The Phenotype of Elderly Patients with Type 2 Diabetes Mellitus and Poor Sleep Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anthropometric and Biochemical Measurements
2.2. Evaluation of the Quality of Sleep
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sochat, T. Impact of lifestyle and technology developments on sleep. Nat. Sci. Sleep 2012, 4, 19–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keklund, G.; Axelsson, J. Health consequences of shift work and insufficient sleep. BMJ 2016, 355, i5210. [Google Scholar] [CrossRef] [PubMed]
- Youngstedt, S.D.; Goff, E.E.; Reynolds, A.M.; Kripke, D.F.; Irwin, M.R.; Bootzin, R.R.; Khan, N.; Jean-Louish, G. Has Adult Sleep Duration Declined Over the Last 50+ Years? Sleep Med. Rev. 2016, 28, 69–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Definition of an Older or Elderly Person; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Available online: https://www.un.org/development/desa/publications/world-population-prospects-2019-highlights.html (accessed on 17 June 2019).
- Gooneratne, N.S.; Vitiello, M.V. Sleep in Older Adults: Normative Changes, Sleep Disorders, and Treatment Options. Clin. Geriatr. Med. 2014, 30, 591–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Ruesten, A.; Weikert, C.; Fietze, I.; Boeing, H. Association of Sleep Duration with Chronic Diseases in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. PLoS ONE 2012, 7, e30972. [Google Scholar] [CrossRef]
- Britton, A.; Fat, L.N.; Neligan, A. The association between alcohol consumption and sleep disorders among older people in the general population. Sci. Rep. 2020, 10, 5275. [Google Scholar] [CrossRef]
- Jaehne, A.; Loessl, B.; Barkai, Z.; Riemann, D.; Hornyak, M. Effects of nicotine on sleep during consumption, withdrawal and replacement therapy. Sleep Med. Rev. 2009, 13, 363–377. [Google Scholar] [CrossRef]
- Medic, G.; Wille, M.; Hemels, M.E.H. Short- and long-term health consequences of sleep disruption. Nat. Sci. Sleep 2017, 9, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Ohayon, M.M.; Priest, R.G.; Zulley, J.; Smirne, S.; Paiva, T. Prevalence of narcolepsy symptomatology and diagnosis in the European general population. Neurology 2002, 58, 1826–1833. [Google Scholar] [CrossRef]
- Nowicki, Z.; Grabowski, K.; Cubała, W.J.; Nowicka-Sauer, K.; Zdrojewski, T.; Rotkowski, M.; Bandosz, P. Prevalence of self-reported insomnia in general population of Poland. Psychiatr. Pol. 2016, 50, 165–173. [Google Scholar] [CrossRef]
- Einhorn, D.; Stewart, D.A.; Erman, M.K.; Gordon, N.; Philis-Tsimikas, A.; Casal, E. Prevalence of sleep apnea in a population of adults with type 2 diabetes mellitus. Endocr. Pract. 2007, 13, 355–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Diabetes Federation. IDF Diabetes Atlas, 9th ed.; International Diabetes Federation: Brussels, Belgium, 2019. [Google Scholar]
