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Abstract: Diarrhea is responsible for killing around 525,000 children every year, even though it is
preventable and treatable. This research focuses on both houseflies’ roles and humans’ roles in
carrying pathogens causing diarrhea as multiple disease carriers. Both human and fly compartmental
models are simulated with five diseases control strategies in order to identify the epidemic dynamics.
The framework considers the life cycle of flies modeled into eggs, larvae, pupae, susceptible flies,
and carrier flies, while the human system follows a compartment model as susceptible, infected,
recovered, and back to susceptible again (SIRS). The relationships are modeled into an ordinary
differential equation-based compartmental system. Then, the control parameters of the compartmental
framework are analyzed. In order to propose effective control methods, five control strategies are
considered: (1) elimination of flies’ breeding site, (2) sanitation, (3) installation of UV light trap,
(4) good personal and food hygiene, and (5) water purification. Then, overall, ten control scenarios
using the five control strategies are analyzed. Among them, effective control solutions considering
various dynamic epidemiology are provided with the simulations and analyses. The proposed
framework contributes to an effective control strategy in reducing the number of both flies and
infected humans, since it minimizes the spread of the disease and considers cost-effectiveness.

Keywords: dynamic epidemiology; multiple disease carriers; diarrhea; infection process-based
dynamic control; Pontryagin’s maximum principle

1. Introduction

Infectious diarrhea, a disease causing fluid loss and dehydration, is the eighth leading cause
of death, responsible for around 525,000 children deaths globally every year [1], mostly children
in developing countries. Diarrhea is caused by infectious organisms, including viral and bacterial
pathogens [2]. These are typically transmitted from the stool of one individual. This means the pathogen
spreads through contaminated food and water or from an infectious person to a healthy person as a
result of poor hygiene. Although diarrhea is both preventable and treatable, it is still fatal. This is due
to several reasons, including a lack of awareness and shortages of existing lifesaving interventions.

Several existing studies showed that bacteria causing diarrhea are carried by houseflies [3,4]
mainly. The house fly, Musca domestica L., is known to carry pathogens including bacteria, viruses,
fungi, and parasites which cause life threatening diseases in humans and animals [5,6]. Houseflies
breed in human feces [7] and the existing studies [8–12] have shown increased incidences of diarrhea
during the periods of high fly density. Most importantly, several existing studies [8,13–15] have shown
that a reduction in housefly density may affect the reduction in diarrhea incidence as well.

Mathematical models [16] are widely used to convert the real case into mathematical epidemiologic
representations and predict the dynamics of infectious disease transmission so that they have vital roles
in developing public health strategies for disease control and prevention. The formulation process of
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diarrhea considers multiple carriers (e.g., houseflies and infected humans). Then, the mathematical
model is used for relevant disease control. Effective disease control has become an important part of
computational epidemiology [17] that can provide useful guidelines for designing effective disease
intervention strategies while balancing the costs of the control measures.

The objective of this paper is to understand and to formulate diarrhea’s dynamic epidemiology
through a set of differential equation-based mathematical models and to predict the possible future for
the effectiveness of disease control strategies not only for reducing the infected population, but also
decreasing or even eliminating fly population as principal carriers of the disease as well.

The following section presents the relevant epidemiologic network of diarrhea and its mathematical
models along with multiple controls and their theoretical solutions. Then, the effectiveness of the
proposed framework and simulation results are analyzed in Sections 3 and 4. In order to show the
influence of each intervention towards the spreading of the disease, numerical simulations under
several control scenarios are provided in Section 5.

2. Background and Epidemiologic Network Model

Figure 1 shows a flow diagram of diarrhea transmission through multiple carriers, including
humans, flies and other environmental carriers. The system contains humans’ and flies’ epidemiologic
systems, which are transformed into both (human and flies) compartmental models. As shown
in Figure 1, the flies system shows the lifecycle of flies from egg stage (Ef), larva (Lf), pupa (Uf),
until adult flies, which divides into susceptible (Sf), and carrier flies (Cf). A carrier means an agent
that carries a pathogen causing the disease but it does not show any symptoms of illness.
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Figure 1. Flow diagram of disease transmission through multiple carriers and a life cycle of a fly as a
principal disease carrier.

