---|---|---|---|---|---|
Annual | Intercept | - | 0.4 | 0.2 | 37 | 2.5 × 100 | 3.0 × 10−1 | 8.4 | 0.0 |
Industrial (500 m) | m | 7.9 × 10−6 | 1.9 × 10−6 | 4.1 | 0.0 | ||||
Total number LDMV (100 m) | No | 8.4 × 10−8 | 3.1 × 10−8 | 2.8 | 0.0 | ||||
Summer | Intercept | - | 0.5 | 0.3 | 29 | 1.4 × 100 | 3.1 × 10−1 | 4.5 | 0.0 |
Industrial (2000 m) | m | 4.1 × 10−7 | 9.9 × 10−8 | 4.1 | 0.0 | ||||
Total number LDMV (100 m) | No | 7.1 × 10−8 | 2.2 × 10−8 | 3.2 | 0.0 | ||||
Winter | Intercept | - | 0.5 | 0.4 | 29 | 2.6 × 100 | 5.7 × 10−1 | 4.6 | 0.0 |
Industrial (2000 m) | m | 5.9 × 10−7 | 1.9 × 10−7 | 3.1 | 0.0 | ||||
Total number LDMV (300 m) | No | 3.5 × 10−8 | 1.7 × 10−8 | 2.1 | 0.0 |
Season | Predictors | Unit | R2 | LOOCV | df | Beta | Standard Error | t | p |
---|---|---|---|---|---|---|---|---|---|
Annual | Intercept | - | 0.8 | 0.7 | 14 | 3.2 × 101 | 2.2 × 100 | 14.0 | 0.0 |
Total length major road (1000 m) | m | 5.3 × 10−3 | 8.8 × 10−4 | 6.0 | 0.0 | ||||
Elevation | m | −1.1 × 10−1 | 4.4 × 10−2 | −2.4 | 0.0 | ||||
Summer | Intercept | - | 0.5 | 0.2 | 13 | 1.2 × 101 | 2.4 × 100 | 5.1 | 0.0 |
Population (2000 m) | m | 2.3 × 10−4 | 7.1 × 10−5 | 3.3 | 0.0 | ||||
Total number HDMV (100 m) | No | 8.8 × 10−6 | 4.2 × 10−6 | 2.1 | 0.0 | ||||
Winter | Intercept | - | 0.8 | 0.6 | 13 | 2.5 × 101 | 9.7 × 100 | 2.6 | 0.0 |
Total length major road (1000 m) | m | 4.4 × 10−3 | 1.8 × 10−3 | 2.5 | 0.0 | ||||
Elevation | m | −1.9 × 10−1 | 6.5 × 10−2 | −3.0 | 0.0 | ||||
Urban (2000 m) | m | 4.0 × 10−6 | 2.0 × 10−6 | 2.0 | 0.0 |
Season | Predictors | Unit | R2 | LOOCV | df | Beta | Standard Error | t | p |
---|---|---|---|---|---|---|---|---|---|
Annual | Intercept | - | 0.8 | 0.6 | 13 | 1.1 × 101 | 7.9 × 10−1 | 14.0 | 0.0 |
Open space (100 m) | m | −2.2 × 10−4 | 7.2 × 10−5 | −3.1 | 0.0 | ||||
Total number LDMV (100 m) | No | 1.8 × 10−7 | 5.6 × 10−8 | 3.2 | 0.0 | ||||
Population (2000 m) | m | 5.3 × 10−5 | 2.3 × 10−5 | 2.4 | 0.0 | ||||
Summer | Intercept | - | 0.7 | 0.7 | 15 | 7.6 × 100 | 5.9 × 10−1 | 13.0 | 0.0 |
Total length major road (500 m) | m | 2.4 × 10−3 | 4.0 × 10−4 | 6.0 | 0.0 | ||||
Winter | Intercept | - | 0.6 | 0.6 | 14 | −8.9 × 100 | 4.8 × 100 | −0.19 | 0.0 |
Total number LDMV (100 m) | No | 2.5 × 10−7 | 1.3 × 10−7 | 2.0 | 0.0 | ||||
Urban (100 m) | m | 5.7 × 10−4 | 1.8 × 10−4 | 3.2 | 0.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tularam, H.; Ramsay, L.F.; Muttoo, S.; Naidoo, R.N.; Brunekreef, B.; Meliefste, K.; de Hoogh, K. Harbor and Intra-City Drivers of Air Pollution: Findings from a Land Use Regression Model, Durban, South Africa. Int. J. Environ. Res. Public Health 2020, 17, 5406. https://doi.org/10.3390/ijerph17155406
Tularam H, Ramsay LF, Muttoo S, Naidoo RN, Brunekreef B, Meliefste K, de Hoogh K. Harbor and Intra-City Drivers of Air Pollution: Findings from a Land Use Regression Model, Durban, South Africa. International Journal of Environmental Research and Public Health. 2020; 17(15):5406. https://doi.org/10.3390/ijerph17155406
Chicago/Turabian StyleTularam, Hasheel, Lisa F. Ramsay, Sheena Muttoo, Rajen N. Naidoo, Bert Brunekreef, Kees Meliefste, and Kees de Hoogh. 2020. "Harbor and Intra-City Drivers of Air Pollution: Findings from a Land Use Regression Model, Durban, South Africa" International Journal of Environmental Research and Public Health 17, no. 15: 5406. https://doi.org/10.3390/ijerph17155406
APA StyleTularam, H., Ramsay, L. F., Muttoo, S., Naidoo, R. N., Brunekreef, B., Meliefste, K., & de Hoogh, K. (2020). Harbor and Intra-City Drivers of Air Pollution: Findings from a Land Use Regression Model, Durban, South Africa. International Journal of Environmental Research and Public Health, 17(15), 5406. https://doi.org/10.3390/ijerph17155406