Effects of Ramadan Intermittent Fasting on Gut Hormones and Body Composition in Males with Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Physical Activity Level
2.4. Dietary Habits Control
2.5. Anthropometric Measurements
2.6. Blood Sampling and Analysis
2.7. Statistical Analysis
3. Results
3.1. Time-Related Effects
3.2. Interaction Effects
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bagheri, R.; Rashidlamir, A.; Ashtary-Larky, D.; Wong, A.; Alipour, M.; Motevalli, M.S.; Chebbi, A.; Laher, I.; Zouhal, H. Does green tea extract enhance the anti-inflammatory effects of exercise on fat loss? Br. J. Clin. Pharmacol. 2020, 86, 753–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zouhal, H.; Sellami, M.; Saeidi, A.; Slimani, M.; Abbassi-Daloii, A.; Khodamoradi, A.; Hage, R.E.; Hackney, A.C.; Ben Abderrahman, A. Effect of physical exercise and training on gastrointestinal hormones in populations with different weight statuses. Nutr. Rev. 2019, 77, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Zanchi, D.; Depoorter, A.; Egloff, L.; Haller, S.; Mählmann, L.; Lang, U.E.; Drewe, J.; Beglinger, C.; Schmidt, A.; Borgwardt, S. The impact of gut hormones on the neural circuit of appetite and satiety: A systematic review. Neurosci. Biobehav. Rev. 2017, 80, 457–475. [Google Scholar] [CrossRef] [PubMed]
- Schloegl, H.; Percik, R.; Horstmann, A.; Villringer, A.; Stumvoll, M. Peptide hormones regulating appetite—Focus on neuroimaging studies in humans. Diabetes Metab. Res. Rev. 2011, 27, 104–112. [Google Scholar] [CrossRef]
- Van Harmelen, V.; Reynisdottir, S.; Eriksson, P.; Thörne, A.; Hoffstedt, J.; Lönnqvist, F.; Arner, P. Leptin secretion from subcutaneous and visceral adipose tissue in women. Diabetes 1998, 47, 913–917. [Google Scholar] [CrossRef]
- Elias, C.F.; Aschkenasi, C.; Lee, C.; Kelly, J.; Ahima, R.S.; Bjorbæk, C.; Flier, J.S.; Saper, C.B.; Elmquist, J.K. Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron 1999, 23, 775–786. [Google Scholar] [CrossRef] [Green Version]
- Inui, A.; Asakawa, A.; Bowers, C.Y.; Mantovani, G.; Laviano, A.; Meguid, M.M.; Fujimiya, M. Ghrelin, appetite, and gastric motility: The emerging role of the stomach as an endocrine organ. FASEB J. 2004, 18, 439–456. [Google Scholar] [CrossRef] [Green Version]
- Wren, A.; Small, C.; Ward, H.; Murphy, K.; Dakin, C.; Taheri, S.; Kennedy, A.; Roberts, G.; Morgan, D.; Ghatei, M. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology 2000, 141, 4325–4328. [Google Scholar] [CrossRef]
- Reimann, F.; Williams, L.; da Silva Xavier, G.; Rutter, G.; Gribble, F. Glutamine potently stimulates glucagon-like peptide-1 secretion from GLUTag cells. Diabetologia 2004, 47, 1592–1601. [Google Scholar] [CrossRef] [Green Version]
- Holst, J.J. The physiology of glucagon-like peptide 1. Physiol. Rev. 2007, 87, 1409–1439. [Google Scholar] [CrossRef]