The human system follows susceptible human (Sh), infectious (Ih), recovered (Rh), and back
to susceptible again, since no one has immunity against diarrhea. Figure 2 shows an epidemiologic
network where human can be infected by the disease by consuming contaminated food or water due
to carrier flies laying pathogens on it.
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Figure 2. Network model of flies’ life cycle (egg-larva-pupa-adult) and human as
susceptible-infected-recovered in compartmental model.

As shown in Figure 2, a set of mathematical models are derived from the fly-human compartmental
model. The model parameters in Figure 2 are provided in Table 1.

Table 1. Notations of variables and parameters.

Symbol Description Initial Values

Variables
Ef The number of eggs of flies 100
Lf The number of larvae of flies 100
Uf The number of pupae of flies 10
Sf The number of susceptible flies 10
Cf The number of carrier fly 10
Sh The number of susceptible humans 1000
Ih The number of infected humans 1
Rh The number of recovered humans 0

Parameters
λ An influx rate of susceptible flies 0.1
γ A rate of susceptible flies to become carrier 0.2
p Probability of female fly 0.5
ψe Average maturation rate from egg to larva 0.4
ψl Average maturation rate from larva to pupa 0.6
ψu Average maturation rate from pupa to adult fly 0.7
βef Natural death rate of eggs 0.1
βlf Natural death rate of larvae 0.1
βuf Natural death rate of pupae 0.1
βsf Natural death rate of susceptible flies 0.1
βcf Natural death rate of carrier flies 0.1
δ An oviposit rate of adult female flies 0.3

D1sf Diffusion parameter among susceptible flies 0.001
D1cf Diffusion parameter among carrier flies 0.001
ξ Carrier fly’s laying rate of pathogen on water or food 0.6
θ Influx rate of susceptible humans 0.1
µ Rate from “susceptible” status to “infected” status in humans 0.3
ε Rate from “infected” status to “recovered” status in humans 0.0008
σ Rate from “recovered” status to “susceptible” status in humans 0.001
βsh Natural death rate of susceptible humans 0.0008
βih. Natural death rate of infected humans 0.0008
βrh Natural death rate of recovered humans 0.0008

D2sh Diffusion parameter among susceptible humans 0.1
D2ih Diffusion parameter among infected humans 0.3
D2rh Diffusion parameter among recovered humans 0.1
η Rate of contaminated water or food to be consumed by susceptible humans 0.5
ωih Disease-induced death rate of infected humans 0.3
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Table 2 shows the differential equation-based transition models with respect to the
lifecycle of the fly and the epidemiologic processes of a human. Humans are classified with
the Susceptible-Infected-Recovered-Susceptible (SIRS) reaction-diffusion compartmental model.
The ordinary differential equations (ODE) are generated based on each of states in the network.
The time unit is “day” in this research.

Table 2. Ordinary differential equations (ODE) considering both the fly and the human system.

Compartment ODE

Ef
dEf
dt = p.Sf.δ+ p.Cf.δ−βef.Ef −ψe.Ef

Lf
dLf
dt = ψe.Ef −βlf.Lf −ψl.Lf

Uf
dUf
dt = ψl.Lf −βuf.Uf −ψu.Uf

Sf
dSf
dt = λ.Sf +ψu.Uf −βsf.Sf − γ.Sf + D1sf.Sf

Cf
dCf
dt = γ.Sf −βcf.Cf + D1cf.Cf

Sh
dSh
dt = θ.Sh −βsh.Sh − µ.Sh + σ.Rh + D2sh.Sh

Ih
dIh
dt = µ.Sh −βih.Ih −ωihIh − ε.Ih + D2ih.Ih

Rh
dRh
dt = ε.Ih −βrh.Rh − σ.Rh + D2rh.Rh

µ = ξ·η.

The solutions of the compartment models, as shown in Table 2, have to be non-negative
(positiveness) and exist (boundedness). The below conditions show the positiveness and boundedness
of the compartment model.

Let the initial dataset be Sh(0) > 0, Ih(0) > 0, S f (0) > 0, C f (0) > 0, E f (0) > 0 and
(Lf(0), Uf(0), Rh(0)) ∈

∐
.
∐

is positive and bounded interval for all time t > 0.
Consider the Inequality (1) at time t.

dEf

dt
≥ −(βef +ψe)Ef (1)∫

dEf

Ef
≥ −

∫
(βef +ψe)d(t) (2)

Ef(t) ≥ Ef(0)e−
∫
(βef+ψe)d(t) ≥ 0 (3)

Inequality (1) proves that the solution set is positive for all time t > 0. The same rule can be
applied for Inequality (2) until Inequality (6) at time t.

dLf

dt
≥ −(βlf +ψl)Lf (4)∫

dLf

Lf
≥ −

∫
(βlf +ψl)d(t) (5)

Lf(t) ≥ Lf(0)e−
∫
(βlf+ψl)d(t) ≥ 0 (6)

3. Epidemic Model Dynamics

The dynamics of the models provided in Table 2 depend on the basic reproduction number, which
is defined as the average number of secondary infections of an infectious human [18,19].