- Cizza, G.; Piaggi, P.; Lucassen, E.A.; de Jonge, L.; Walter, M.; Mattingly, M.S.; Kalish, H.; Csako, G.; Rother, K.I. Obstructive sleep apnea is a predictor of abnormal glucose metabolism in chronically sleep deprived obese adults. PLoS ONE 2013, 8, e65400. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.E.; Punjabi, N.M.; Wilding, J.P.; Alberti, K.G.M.M.; Zimmet, P.Z.; International Diabetes Federation Taskforce on Epidemiology and Prevention. Sleep-disordered breathing and type 2 diabetes a report from the International Diabetes Federation Taskforce on Epidemiology and Prevention. Diabetes Res. Clin. Pract. 2008, 81, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Zelman, D.C.; Brandenburg, N.A.; Gore, M. Sleep impairment in patients with painful diabetic peripheral neuropathy. Clin. J. Pain 2006, 22, 681–685. [Google Scholar] [CrossRef]
- Lopes, L.A.; de MM Lins, C.; Adeodato, V.G.; Quental, D.P.; de Bruin, P.F.C.; Montenegro, R.M., Jr.; de Bruin, V.M. Restless legs syndrome and quality of sleep in type 2 diabetes. Diabetes Care 2005, 28, 2633–2636. [Google Scholar] [CrossRef] [Green Version]
- Jennum, P.; Stender-Petersen, K.; Rabøl, R.; Jørgensen, N.R.; Chu, P.L.; Madsbad, S. The Impact of Nocturnal Hypoglycemia on Sleep in Subjects with Type 2 Diabetes. Diabetes Care 2015, 38, 2151–2157. [Google Scholar] [CrossRef] [Green Version]
- Hirotsu, C.; Tufik, S.; Andersen, M.L. Interactions between sleep, stress, and metabolism: From physiological to pathological conditions. Sleep Sci. 2015, 8, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Strand, L.B.; Carnethon, M.; Biggs, M.L.; Djoussé, L.; Kaplan, R.C.; Siscovick, D.S.; Robbins, J.A.; Redline, S.; Patel, S.R.; Janszky, I.; et al. Sleep Disturbances and Glucose Metabolism in Older Adults: The Cardiovascular Health Study. Diabetes Care 2015, 38, 2050–2058. [Google Scholar] [CrossRef] [Green Version]
- Van Dijk, M.; Donga, E.; van Dijk, J.G.; Lammers, G.J.; van Kralingen, K.W.; Dekkers, O.M.; Corssmit, E.P.M.; Romijn, J.A. Disturbed subjective sleep characteristics in adult patients with long-standing type 1 diabetes mellitus. Diabetologia 2011, 54, 1967–1976. [Google Scholar] [CrossRef] [Green Version]
- Nakanishi-Minami, T.; Kishida, K.; Funahashi, T.; Shimomura, I. Sleep-wake cycle irregularities in type 2 diabetics. Diabetol. Metab. Syndr. 2012, 4, 18. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Meng, L.; Li, D.; Yang, M.; Zhu, Y.; Li, C.; Jiang, Z.; Yu, P.; Li, Z.; Song, H.; et al. Interaction of sleep quality and sleep duration on glycemic control in patients with type 2 diabetes mellitus. Chin. Med. J. (Engl.) 2014, 127, 3543–3547. [Google Scholar] [PubMed]
- Lee, S.W.; Ng, K.Y.; Chin, W.K. The impact of sleep amount and sleep quality on glycemic control in type 2 diabetes: A systematic review and meta-analysis. Sleep Med. Rev. 2017, 31, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, Z.A.; Yesil, Y.; Kuyumcu, M.E.; Savas, E.; Uygun, Ö.; Sayıner, Z.A.; Kepekçi, Y. Association of depression and sleep quality with complications of type 2 diabetes in geriatric patients. Aging Clin. Exp. Res. 2015, 27, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Raman, R.; Gupta, A.; Venkatesh, K.; Kulothungan, V.; Sharma, T. Abnormal sleep patterns in subjects with type II diabetes mellitus and its effect on diabetic microangiopathies: Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetic Study (SN-DREAMS, report 20). Acta Diabetol. 2012, 49, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Ohkuma, T.; Fujii, H.; Iwase, M.; Ogata-Kaizu, S.; Ide, H.; Kikuchi, Y.; Idewaki, Y.; Jodai, T.; Hirakawa, Y.; Nakamur, U.; et al. U-shaped association of sleep duration with metabolic syndrome and insulin resistance in patients with type 2 diabetes: The Fukuoka Diabetes Registry. Metabolism 2014, 63, 484–491. [Google Scholar] [CrossRef]