- Skibicka, K.P. The central GLP-1: Implications for food and drug reward. Front. Neurosci. 2013, 7, 181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raybould, H.E. Mechanisms of CCK signaling from gut to brain. Curr. Opin. Pharmacol. 2007, 7, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Psichas, A.; Sleeth, M.; Murphy, K.; Brooks, L.; Bewick, G.; Hanyaloglu, A.; Ghatei, M.; Bloom, S.; Frost, G. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int. J. Obes. 2015, 39, 424. [Google Scholar] [CrossRef] [Green Version]
- Longo, V.D.; Mattson, M.P. Fasting: Molecular mechanisms and clinical applications. Cell Metab. 2014, 19, 181–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattson, M.P.; Allison, D.B.; Fontana, L.; Harvie, M.; Longo, V.D.; Malaisse, W.J.; Mosley, M.; Notterpek, L.; Ravussin, E.; Scheer, F.A. Meal frequency and timing in health and disease. Proc. Natl. Acad. Sci. USA 2014, 111, 16647–16653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Betts, J.A.; Richardson, J.D.; Chowdhury, E.A.; Holman, G.D.; Tsintzas, K.; Thompson, D. The causal role of breakfast in energy balance and health: A randomized controlled trial in lean adults. Am. J.Clin. Nutr. 2014, 100, 539–547. [Google Scholar] [CrossRef] [Green Version]
- Al-Shafei, A.I. Ramadan fasting ameliorates arterial pulse pressure and lipid profile, and alleviates oxidative stress in hypertensive patients. Blood Press. 2014, 23, 160–167. [Google Scholar] [CrossRef]
- Harvie, M.; Wright, C.; Pegington, M.; McMullan, D.; Mitchell, E.; Martin, B.; Cutler, R.G.; Evans, G.; Whiteside, S.; Maudsley, S. The effect of intermittent energy and carbohydrate restriction v. daily energy restriction on weight loss and metabolic disease risk markers in overweight women. Br. J. Nutr. 2013, 110, 1534–1547. [Google Scholar] [CrossRef] [Green Version]
- Haghighy, S.; Hosseini, S.R.A.; Noghondar, M.R. Investigating the Effect of Fasting on Appetite Regulatory Hormones in Thin and Obese Females. Jundishapur J. Chronic Dis. Care 2018, 7, e65282. [Google Scholar] [CrossRef] [Green Version]
- Haghighi, S.; Attarzade Hosseini, S.R.; Saleh Moghaddam, M.; Rajabian, M.; Kiani, M.A.; Taghizade Moghaddam, H.; Sezavar Kamali, S.M. Effects of Fasting on Glucagon-like peptide-1 hormone (GLP-1), and Lipid Profile Indices in Obese and Thin Women. Int. J. Pediatr. 2019, 7, 9095–9102. [Google Scholar]
- Mushtaq, R.; Akram, A.; Mushtaq, R.; Ahmed, S. Effect of Ramadan Fasting on Body Weight and Serum Leptin Level: A Prospective Study. J. Dow Univ. Health Scien. (JDUHS) 2019, 13, 3–9. [Google Scholar] [CrossRef]