The basic reproduction number is denoted by R0 as the number of secondary infections caused
by an infected individual. If the value of R0 < 1, then the disease dies out. While the value of
R0 > 1, then the number of infectious individuals increases and the disease invades the population.
Let x = (x1, x2, . . . , xn)

T be the number of individuals in each compartment where the first m < n
compartments contain infected individuals. The disease-free equilibrium (DFE) is given by (S,E,I,R) =

(S0, 0, 0, 0). The terms S, E, I and R mean Susceptible, Exposed, Infected, and Recovered, respectively.
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In this model dynamics, it is assumed that the DFE exists and is stable in the absence of disease.
Consider those equations written in the form dxi

dt = Fi(x)–Vi(x) for i = 1, 2, . . . , m where, Fi(x) is the rate
of appearance of new infections in compartment i and Vi(x) is the rate of other transitions between

compartment i and other infected compartments. F (F =
[
∂Fi(x0)

∂xj

]
) is entry wise non-negative and V

(V =
[
∂Vi(x0)
∂xj

]
) is a non-singular matrix for 1 ≤ i, j ≤ m. F(X, Y) denotes a vector of new infection rates

(flows from X to Y) and V(X, Y) is a vector of all other rates. For each compartment, an inflow in V is
negative and an outflow in V is positive. It is assumed that F(0, Y) = 0 and V(0, Y) = 0. FV−1 is called
the next generation matrix where the spectral radius of it is equal to R0, which is the largest eigenvalue
of FV−1. FV−1 is derived using Equations (7)–(10).

F =

[
∂µShI
∂I

]
= [µSh] (7)

V =

[
∂(βih +ωih + ε+ D2ih)Ih − ∂µSh

∂Ih

]
(8)

V−1 =
1

βih +ωih + ε+ D2ih
(9)

FV−1 =

[
µSh

βih +ωih + ε+ D2ih

]
(10)

Then, R0 is determined as the basic reproduction number using FV−1.

R0 =
µSh

βih +ωih + ε+ D2ih
(11)

After modeling the infection processes of diarrhea provided in Sections 2 and 3, the derived
differential equations are solved with the initial conditions of Ef = 10; Lf = 10; Uf = 10; Sf = 10;
Cf = 10; Sh = 1000; Ih = 1; Rh = 0. The initial parameters are supposed with real-world examples.
Figure 3 shows the disease’s infection simulations without any control method, in terms of humans’
and flies’ status. The simulation is performed using Matlab©. According to Figure 3, the disease starts
with an outbreak at t = 0 and, the number of infected people is around 2700 at t = 20. The time unit is
day in this research.

The provided ODE-based compartment model is used to check the epidemiologic processes of
diarrhea and the effectiveness of control methods, which are provided in the following section.
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4. Effective Control Framework Considering Multiple Disease Carriers

In this section, the previous fundamental infection model is extended with several control
strategies on the spread of the disease. The term “effectiveness” is evaluated with the blocks of
additional infections and a cost-effective concept. This consideration may help to block the spread of
SARS-2 or COIVID-19. The cost-effective criteria are determined using Pontryagin’s [20] maximum
principle on five variations of control methods. Pontryagin [20,21] introduced the idea of adjoint
functions which has a similar purpose as Lagrange multipliers, to append the differential equation to
the objective function.

This section focuses on effective control frameworks to prevent additional infections of humans.
In order to control additional spreads of diarrhea, five control methods are considered: (1) elimination
of fly’s breeding site, (2) sanitation-related investment, (3) installation of UV light traps for killing flies,
(4) good personal and food hygiene, and (5) water purification. In general, these methods intend to
prevent additional infections among humans or to remove one of primary disease carriers—flies.

