Effects of Carrying Police Equipment on Spatiotemporal and Kinetic Gait Parameters in First Year Police Officers
Abstract
:1. Introduction
2. Materials & Methods
2.1. Study Participants
2.2. Police Equipment
2.3. Gait Analysis Assessment
2.4. Data Analysis
2.5. Ethical Statement
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bæk Larsen, L.; Tranberg, R.; Ramstrand, N. Effects of thigh holster use on kinematics and kinetics of active duty police officers. Clin. Biomech. 2016, 37, 77–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lockie, R.G.; Dawes, J.J.; Kornhauser, C.L.; Holmes, R.J. A cross-sectional and retrospective cohort analysis of the effects of age on flexibility, strength endurance, lower-body power, and aerobic fitness in law enforcement officers. J. Strength Cond. Res. 2019, 33, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Marins, E.F.; Cabistany, L.; Bartel, C.; Dawes, J.J.; Del Vecchio, F.B. Effects of personal protective equipment on the performance of federal highway policemen in physical fitness tests. J. Strength Cond. Res. 2020, 34, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Scott, G.; Menz, H.B.; Newcombe, L. Age-related differences in foot structure and function. Gait Posture 2007, 26, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Saltzman, C.L.; Nawoczenski, D.A. Complexities of foot architecture as a base of support. J. Orthop. Sports Phys. Ther. 1995, 21, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Chow, D.W.; Kwok, M.L.; Au-Yang, A.C.; Holmes, A.D.; Cheng, J.C.; Yao, F.Y.; Wong, M.S. The effects of backpack load on the gait of normal adolescent girl. Ergonomics 2005, 48, 642–656. [Google Scholar] [CrossRef] [PubMed]
- Birrell, S.A.; Haslam, R.A. The effect of military load carriage on 3-D lower limb kinematics and spatiotemporal parameters. Ergonomics 2009, 52, 1298–1304. [Google Scholar] [CrossRef] [PubMed]
- Dempsey, P.C.; Handcock, P.J.; Rehrer, N.J. Impact of police body armour and equipment on mobility. Appl. Ergon. 2013, 44, 957–961. [Google Scholar] [CrossRef] [PubMed]
- Lewinski, W.J.; Dysterheft, J.L.; Dicks, N.D.; Pettitt, R.W. The influence of officer equipment and protection on short sprinting performance. Appl. Ergon. 2015, 47, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Ramstrand, N.; Zügner, R.; Bæk Larsen, L.; Tranberg, R. Evaluation of load carriage systems used by active duty police officers: Relative effects on walking patterns and perceived comfort. Appl. Ergon. 2016, 53, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Joseph, A.; Wiley, A.; Orr, R.; Schram, B.; Dawes, J.J. The impact of load carriage on measures of power and agility in tactical occupations: A critical review. Int. J. Environ. Res. Public Health 2018, 15, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasović, M.; Štefan, L.; Zvonar, M. Domain-specific and total sedentary behavior associated with gait-velocity in older women: The mediating role of physical fitness. Int. J. Environ. Res. Public Health 2020, 17, 593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mickle, K.J.; Munro, B.J.; Lord, S.R.; Menz, H.B.; Steele, J.R. Foot pain, plantar pressure, and falls in older people: A prospective study. J. Am. Geriatr. Soc. 2010, 58, 1936–1940. [Google Scholar] [CrossRef] [PubMed]