- Bagheri, R.; Rashidlamir, A.; Motevalli, M.S.; Elliott, B.T.; Mehrabani, J.; Wong, A. Effects of upper-body, lower-body, or combined resistance training on the ratio of follistatin and myostatin in middle-aged men. Eur. J. Appl. Physiol. 2019, 119, 1921–1931. [Google Scholar] [CrossRef] [PubMed]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.-M.; Nieman, D.C.; Swain, D.P. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef] [PubMed]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Grewal, N.K.; Mosdøl, A.; Aunan, M.B.; Monsen, C.; Torheim, L.E. Development and pilot testing of 24-hour multiple-pass recall to assess dietary intake of toddlers of Somali-and Iraqi-born mothers living in Norway. Nutrients 2014, 6, 2333–2347. [Google Scholar] [CrossRef] [Green Version]
- Beer-Borst, S.; Amado, R. Validation of a self-administered 24-hour recall questionnaire used in a large-scale dietary survey. Z. Ernahrungswiss. 1995, 34, 183–189. [Google Scholar] [CrossRef]
- Greger, J.; Etnyre, G. Validity of 24-hour dietary recalls by adolescent females. Am. J. Public Health 1978, 68, 70–72. [Google Scholar] [CrossRef]
- Karvetti, R.; Knuts, L.R. Validity of the 24-hour dietary recall. J. Am. Diet. Assoc. 1985, 85, 1437–1442. [Google Scholar]
- McCance, R.A.; Widdowson, E.M. McCance and Widdowson’s the Composition of Foods; Royal Society of Chemistry: Nottingham, UK, 2014. [Google Scholar]
- Bagheri, R.; Rashidlamir, A.; Ashtary-Larky, D.; Wong, A.; Grubbs, B.; Motevalli, M.S.; Baker, J.S.; Laher, I.; Zouhal, H. Effects of green tea extract supplementation and endurance training on irisin, pro-inflammatory cytokines, and adiponectin concentrations in overweight middle-aged men. Eur. J. Appl. Physiol. 2020, 120, 915–923. [Google Scholar] [CrossRef]
- Jackson, A.; Pollock, M.L.; Graves, J.E.; Mahar, M. Reliability and validity of bioelectrical impedance in determining body composition. J. Appl. Physiol. 1988, 64, 529–534. [Google Scholar] [CrossRef]
- Ling, C.H.; de Craen, A.J.; Slagboom, P.E.; Gunn, D.A.; Stokkel, M.P.; Westendorp, R.G.; Maier, A.B. Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adult population. Clin. Nutr. 2011, 30, 610–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, D.P.; Smith, L.R.; Chrismas, B.C.; Taylor, L.; Stensel, D.J.; Deighton, K.; Douglas, J.A.; Kerr, C.J. Appetite and gut hormone responses to moderate-intensity continuous exercise versus high-intensity interval exercise, in normoxic and hypoxic conditions. Appetite 2015, 89, 237–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosoda, H.; Kangawa, K. Role of ghrelin in cancer. Nihon Rinsho 2004, 62, 421. [Google Scholar] [PubMed]
- Cohen, J. Statistical power. In Analysis Behavioral Sciences; Lawrence Erlbaum Associates, Inc.: Hillsdale, NJ, USA, 1988; pp. 273–406. [Google Scholar]
- Hopkins, W.; Marshall, S.; Batterham, A.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulyok, E.; Tulassay, T. Natriuresis of fasting: The possible role of leptin–neuropeptide Y system. Med. Hypotheses 2001, 56, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Madkour, M.I.; Obaideen, A.K.; Dalah, E.Z.; Hasan, H.A.; Radwan, H.M.; Jahrami, H.A.; Hamdy, O.; Mohammad, M.G. Effect of Ramadan diurnal fasting on visceral adiposity and serum adipokines in overweight and obese individuals. Diabetes Res. Clin. Pract. 2019, 153, 166–175. [Google Scholar]