- Gallicchio, L.; Kalesan, B. Sleep duration and mortality: A systematic review and meta-analysis. J. Sleep Res. 2009, 18, 148–158. [Google Scholar] [CrossRef]
- Chien, K.L.; Chen, P.C.; Hsu, H.C.; Su, T.C.; Sung, F.C.; Chen, M.F.; Lee, Y.T. Habitual sleep duration and insomnia and the risk of cardiovascular events and all-cause death: Report from a community-based cohort. Sleep 2010, 33, 177–184. [Google Scholar] [CrossRef]
- Kim, S.S.; Won, J.C.; Kwon, H.S.; Kim, C.H.; Lee, J.H.; Park, T.S.; Ko, K.S.; Cha, B.Y. Prevalence and clinical implications of painful diabetic peripheral neuropathy in type 2 diabetes: Results from a nationwide hospital-based study of diabetic neuropathy in Korea. Diabetes Res. Clin. Pract. 2014, 103, 522–529. [Google Scholar] [CrossRef]
- Ren, H.; Xu, Y.; Chang, B.; Yang, J.; Zheng, M.; Yang, Y.; Cheng, J.; Shan, C. Association between retinopathy and sleep disorder in patients with type 2 diabetes mellitus. Zhonghua Yi Xue Za Zhi 2015, 95, 2579–2583. [Google Scholar]
- Barakat, S.; Abujbara, M.; Banimustafa, R.; Batieha, A.; Ajlouni, K. Sleep Quality in Patients with Type 2 Diabetes Mellitus. J. Clin. Med. Res. 2019, 11, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Kajbaf, F.; Fendri, S.; Basille-Fantinato, A.; Diouf, M.; Rose, D.; Jounieaux, V.; Lalau, J.D. The relationship between metformin therapy and sleep quantity and quality in patients with Type 2 diabetes referred for potential sleep disorders. Diabet. Med. 2014, 31, 577–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Expert Committee on Physical Status: The Use and Interpretation of Anthropometric Physical Status; WHO: Geneva, Switzerland, 1995. [Google Scholar]
- World Health Organization. Waist Circumference and Waist–Hip Ratio. Report of a WHO Expert Consultation; WHO: Geneva, Switzerland, 2008. [Google Scholar]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F.; Feldman, H.I. CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Buysse, D.J.; Reynolds, C.F., 3rd; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Machin, D.; Campbell, M.J.; Walters, S.J. Medical Statistics: A Textbook for the Health Sciences, 4th ed.; John Wiley & Sons Ltd.: Chichester, UK, 2007. [Google Scholar]
- Sullivan, G.M.; Feinn, R. Using Effect Size—Or Why the p Value Is not Enough. J. Grad. Med. Educ. 2012, 4, 279–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keskin, A.; Ünalacak, M.; Bilge, U.; Yildiz, P.; Güler, S.; Selçuk, E.B.; Bilgin, M. Effects of Sleep Disorders on Hemoglobin A1c Levels in Type 2 Diabetic Patients. Chin. Med. J. 2015, 128, 3292–3297. [Google Scholar] [CrossRef]
- Lecube, A.; Sánchez, E.; Gómez-Peralta, F.; Abreu, C.; Valls, J.; Mestre, O.; Romero, O.; Martínez, M.D.; Sampol, G.; Ciudin, A.; et al. Global Assessment of the Impact of Type 2 Diabetes on Sleep through Specific Questionnaires. A CaseControl Study. PLoS ONE 2016, 11, e0157579. [Google Scholar] [CrossRef] [Green Version]