As the first control method, “Elimination of flies’ breeding site” is considered. As flies feed on
garbage, food waste, and animal feces, therefore one way to prevent additional infections is to keep the
places clean, and to spray pesticide on prone areas. This intervention could reduce or even eliminate
the maturation rate of fly eggs, larva, and pupa, which eventually impacts the number of adult flies.
Let α denote the level of a breeding site elimination strategy (0 ≤ α(t) ≤ 1). The effect of breeding
site elimination will decrease the maturation rate of eggs, larvae, and pupae, which is modelled as
α·Ef, α·Lf and α·Uf, respectively.

The second control option is sanitation efforts [22], which include the sterilization of cooking
utensils, washing, and drinking water by boiling it properly. The parameter π(t) (0 ≤ π(t) ≤ 1) denotes
the level of sanitation strategy. The effect of sanitation is to decrease the number of pathogens, which is
modelled as a reduction in the rate of the carrier fly population by the term π·Cf.

The third control method is to install light traps. When flies see ultra-violet (UV) light, they are
naturally lured in the direction of the source of the UV rays. This strategy is more desirable than spray
for indoor fly control as it keeps the surroundings clean. ϑ (0 ≤ ϑ(t) ≤ 1) denotes the effectiveness of
the installation of UV light trap strategy. The effect of this effort is to decrease the number of susceptible
and carrier flies by the terms ϑ·Sf and ϑ·Cf.

The next consideration is to keep good personal and food hygiene. Good personal and food
hygiene can be defined as handling, preparing, and storing food in a way that reduces the risk of
becoming contaminated. Let ρ (0 ≤ ρ(t) ≤ 1) be the good personal and food hygiene effort. The effect
of this effort is to suppress the number of infected people by the term ρ·Ih.

The final option is to purify water. Chlorine is often a choice for water purification, since it
effectively inactivates the bacteria causing diarrhea, leaves residual protection, has low cost and is easy
to transport and use. There are two chlorine-based options [23] used in diarrhea outbreaks, such as
tablets and liquid. τ (0 ≤ τ(t) ≤ 1) denotes the level of water purification strategy. The effect of water
purification is to inactivate pathogens, which is modelled as a reduction in the disease transmission
rate by the term τ·Ih. Table 3 explains each control parameter for each control option.

Table 3. Control parameters.

Symbol Description Initial Values

Control Parameters
α Effective control using eliminations of fly’s breeding site 0.03
π Effective rate using sanitation methods 0.1
ϑ Effective rate using installation of UV light trap 0.04
ρ Effective rate using good personal and food hygiene 0.01
τ Effective rate using water purification 0.02



Int. J. Environ. Res. Public Health 2020, 17, 5692 7 of 14

Based on the control parameters shown in Table 3, the initial transmission models are modified
with additional terms to Equations (12)–(17). The additional term is underlined in each equation.

dEf

dt
= p.Sf.δ+ p.Cf.δ−βef.Ef −ψe.Ef −α.Ef (12)

dLf

dt
= ψe.Ef −βlf.Lf −ψl.Lf −α.Lf (13)

dUf

dt
= ψl.Lf −βuf.Uf −ψu.Uf −α.Uf (14)

dSf

dt
= λ.Sf +ψu.Uf −βsf.Sf − γ.Sf + D1sf.Sf−π.Sf − ϑ.Sf (15)

dCf

dt
= γ.Sf −βcf.Cf + D1cf.Cf− π.Cf − ϑ.Cf (16)

dIh

dt
= µ.Sh −βih.Ih −ωihIh − ε.Ih + D2ih.Ih−ρ.Ih − τ.Ih (17)

In this research, an effective control model is considered as a cost-effective control method within
a controllable infection size. The objective function that aims to minimize cost in the control strategy
J = {α, π, ϑ, ρ, τ} is obtained by Equation (18). In Equation (18), the parameter W1 denotes the cost
for elimination of breeding site, W2 is the cost for sanitation-based works, W3 is the cost for installing
UV light trap, W4 is the cost for isolation of infected person, and W5 is the cost of water purification.
Each Ci,i∈[1,5] denotes each control parameter-based cost.

Cstf(T) = min
∫ T

0 [W1 ·α(t) ·K1 + W2 · π(t) ·K2 + W3 · ϑ(t) ·K2 + W4 · ρ(t) · Ih(t)
+W4 · ρ(t) · Ih(t) + W5 · τ(t) · Ih(t) + 1

2 ·K3
]
dt

(18)

where K1 = Ef(t) + Lf(t) + Uf(t), K2 = Sf(t) + Cf(t), and K3 = C1α
2 + C2π

2 + C3ϑ
2 + C4ρ

2 + C5 τ
2.