- Van der Leeden, M.; Dekker, J.H.M.; Siemonsma, P.C.; Lek-Westerhof, S.S.; Steultjens, M.P. Reproducibility of plantar pressure measurements in patients with chronic arthritis: A comparison of one-step, two-step, and three-step protocols and an estimate of the number of measurements required. Foot Ankle Int. 2004, 25, 739–744. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.; Marshall, S.; Batterham, A.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinoshita, H. Effects of different loads and carrying systems on selected biomechanical parameters describing walking gait. Ergonomics 1985, 28, 1347–1362. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Branson, D.; Petrova, A.; Peksoz, S.; Jacobson, B.; Warren, A.; Goad, C.; Kamenidis, P. Impact of ballistic body amour and load carriage on walking patterns and perceived comfort. Ergonomics 2013, 56, 1167–1179. [Google Scholar] [CrossRef] [PubMed]
- Zou, D.; Mueller, M.; Lott, D.J. Effect of peak pressure and pressure gradient on subsurface shear stresses in the neuropathic foot. J. Biomech. 2007, 40, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Knapik, J. Discharges during US Army basic training: Injury rates and risk factors. Mil. Med. 2001, 166, 641–647. [Google Scholar] [PubMed]
Study Variables | Total (N = 275) | Men (N = 186) | Women (N = 89) | p for Sex |
---|---|---|---|---|
mean ± SD | mean ± SD | mean ± SD | ||
Age (years) | 22 ± 3 | 22 ± 3 | 22 ± 3 | 0.549 |
Height (cm) | 176 ± 9 | 181 ± 6 | 166 ± 5 | <0.001 |
Weight (kg) | 76 ± 14 | 83 ± 11 | 63 ± 8 | <0.001 |
Body-mass index (kg/m2) | 24 ± 4 | 25 ± 3 | 23 ± 2 | <0.001 |
Study Variables | No Police Equipment | Carrying Police Equipment | ∆ (%) | Effect Size | p-Value |
---|---|---|---|---|---|
mean (SD) | mean (SD) | ||||
Foot rotation (°) * | |||||
Left foot | 6.8 (3.5–12.0) | 7.6 (4.4–12.2) | 12.3% | 0.13 | 0.037 |
Right foot | 9.2 (5.9–13.4) | 9.6 (6.4–14.7) | 9.0% | 0.14 | 0.015 |
Step length (cm) | |||||
Left foot | 68.2 (6.0) | 67.5 (6.0) | −1.0% | −0.12 | 0.027 |
Right foot | 67.8 (6.1) | 67.0 (5.8) | −1.2% | −0.13 | 0.026 |
Stride length (cm) | 136.0 (11.1) | 134.5 (10.7) | −1.1% | −0.14 | 0.007 |
Step width (cm) | 13.5 (3.2) | 13.9 (3.1) | 3.0% | 0.13 | 0.023 |
Step time (s) | |||||
Left foot | 0.56 (0.04) | 0.57 (0.04) | 1.2% | 0.25 | <0.001 |
Right foot | 0.56 (0.04) | 0.57 (0.05) | 1.2% | 0.25 | <0.001 |
Stride time (s) | 1.12 (0.08) | 1.14 (0.08) | 1.2% | 0.25 | <0.001 |
Cadence (steps/min) | 107.2 (6.7) | 106.2 (7.0) | −0.9% | −0.15 | 0.002 |
Speed (km/h) | 4.4 (0.5) | 4.3 (0.5) | −2.3% | −0.20 | 0.003 |
Peak pressure (N/cm2) | |||||
(a) Forefoot | |||||
Left foot | 47.1 (13.0) | 49.5 (11.7) | 5.1% | 0.19 | 0.004 |
Right foot | 48.3 (11.7) | 50.2 (12.3) | 3.9% | 0.16 | 0.014 |