- Sana’a, A.A.; Ismail, M.; Baker, A.; Blair, J.; Adebayo, A.; Kelly, L.; Chandurkar, V.; Cheema, S.; Joanisse, D.R.; Basset, F.A. The effects of diurnal Ramadan fasting on energy expenditure and substrate oxidation in healthy men. Br. J. Nutr. 2017, 118, 1023–1030. [Google Scholar]
- Bouhlel, E.; Salhi, Z.; Bouhlel, H.; Mdella, S.; Amamou, A.; Zaouali, M.; Mercier, J.; Bigard, X.; Tabka, Z.; Zbidi, A. Effect of Ramadan fasting on fuel oxidation during exercise in trained male rugby players. Diabetes Metab. 2006, 32, 617–624. [Google Scholar] [CrossRef]
- El Ati, J.; Beji, C.; Danguir, J. Increased fat oxidation during Ramadan fasting in healthy women: An adaptative mechanism for body-weight maintenance. Am J. Clin. Nutr. 1995, 62, 302–307. [Google Scholar] [CrossRef]
- Maughan, R.; Fallah, J.; Coyle, E.F. The effects of fasting on metabolism and performance. Br. J. Sports Med. 2010, 44, 490–494. [Google Scholar] [CrossRef]
- Shehab, A.; Abdulle, A.; El Issa, A.; Al Suwaidi, J.; Nagelkerke, N. Favorable changes in lipid profile: The effects of fasting after Ramadan. PLoS ONE 2012, 7, e47615. [Google Scholar] [CrossRef] [Green Version]
- Sweileh, N.; Schnitzler, A.; Hunter, G.; Davis, B. Body composition and energy metabolism in resting and exercising muslims during Ramadan fast. J. Sports Med. Phys. Fit. 1992, 32, 156–163. [Google Scholar]
- Hoddy, K.K.; Gibbons, C.; Kroeger, C.M.; Trepanowski, J.F.; Barnosky, A.; Bhutani, S.; Gabel, K.; Finlayson, G.; Varady, K.A. Changes in hunger and fullness in relation to gut peptides before and after 8 weeks of alternate day fasting. Clin. Nutr. 2016, 35, 1380–1385. [Google Scholar] [CrossRef] [PubMed]
- Çaklili, Ö.T.; Başok, B.; Yavuz, G.; Tülü, S.; Mesci, B.; Oğuz, A. Differences in leptin, ghrelin, and glucagon-like peptide-1 levels between religious fasting and normal fasting. Turk. J. Med. Sciences 2017, 47, 1152–1156. [Google Scholar] [CrossRef] [PubMed]
- Alzoghaibi, M.A.; Pandi-Perumal, S.R.; Sharif, M.M.; BaHammam, A.S. Diurnal intermittent fasting during Ramadan: The effects on leptin and ghrelin levels. PLoS ONE 2014, 9, e92214. [Google Scholar] [CrossRef] [PubMed]
- Roky, R.; Houti, I.; Moussamih, S.; Qotbi, S.; Aadil, N. Physiological and chronobiological changes during Ramadan intermittent fasting. Ann. Nutr. Metab. 2004, 48, 296–303. [Google Scholar] [CrossRef]
- Luo, Q.Q.; Zhou, Y.F.; Chen, M.Y.J.; Liu, L.; Ma, J.; Zhang, M.W.; Zhang, F.L.; Ke, Y.; Qian, Z.M. Fasting up-regulates ferroportin 1 expression via a Ghrelin/GHSR/MAPK signaling pathway. J. Cell. Physiol. 2018, 233, 30–37. [Google Scholar] [CrossRef]