- Nefs, G.; Donga, E.; van Someren, E.; Bot, M.; Speight, J.; Pouwer, F. Subjective sleep impairment in adults with type 1 or type 2 diabetes: Results from Diabetes MILES--The Netherlands. Diabetes Res. Clin. Pract. 2015, 109, 466–475. [Google Scholar] [CrossRef]
- Kent, B.D.; McNicholas, W.T.; Ryan, S. Insulin resistance, glucose intolerance and diabetes mellitus in obstructive sleep apnoea. J. Thorac. Dis. 2015, 7, 1343–1357. [Google Scholar]
- Pacifico, J.; Geerlings, M.A.J.; Reijnierse, E.M.; Phassouliotis, C.; Lim, W.K.; Maier, A.B. Prevalence of sarcopenia as a comorbid disease: A systematic review and meta-analysis. Exp. Gerontol. 2020, 131, 110801. [Google Scholar] [CrossRef]
- Kim, B.K.; Kim, B.S.; An, S.Y.; Lee, M.S.; Choi, Y.J.; Han, S.J.; Chung, Y.S.; Lee, K.W.; Kim, D.J. Sleep duration and glycemic control in patients with diabetes mellitus: Korea National Health and Nutrition Examination Survey 2007–2010. J. Korean Med. Sci. 2013, 28, 1334–1339. [Google Scholar] [CrossRef] [Green Version]
- Lipska, K.J.; Ross, J.S.; Miao, Y.; Shah, N.D.; Lee, S.J.; Steinman, M.A. Potential overtreatment of diabetes mellitus in older adults with tight glycemic control. JAMA Intern. Med. 2015, 175, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Bonds, D.E.; Kurashige, E.M.; Bergenstal, R.; Brillon, D.; Domanski, M.; Felicetta, J.V.; Fonseca, V.A.; Hall, K.; Hramiak, I.; Miller, M.E.; et al. Severe hypoglycemia monitoring and risk management procedures in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Am. J. Cardiol. 2007, 99, 80i–89i. [Google Scholar] [CrossRef] [PubMed]
- Brod, M.; Christensen, T.; Bushnell, D.M. Impact of nocturnal hypoglycemic events on diabetes management, sleep quality, and next-day function: Results from a four-country survey. J. Med. Econ. 2012, 15, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Hayashino, Y.; Tsujii, S.; Ishii, H.; Diabetes Distress and Care Registry at Tenri Study Group. High frequency of non-nocturnal hypoglycemia was associated with poor sleep quality measure by Pittsburg Sleep Quality Index in patients with diabetes receiving insulin therapy: Diabetes Distress and Care Registry at Tenri (DDCRT 4). Exp. Clin. Endocrinol. Diabetes 2013, 121, 628–634. [Google Scholar] [CrossRef]
- Ahmad, S.; Gupta, M.; Gupta, R.; Dhyani, M. Prevalence and correlates of insomnia and obstructive sleep apnea in chronic kidney disease. N. Am. J. Med. Sci. 2013, 5, 641–646. [Google Scholar]
- Sekercioglu, N.; Curtis, B.; Murphy, S.; Barrett, B. Sleep quality and its correlates in patients with chronic kidney disease: A cross-sectional design. Ren. Fail. 2015, 37, 757–762. [Google Scholar] [CrossRef]
- Lin, C.L.; Yeh, M.C.; Harnod, T.; Lin, C.L.; Kao, C.H. Risk of Type 2 Diabetes in Patients with Nonapnea Sleep Disorders in Using Different Types of Hypnotics: A Population-Based Retrospective Cohort Study. Medicine (Baltimore) 2015, 94, e1621. [Google Scholar] [CrossRef]
- He, Q.; Chen, X.; Wu, T.; Li, L.; Fei, X. Risk of Dementia in Long-Term Benzodiazepine Users: Evidence from a Meta-Analysis of Observational Studies. J. Clin. Neurol. 2019, 15, 9–19. [Google Scholar] [CrossRef]
- Ballokova, A.; Peel, N.M.; Fialova, D.; Scott, I.A.; Gray, L.C.; Hubbard, R.E. Use of benzodiazepines and association with falls in older people admitted to hospital: A prospective cohort study. Drugs Aging 2014, 31, 299–310. [Google Scholar] [CrossRef]