Due to the fact that the cost function is nonlinear with the infection trends, time and other
conditions, the mathematical programming belongs to the differential equation-based nonlinear
mathematical programming. When denoting the prices associated with their respective classes by
φEf

, φLf
, φUf

, φSf
, φCf

, φSh
, φIh

and φRh
, the nonlinear mathematical programming is solved using

Pontryagin’s maximum principle and the derivation of necessary conditions. As explained in [24,25],
the existence of an optimal control is a sequence of the convexity of the integrand J with respect
to α, π, ϑ, ρ, τ; a priori boundedness of the state variables, and the Lipschitz property of the state
system with respect to the state variables. The differential equations are obtained by differentiating the
Hamiltonian function, as shown in Appendix A. Finally, optimal control values are obtained as shown
in Appendix B.

αc =
[(

E∗fφEf
+ L∗fφLf

+ U∗fφUf

)
−W1

(
E∗f + L∗f + U∗f

)]
/C1 (19)

πc =
[(

S∗fφSf
+ C∗fφCf

)
−W2

(
S∗f + C∗f

)]
/C2 (20)

ϑc =
[(

S∗fφSf
+ C∗fφCf

)
−W3

(
S∗f + C∗f

)]
/C3 (21)

ρc =
[
I∗hφIh

−W4I∗h
]
/C4 (22)

τc =
[
I∗hφIh

−W5I∗h
]
/C5 (23)

Therefore, it can be concluded by the standard control arguments involving the bounds on the
controls in Table 4 as follows:



Int. J. Environ. Res. Public Health 2020, 17, 5692 8 of 14

Table 4. The optimal control parameter of each strategy.

Control Parameter The Optimal Value of Control
Parameter

α∗


0
αc

1

if
if
if

αc
≤ 0

0 < αc < 1
αc
≥ 1

π∗


0
πc

1

if
if
if

πc
≤ 0

0 < πc < 1
πc
≥ 1

ϑ∗


0
ϑc

1

if
if
if

ϑc
≤ 0

0 < ϑc < 1
ϑc
≥ 1

ρ∗


0
ρc

1

if
if
if

ρc
≤ 0

0 < ρc < 1
ρc
≥ 1

τ∗


0
τc

1

if
if
if

τc
≤ 0

0 < τc < 1
τc
≥ 1

A *: optimal value of parameter of A.

5. Simulation and Analysis of Control Model Considering Multiple Disease Carriers

With the provided optimal control frameworks, numerical simulations are performed using the
parameter values given in Tables 1 and 3. Several control scenarios are considered with combinations
of intervention strategies for non-adult flies, adult flies, and infected humans, as summarized in Table 5.
Table 5 shows the highest number of flies and humans using 50 days’ of simulation.

Table 5. Scenarios with combinations of control strategies.

Scena-Rio Strategy\Control Parameters Egg
Flies Larva Pupa Susceptible

Flies
Carrier

Flies
Infected
Human

- Initial condition (without controls) 126 70 51 163 273 2795

I Elimination of breeding site
(α = 0.03) 5 0 0 133 223 1991

II Sanitation (π = 0.1) 103 57 42 27 4 1837

III Installation of UV light trap
(ϑ = 0.04) 69 38 28 4 33 1739

IV Good personal and food hygiene
(ρ = 0.01) 103 57 42 133 223 1599

V Water purification
(τ = 0.02) 103 57 42 133 223 1641

VI Combination of I, II and IV
(α = 0.03,π = 0.1,ρ = 0.01) 50 13 10 30 50 1251

VII Combination of I, II and V
(α = 0.03,π = 0.1, τ=0.02) 23 13 10 30 50 1480

VIII Combination of I, III and IV
(α = 0.03,ϑ = 0.04,ρ = 0.01) 11 7 5 15 21 1182

IX Combination of I, III and V
(α = 0.03,ϑ = 0.04, τ = 0.02) 17 10 7 22 36 961

X
Combination of I-V

(α = 0.03,π = 0.1,ϑ = 0.04,
ρ = 0.01, τ = 0.02)

0 0 0 0 0 877

Each control is applied and is combined with more than one control to examine the impact on the
human population. The simulation results are shown in Figure 4.
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Figure 4. Changes in infection trends toward the human population with each control scenario
(a) Scenario I; (b) Scenario II; (c) Scenario III; (d) Scenario IV; (e) Scenario V; (f) Scenario VI; (g) Scenario
VII; (h) Scenario VIII; (i) Scenario IX; (j) Scenario X.