- Dhillo, W.; Bloom, S. Gastrointestinal hormones and regulation of food intake. Horm. Metab. Res. 2004, 36, 846–851. [Google Scholar] [CrossRef]
- Deurenberg, P. Limitations of the bioelectrical impedance method for the assessment of body fat in severe obesity. Am. J. Clin. Nutr. 1996, 64, 449S–452S. [Google Scholar] [CrossRef] [Green Version]
- Dehghan, M.; Merchant, A.T. Is bioelectrical impedance accurate for use in large epidemiological studies? Nutr. J. 2008, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Slinde, F.; Rossander-Hulthén, L. Bioelectrical impedance: Effect of 3 identical meals on diurnal impedance variation and calculation of body composition. Am. J. Clin. Nutr. 2001, 74, 474–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Macronutrients | Group | T0 | T1 | T2 | T3 |
---|---|---|---|---|---|
Protein (% kcal) | EG | 18 ± 11 | 19 ± 7 | 18 ± 5 | 19 ± 10 |
CG | 17 ± 3 | 20 ± 5 | 18 ± 7 | 19 ± 5 | |
Carbohydrate (% kcal) | EG | 47 ± 8 | 46 ± 8 | 46 ± 7 | 47 ± 10 |
CG | 46 ± 8 | 45 ± 8 | 47 ± 7 | 47 ± 6 | |
Fat (% kcal) | EG | 35 ± 4 | 35 ± 5 | 36 ± 11 | 36 ± 5 |
CG | 37 ± 4 | 35 ± 4 | 35 ± 7 | 34 ± 4 | |
Energy (kcal/day) | EG | 2355 ± 266 | 2475 ± 354 | 2410 ± 295 | 2370 ± 310 |
CG | 2425 ± 296 | 2510 ± 267 | 2445 ± 315 | 2410 ± 355 |
Variables | Group | Phases | p-Values (ES) | |||||
---|---|---|---|---|---|---|---|---|
T0 | T1 | T2 | T3 | Time | Group | Group × Time | ||
Body mass (kg) | EG | 97.8 ± 4.5 | 97.3 ± 4.4 | 94.5 *** | 95.5 ± 4.9 ** | 0.007 (0.48) | 0.014 (0.19) | 0.001 (0.47) |
CG | 101.4 ± 6.7 | 101.2 ± 6.79 | 101.1 ± 7.1 | 101.2 ± 7.1 | ||||
BMI (kg/m2) | EG | 33.3 ± 1.3 | 33.2 ± 1.2 | 32.3 ± 1.2 *** | 32.6 ± 1.34 *** | 0.003 (0.47) | 0.039 (0.02) | 0.001 (0.48) |
CG | 33.5 ± 2.7 | 33.5 ± 2.6 | 33.4 ± 2.7 | 33.5 ± 2.7 | ||||
Body fat percentage (%) | EG | 35.2 ± 1.5 | 35.2 ± 1.5 | 33.1 ± 1.6 *** | 33.8 ± 1.9 ** | 0.005 (0.65) | 0.09 (0.001) | 0.001 (0.68) |
CG | 34.2 ± 1.9 | 34.2 ± 1.88 | 34.2 ± 1.8 | 34.3 ± 1.9 | ||||
FFM (kg) | EG | 63.4 ± 3.0 | 63.1 ±3.2 | 63.4 ± 3.4 ** | 63.2 ± 3.7 ** | 0.002 (0.69) | 0.003 (0.75) | 0.002 (0.63) |
CG | 67.1 ± 4.9 | 66.9 ± 5.0 | 66.9 ± 4.9 | 66.9 ± 4.8 | ||||
WHR (cm2) | EG | 0.97 ± 0.01 | 0.96 ± 0.05 | 0.91 ± 0.04 | 0.87 ± 0.04 | 0.001 (0.78) | 0.001 (0.86) | 0.001 (0.75) |
CG | 0.98 ± 0.04 | 0.99 ± 0.02 | 1.00 ± 0.02 | 1.03 ± 0.02 |
Measures | Group | Time of Measurement | p-Values (ES) | |||||
---|---|---|---|---|---|---|---|---|
T0 | T1 | T2 | T3 | Time | Group | Group × Time | ||
Leptin (ng/mL) | EG | 10.32 ± 2.26 | 10.70 ± 1.87 * | 9.93 ± 2.05 ** | 10.64 ± 2.18 * | 0.004 (0.15) | 0.45 (0.02) | 0.02 (0.11) |
CG | 10.84 ± 0.48 | 10.68 ± 0.48 | 10.72 ± 0.70 | 10.96 ± 0.47 | ||||
Ghrelin (pg/mL) | EG | 908.66 ± 187.70 | 877.67 ± 193.71 | 880.33 ± 135.20 | 925.33 ± 166.08 | 0.08 (0.09) | 0.06 (0.24) | 0.74 (0.008) |
CG | 1066.00 ± 190.06 | 1023.00 ± 117.81 | 1006.00 ± 155.04 | 1093.00 ± 149.79 | ||||