- Gisev, N.; Hartikainen, S.; Chen, T.F.; Korhonen, M.; Bell, J.S. Mortality associated with benzodiazepines and benzodiazepine-related drugs among community-dwelling older people in Finland: A population-based retrospective cohort study. Can. J. Psychiatry 2011, 56, 377–381. [Google Scholar] [CrossRef] [Green Version]
- Kaufmann, C.N.; Spira, A.P.; Alexander, G.C.; Rutkow, L.; Mojtabai, R. Trends in prescribing of sedative -hypnotic medications in the USA: 1993–2010. Pharmacoepidemiol. Drug Saf. 2016, 25, 637–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skoog, J.; Midlöv, P.; Borgquist, L.; Sundquist, J.; Halling, A. Can gender difference in prescription drug use be explained by gender-related morbidity? A study on a Swedish population during 2006. BMC Public Health 2014, 14, 329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plantinga, L.; Lee, K.; Inker, L.A.; Saran, R.; Yee, J.; Gillespie, B.; Rolka, D.; Saydah, S.; Powe, N.R.; CDC CKD Surveillance Team. Association of sleep-related problems with CKD in the United States, 2005–2008. Am. J. Kidney Dis. 2011, 58, 554–564. [Google Scholar] [CrossRef] [PubMed]
Variable | Poor Sleepers (PSQI >5) n = 85 | Good Sleepers (PSQI ≤5) n = 75 | p | Effect Size (Cohen’s d/OR) |
---|---|---|---|---|
Gender (male/female) | 29/56 | 45/30 | 0.001 | OR 0.34 95% CI 0.18–0.65 |
Age (years) | 79.00 (71.00; 84.00) | 60.04 (13.54) | <0.001 | 1.31 |
Diabetes duration (years) | 5.00 (2.00; 12.00) | 2.00 (1.00; 5.00) | <0.001 | 0.71 |
BMI (kg/m²) | 29.17 (25.81; 32.77) | 28.68 (25.86; 33.45) | 0.97 | 0.006 |
WHR | 0.94 (0.90; 1.00) | 0.99 (0.08) | 0.006 | 0.51 |
Systolic blood pressure (mm Hg) | 140.00 (125.00; 150.00) | 130.00 (120.00; 150.00) | 0.23 | 0.18 |
Diastolic blood pressure (mm Hg) | 80.00 (70.00; 90.00) | 80.00 (70.00; 90.00) | 0.93 | 0.01 |
eGFR (ml/min/1.73m²) | 65.00 (43.00; 88.80) | 74.10 (51.30; 106.30) | 0.04 | 0.32 |
TCH (mmol/l) | 4.25 (1.25) | 4.58 (1.36) | 0.10 | 0.26 |
LDL (mmol/l) | 2.45 (1.69; 3.16) | 2.72 (2.04; 3.53) | 0.06 | 0.29 |
HDL (mmol/l) | 1.08 (0.89; 1.36) | 1.01 (0.77; 1.28) | 0.09 | 0.26 |
TG (mmol/l) | 1.34 (0.99; 1.84) | 1.88 (1.11; 2.74) | 0.001 | 0.52 |
ALT (U/l) | 21.00 (14.00; 31.00) | 23.00 (16.18; 38.00) | 0.20 | 0.08 |
AST (U/l) | 21.00 (18.00; 28.00) | 20.00 (15,00; 35.00) | 0.69 | 0.04 |
FPG (mmol/l) | 6.41 (5.68; 7.90) | 7.10 (5.99; 8.50) | 0.02 | 0.42 |
HbA1c (%) | 7.28 (6.24; 8.72) | 8.40 (6.90; 10.39) | 0.004 | 0.46 |
Nephropathy (n,%) | 33 (38.82%) | 17 (22.66%) | 0.02 | OR 2.16 95% CI 1.08–4.33 |
Retinopathy (n,%) | 11 (12.94%) | 9 (12.00%) | 0.85 | OR 1.09 95% CI 0.42–2.79 |
Peripheral neuropathy (n,%) | 10 (11.76%) | 8 (10.66%) | 0.82 | OR 1.11 95% CI 0.41–2.99 |
Miocardial infarction (n,%) | 15 (17.64%) | 12 (16.00%) | 0.78 | OR 1.12 95% CI 0.49–2.15 |
Stroke (n,%) | 14 (16.47%) | 13 (17.33%) | 0.88 | OR 0.94 95% CI 0.41–2.15 |
Variable | Estimates | SE | Wald’s p | OR | −95% CI | +95% CI |
---|---|---|---|---|---|---|
Age | 0.11 | 0.01 | <0.001 | 1.11 | 1.07 | 1.15 |
Type of Hypnotics | T2DM Patients n = 160 |
---|---|
Benzodiazepines | 16 (10%) |
Hydroxyzine | 19 (11.87%) |
Z drugs (zolpidem, zopiclone, zaleplon) | 10 (6.25%) |
Melatonin | 3 (1.87%) |
Herbal medicines | 3 (1.87%) |