Table 6 shows the assumed control costs and medical treatment costs. The costs are assigned with
the consideration of existing relevant literatures [26–30].

Table 6. Cost values for control simulations.

Parameter Unit Cost ($)

Control costs
Eliminations of fly’s breeding site 100
Sanitation methods 60
Installation of UV light trap 240
Good personal and food hygiene 1138
Water purification 0.46

Medical treatment cost
Hospitalization 207.7

After comparing all of those ten scenarios, the most effective strategy is considered Scenario X,
which combines all control method under the assumptions. Table 7 shows the simulation result for
each control scenario I to scenario X.

Table 7. Result of control scenario.

Control
Scenario

Relevant
Figure

Cost
($)

Results

I Figure 4a 413,632

- Maturation rates of eggs, larva, and pupa are decreased
since they died before even matured.

- The number of eggs of fly, larva, and pupa vanish at t = 42
while the number of infected humans reaches its peak at t =
26 with 1991 people and then started to decrease compared
with the initial simulation.

- An outbreak at t = 23 along with the increasing number
of flies.

II Figure 4b 381,605

- Sanitation aim to increase the death rate of adult flies, both
the susceptible and carrier flies.

- Applying this intervention impacts to the number of
susceptible and carrier flies significantly decrease to 27 and
4 respectively while for initial simulation, there are 163
susceptible and 273 carrier flies.

- At t = 24, the number of infected human starts decreasing
after reaching its maximum with 1837 people get the disease.
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Table 7. Cont.

Control
Scenario

Relevant
Figure

Cost
($)

Results

III Figure 4c 361,430

- This intervention will trap and catch the adult flies which
means the death rate of adult flies is increased.

- Thus, the population number of susceptible and carrier flies
reaches its lowest at t = 50 with 4 and 33 flies.

- The highest number of infected humans is 1739 people
which is lower that Strategy II.

IV Figure 4d 333,250

- By keeping good personal and food hygiene, it does not give
opportunity for the pathogen which cause the disease to
spread among humans.

- Applying this control leads to almost half of reduction
number of infected humans at t = 13 with 1373 people
compared to the initial simulation

V Figure 4e 340,836

- Ensure every healthy people to only consume hygiene water
is like cutting the chain of the disease to be spreading in
the environment.

- It will affect the reduction rate of contaminated water to be
consumed by human. Therefore, the number of infected
people will decrease at t = 14 after experiencing its peak
with 1641 people.

VI Figure 4f 261,131

- Combination of these strategies will tackle each of non-adult
flies (eggs, larva, pupa), adult flies, and infected
human population.

- At time t = 70, the number of infected people is almost zero
meanwhile the disease infected the highest number 1251
people at t = 10 before the transmission becomes slower
after that.

VII Figure 4g 307,556

- After performing this scenario, the number of non-adult flies
has much reduction at t = 48 which is good for indicating
the decreasing of the adult flies’ population as well.

- The largest population of infected people is 1.480 at t = 12
then the infection subsided.

VIII Figure 4h 246,979

- Combination of these strategies could lead to the reduction
number of all individual, where at t = 36, the population of
flies is almost zero and the highest number of infected
humans is 1182 at t = 9.

IX Figure 4i 199,940

- These combinations provide a good result in decreasing the
maturation rate of non-adult flies and increasing the death
rate of adult flies which affects to the reduction rate of
susceptible status becomes infected status in human. At t =
7, the number of infected humans is 961 people but the
population becomes disease-free at t = 50 since no one
is infected.

X Figure 4j 183,691

- The population of non-adult and adult flies are zero at t = 27
meanwhile the highest number of infected people is 877
before reaching the diseases free at t = 43.

- Combination of all strategies surely give the best result in
terms of number of each individual.

- In addition, the scenario achieves the lowest cost among
all scenarios.

In terms of cost and the number of infected persons, Scenario X shows the best performance.
This indicates that the overall control methods are required for effective disease control and their
portions influence its performance. It also denotes the significant reduction in number of infected
people from 2795 to 877 as a result of the decreasing number of disease carriers. It means there is
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a 65.7% reduction in the number of infected people compared to the simulation without applying
any control.

The provided framework can be used to check the effectiveness with different assumptions and
numerical simulations considering multiple disease carriers.