GLP-1 (ng/dL) | EG | 0.69 ± 0.18 | 0.67 ± 0.18 | 0.66 ± 0.19 ** | 0.67 ± 0.19 | 0.01 (0.14) | 0.016 (0.07) | 0.02 (0.12) |
CG | 0.76 ± 0.15 | 0.75 ± 0.16 | 0.71 ± 0.14 | 0.81 ± 0.14 ** | ||||
PYY (µg/mL) | EG | 0.43 ± 0.12 | 0.45 ± 0.10 | 0.39 ± 0.12 ** | 0.43 ± 0.11 | 0.004 (0.16) | 0.01 (0.21) | 0.02 (0.12) |
CG | 0.49 ± 0.06 | 0.50 ± 0.07 | 0.48 ± 0.06 | 0.56 ± 0.070 ** | ||||
CCK (ng/dL) | EG | 0.44 ± 0.10 | 0.44 ± 0.10 | 0.39 ± 0.09 ** | 0.45 ± 0.06 ** | 0.001 (0.18) | 0.007 (0.23) | 0.001 (0.21) |
CG | 0.47 ± 0.12 | 0.46 ± 0.70 | 0.52 ± 0.30 | 0.57 ± 0.95 ** |
Variables | Δ Body Mass (%) | Δ BMI (%) | Δ BFP (%) | Δ Waist (%) | Δ Hip (%) | Δ WHR (%) |
---|---|---|---|---|---|---|
Δ Leptin (%) | r = −0.631 * p = 0.012 * | r = −0.643 * p = 0.015 * | r = −0.23 p = 0.408 | r = −0.126 p = 0.654 | r = 0.0121 p = 0.966 | r = −0.106 p = 0.705 |
Δ Ghrelin (%) | r = −0.072 p = 0.798 | r = −0.0721 p = 0.798 | r = 0.148 p = 0.598 | r = 0.12 p = 0.670 | r = 0.518 * p = 0.048 | r = −0.443 p = 0.098 |
Δ GLP-1 (%) | r = −0.132 p = 0.637 | r = −0.132 p = 0.637 | r = −0.191 p = 0.495 | r = −0.395 p = 0.145 | r = −0.202 p = 0.470 | r = −0.033 p = 0.906 |
Δ PYY (%) | r = 0.427 p = 0.112 | r = 0.427 p = 0.112 | r = 0.024 p = 0.932 | r = −0.059 p = 0.835 | r = −0.43 p = 0.109 | r = 0.404 p = 0.134 |
Δ CCK (%) | r = 0.091 p = 0.744 | r = 0.091 p = 0.744 | r = −0.127 p = 0.652 | r = −0.0894 p = 0.752 | r = −0.134 p = 0.634 | r = 0.0856 p = 0.761 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zouhal, H.; Bagheri, R.; Triki, R.; Saeidi, A.; Wong, A.; Hackney, A.C.; Laher, I.; Suzuki, K.; Ben Abderrahman, A. Effects of Ramadan Intermittent Fasting on Gut Hormones and Body Composition in Males with Obesity. Int. J. Environ. Res. Public Health 2020, 17, 5600. https://doi.org/10.3390/ijerph17155600
Zouhal H, Bagheri R, Triki R, Saeidi A, Wong A, Hackney AC, Laher I, Suzuki K, Ben Abderrahman A. Effects of Ramadan Intermittent Fasting on Gut Hormones and Body Composition in Males with Obesity. International Journal of Environmental Research and Public Health. 2020; 17(15):5600. https://doi.org/10.3390/ijerph17155600
Chicago/Turabian StyleZouhal, Hassane, Reza Bagheri, Raoua Triki, Ayoub Saeidi, Alexei Wong, Anthony C. Hackney, Ismail Laher, Katsuhiko Suzuki, and Abderraouf Ben Abderrahman. 2020. "Effects of Ramadan Intermittent Fasting on Gut Hormones and Body Composition in Males with Obesity" International Journal of Environmental Research and Public Health 17, no. 15: 5600. https://doi.org/10.3390/ijerph17155600
APA StyleZouhal, H., Bagheri, R., Triki, R., Saeidi, A., Wong, A., Hackney, A. C., Laher, I., Suzuki, K., & Ben Abderrahman, A. (2020). Effects of Ramadan Intermittent Fasting on Gut Hormones and Body Composition in Males with Obesity. International Journal of Environmental Research and Public Health, 17(15), 5600. https://doi.org/10.3390/ijerph17155600