Total | 51 (31.87%) |
Variable | Patients with T2DM Using Hypnotics n = 51 | Patients with T2DM Not Using Hypnotics n = 109 | p | Effect Size (Cohen’s d/OR) |
---|---|---|---|---|
Gender (male/female) | 13/38 | 61/48 | <0.001 | OR 0.26 95% CI 0.12–0.56 |
Age (years) | 80.00 (72.00; 84.00) | 63.90 (13.75) | <0.001 | 1.03 |
Diabetes duration (years) | 8.00 (2.00; 13.00) | 2.00 (1.00; 6.00) | <0.001 | 0.63 |
BMI (kg/m²) | 30.14 (5.04) | 28.37 (25.39; 33.07) | 0.34 | 0.17 |
WHR | 0.95 (0.91; 1.00) | 0.97 (0.08) | 0.19 | 0.25 |
Systolic blood pressure (mm Hg) | 140.00 (120.00; 150.00) | 130.00 (120.00; 150.00) | 0.55 | 0.09 |
Diastolic blood pressure (mm Hg) | 80.00 (70.00; 90.00) | 80.00 (70.00; 90.00) | 0.61 | 0.08 |
eGFR (ml/min/1.73m²) | 60.00 (39.00; 85.20) | 73.00 (54.00; 102.00) | 0.003 | 0.47 |
TCH (mmol/l) | 4.22 (3.11; 4.99) | 4.30 (3.68; 5.33) | 0.11 | 0.24 |
LDL (mmol/l) | 2.37 (1.63; 3.17) | 2.66 (2.04; 3.39) | 0.08 | 0.27 |
HDL (mmol/l) | 1.10 (0.88; 1.33) | 1.03 (0.81; 1.31) | 0.29 | 0.16 |
TG (mmol/l) | 1.30 (0.94; 1.84) | 1.64 (1.06; 2.58) | 0.01 | 0.40 |
ALT (U/l) | 21.00 (14.00; 31.00) | 23.00 (16.00; 36.00) | 0.25 | 0.18 |
AST (U/l) | 24.00 (18.00; 28.00) | 20.00 (16.0; 29.00) | 0.32 | 0.24 |
FPG (mmol/l) | 6.31 (5.65; 7.79) | 7.02 (5.98; 8.17) | 0.05 | 0.30 |
HbA1c (%) | 7.13 (6.17; 8.41) | 8.20 (6.71; 9.91) | 0.004 | 0.46 |
Nephropathy (n, %) | 26 (50.98%) | 24 (22.01%) | <0.001 | OR 3.68 95% CI 1.80–7.50 |
Retinopathy (n, %) | 6 (11.76%) | 14 (12.84%) | 0.84 | OR 0.90 95% CI 0.32–2.50 |
Peripheral neuropathy (n, %) | 5 (9.80%) | 13 (11.92%) | 0.69 | OR 0.80 95% CI 0.27–2.38 |
Miocardial infarction (n, %) | 9 (17.64%) | 18 (16.51%) | 0.85 | OR 1.08 95% CI 0.44–2.61 |
Stroke (n, %) | 7 (13.72%) | 20 (18.34%) | 0.46 | OR 0.70 95% CI 0.27–1.80 |
Variable | Estimates | SE | Wald’s p | OR | −95% CI | +95% CI |
---|---|---|---|---|---|---|
Age | 0.09 | 0.02 | <0.001 | 1.09 | 1.05 | 1.14 |
Gender (male/female) | −1.18 | 0.42 | 0.005 | 0.30 | 0.13 | 0.71 |
Nephropathy | 1.02 | 0.41 | 0.01 | 2.79 | 1.24 | 6.28 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikołajczyk-Solińska, M.; Śliwińska, A.; Kosmalski, M.; Drzewoski, J. The Phenotype of Elderly Patients with Type 2 Diabetes Mellitus and Poor Sleep Quality. Int. J. Environ. Res. Public Health 2020, 17, 5992. https://doi.org/10.3390/ijerph17165992
Mikołajczyk-Solińska M, Śliwińska A, Kosmalski M, Drzewoski J. The Phenotype of Elderly Patients with Type 2 Diabetes Mellitus and Poor Sleep Quality. International Journal of Environmental Research and Public Health. 2020; 17(16):5992. https://doi.org/10.3390/ijerph17165992
Chicago/Turabian StyleMikołajczyk-Solińska, Melania, Agnieszka Śliwińska, Marcin Kosmalski, and Józef Drzewoski. 2020. "The Phenotype of Elderly Patients with Type 2 Diabetes Mellitus and Poor Sleep Quality" International Journal of Environmental Research and Public Health 17, no. 16: 5992. https://doi.org/10.3390/ijerph17165992
APA StyleMikołajczyk-Solińska, M., Śliwińska, A., Kosmalski, M., & Drzewoski, J. (2020). The Phenotype of Elderly Patients with Type 2 Diabetes Mellitus and Poor Sleep Quality. International Journal of Environmental Research and Public Health, 17(16), 5992. https://doi.org/10.3390/ijerph17165992