(b) Midfoot * | |||||
Left foot | 14.2 (10.6–22.3) | 16.1 (11.8–21.8) | 8.2% | 0.15 | 0.023 |
Right foot | 14.2 (10.8–19.3) | 16.5 (12.9–21.9) | 15.0% | 0.26 | <0.001 |
(c) Hindfoot | |||||
Left foot | 35.3 (8.6) | 37.0 (9.3) | 4.8% | 0.19 | <0.001 |
Right foot | 33.7 (8.1) | 34.8 (9.3) | 3.3% | 0.13 | 0.038 |
Study Variables | No Police Equipment | Carrying Police Equipment | ∆ (%) | Effect Size | p-Value |
---|---|---|---|---|---|
mean (SD) | mean (SD) | ||||
Foot rotation (°) * | |||||
Left foot | 4.0 (2.0–5.9) | 5.0 (2.5–7.0) | 38.3% | 0.23 | 0.034 |
Right foot | 5.7 (2.7–8.3) | 6.4 (2.5–9.7) | 26.5% | 0.25 | 0.002 |
Step length (cm) | |||||
Left foot | 66.7 (5.4) | 65.7 (5.0) | −1.5% | −0.19 | 0.020 |
Right foot | 67.0 (5.3) | 65.7 (5.0) | −1.9% | −0.25 | 0.004 |
Stride length (cm) | 133.7 (9.8) | 131.4 (8.9) | −1.7% | −0.23 | 0.003 |
Step width (cm) | 9.8 (2.5) | 10.6 (2.4) | 8.2% | 0.33 | 0.002 |
Step time (s) | |||||
Left foot | 0.53 (0.04) | 0.54 (0.04) | 1.9% | 0.25 | <0.001 |
Right foot | 0.53 (0.04) | 0.54 (0.04) | 1.9% | 0.25 | 0.036 |
Stride time (s) | 1.06 (0.07) | 1.07 (0.08) | 0.9% | 0.13 | <0.001 |
Cadence (steps/min) | 112.3 (13.2) | 109.3 (7.3) | −2.7% | −0.28 | 0.034 |
Speed (km/h) | 4.6 (0.5) | 4.5 (0.4) | −2.2% | −0.22 | 0.005 |
Peak pressure (N/cm2) | |||||
(a) Forefoot | |||||
Left foot | 45.0 (11.3) | 48.3 (10.9) | 7.3% | 0.30 | 0.005 |
Right foot | 46.1 (12.9) | 48.9 (11.9) | 6.1% | 0.23 | 0.009 |
(b) Midfoot * | |||||
Left foot | 11.9 (9.2–16.5) | 13.8 (10.8–19.9) | 16.8% | 0.32 | 0.020 |
Right foot | 12.1 (8.8–16.2) | 14.6 (9.9–18.6) | 14.7% | 0.30 | 0.033 |
(c) Hindfoot | |||||
Left foot | 34.6 (8.5) | 36.4 (8.9) | 5.2% | 0.21 | 0.038 |
Right foot | 34.4 (8.2) | 36.5 (8.6) | 6.1% | 0.25 | 0.011 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasović, M.; Štefan, L.; Borovec, K.; Zvonař, M.; Cacek, J. Effects of Carrying Police Equipment on Spatiotemporal and Kinetic Gait Parameters in First Year Police Officers. Int. J. Environ. Res. Public Health 2020, 17, 5750. https://doi.org/10.3390/ijerph17165750
Kasović M, Štefan L, Borovec K, Zvonař M, Cacek J. Effects of Carrying Police Equipment on Spatiotemporal and Kinetic Gait Parameters in First Year Police Officers. International Journal of Environmental Research and Public Health. 2020; 17(16):5750. https://doi.org/10.3390/ijerph17165750
Chicago/Turabian StyleKasović, Mario, Lovro Štefan, Krunoslav Borovec, Martin Zvonař, and Jan Cacek. 2020. "Effects of Carrying Police Equipment on Spatiotemporal and Kinetic Gait Parameters in First Year Police Officers" International Journal of Environmental Research and Public Health 17, no. 16: 5750. https://doi.org/10.3390/ijerph17165750
APA StyleKasović, M., Štefan, L., Borovec, K., Zvonař, M., & Cacek, J. (2020). Effects of Carrying Police Equipment on Spatiotemporal and Kinetic Gait Parameters in First Year Police Officers. International Journal of Environmental Research and Public Health, 17(16), 5750. https://doi.org/10.3390/ijerph17165750