6. Conclusions

This paper presents the ordinary differential equation-based epidemiologic models to understand
diarrhea’s infection dynamics and with the consideration of multiple carriers. Numerical simulation
and mathematical analyses were performed to identify the relationship and the status of flies and
humans when the disease outbreaks.

Then, each control strategy is applied, as shown in Scenarios I to V, and is combined in some
combinations of these strategies to obtain the optimal condition, as shown in Scenarios VI to X. Under
a certain simulation scenario, Scenario X, which combines all control methods, is proven to be the most
effective strategy in reducing both of the number of flies and the infected population, as it minimizes
the spread of the disease.

In the future, further study about broader conditions such as the effect of temperature on
the transmission of a disease is required, as the population of housefly reaches its peak when the
temperature is warmer.

The proposed framework is considered an effective disease control considering multiple carriers
with epidemiologic dynamics and the relevant parameters.
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Appendix A

Consider the objective function J(α, π, ϑ, ρ, τ) to investigate the optimal strategy needed to
control the spreading of diarrhea provided in Equation, where A1, . . . , A8 represent the weight
constants of the eggs, larva, pupa, susceptible flies, carrier flies, susceptible human, infected human,
and recovered human.

J(α, π, ϑ, ρ, τ) =
∫ Tf

0 [A1Ef + A2Lf + A3Uf + A4Sf + A5Cf + A6Sh + A7Ih + A8Rh

+ 1
2

(
C1α

2 + C2π
2 + C3ϑ

2 + C4ρ
2 + C5 τ

2
)]

dt

The Hamiltonian H is provided with J(α, π, ϑ, ρ, τ) and the ODEs, where
φEf, φLf

,φUf
, φSf

, φCf, φSh
, φIh

, φRh
,φCstf

are the co-state variables given by the system:

H =
[
A1Ef + A2Lf + A3Uf + A4Sf + A5Cf + A6Sh + A7Ih + A8Rh + 1

2

(
C1α

2 + C2π
2 + C3ϑ

2 + C4ρ
2 + C5 τ

2
)]

+φEf
[p.Sf(t).δ+ p.Cf(t).δ−βef.Ef(t) −ψe.Ef(t) −α.Ef(t)]

+φLf
[ψe.Ef(t) −βlf.Lf(t) −ψl.Lf(t) −α.Lf(t)]

+φUf
[ψl.Lf(t) −βuf.Uf(t) −ψu.Uf(t) −α.Uf(t)]

+φSf
[λ.Sf(t) +ψu(t).Uf(t) −βsf.Sf(t) − γ.Sf(t) + D1sf.Sf(t) − π.Sf(t) − ϑ.Sf(t)]
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+φCf
[γ.Sf(t) −βcf.Cf(t) + D1cf.Cf(t) − π.Cf(t) − ϑ.Cf(t)]

+φSh
[θ.Sh(t) −βsh.Sh(t) − µ.Sh(t) + σ.Rh(t) + D2sh.Sh(t)]

+φIh
[µ.Sh(t) −βih.Ih(t) −ωihIh(t) − ε.Ih(t) + D2ih.Ih(t) − ρ.Ih(t) − τ.Ih(t)]

+φRh
[ε.Ih(t) −βrh.Rh(t) − σ.Rh(t) + D2rh.Rh(t)]

+φCstf
[W1αEf(t)Lf(t)Uf(t) + W2πSf(t)Cf(t) + W3 ϑSf(t)Cf(t) + W4ρIh(t) + W5τIh(t)]

Appendix B

Optimal control values are obtained using the Hamiltonian function shown in Appendix A. Then,
the nonlinear mathematical programming is solved using Pontryagin’s Maximum Principle and the
derivation of necessary conditions.

∂H
∂α = αcC1 +

[
−

(
E∗fφEf

+ L∗fφLf
+ U∗fφUf

)
+ W1

(
E∗f + L∗f + U∗f

)]
∂H
∂π = πcC2 +

[
−

(
S∗fφSf

+ C∗fφCf

)
+ W2

(
S∗f + C∗f

)]
∂H
∂ϑ = ϑcC3 +

[
−

(
S∗fφSf

+ C∗fφCf

)
+ W3

(
S∗f + C∗f

)]
∂H
∂ρ = ρcC4 +

[
−

(
I∗hφIh

)
+ W4I∗h

]
∂H
∂τ = τcC5 +

[
−

(
I∗hφIh

)
+ W5I∗h

]
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