The Impact of Robotic Rehabilitation on the Motor System in Neurological Diseases. A Multimodal Neurophysiological Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. ASPIRE and ParReEx Rehabilitation Robotic Systems
- ASPIRE (Figure 1a) is a parallel robotic system with three Degrees of Freedom (DOF) based on a spherical architecture designed for the shoulder rehabilitation and targets the following motions: (a) shoulder flexion/extension and adduction/abduction; (b) forearm pronation/supination. The architecture of the mechanism allows a generalized movement on the sphere surface, which has the following advantages: (i) it enlarges the universality degree since the patient is positioned with his shoulder near the center of the sphere, and the anthropometric variations do not impose a problem; (b) the robotic system enables the definition of a wide range of exercises with various amplitudes and un-constrained working volume (including both simple and combined movements) which increase the shoulder mobility through interactive trajectories [18,19,51];
- ParReEx (Figure 1b) is a parallel robotic system which consists of two independent (decoupled) modules: (a) ParReEx-elbow with two DOF, designed for the elbow flexion and pronation/supination motion; (b) ParReEx-wrist with two DOF, designed for the wrist flexion/extension and adduction/abduction. Both ParReEx modules are able to perform simple and complex exercises based on interactive trajectories [20,21,52].
2.2. The Evaluation Protocol
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Obeso, J.A.; Rodríguez-Oroz, M.; Benítez-Temiño, B.; Blesa, J.; Guridi, J.; Marin, C.; Rodriguez, M. Functional organization of the basal ganglia: Therapeutic implications for Parkinson’s disease. Mov. Disord. 2008, 23, S548–S559. [Google Scholar] [CrossRef]
- Voitenkov, V.; Smirnov, N.; Еkusheva, E.; Skripchenko, N. Neurophysiology methods in the assessment of the efficacy of rehabilitation of sensomotor disturbances due to spinal cord lesions. J. Neurol. Sci. 2017, 381, 1098. [Google Scholar] [CrossRef]
- Hatem, S.M.; Saussez, G.; Della Faille, M.; Prist, V.; Zhang, X.; Dispa, D.; Bleyenheuft, Y. Rehabilitation of Motor Function after Stroke: A Multiple Systematic Review Focused on Techniques to Stimulate Upper Extremity Recovery. Front. Hum. Neurosci. 2016, 10, 442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bello-Haas, V.D. Physical therapy for individuals with amyotrophic lateral sclerosis: Current insights. Degener. Neurol. Neuromuscul. Dis. 2018, 8, 45–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veerbeek, J.M.; Van Wegen, E.E.H.; Van Peppen, R.; Van Der Wees, P.J.; Hendriks, E.; Rietberg, M.; Kwakkel, G. What Is the Evidence for Physical Therapy Poststroke? A Systematic Review and Meta-Analysis. PLoS ONE 2014, 9, e87987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gassert, R.; Dietz, V. Rehabilitation robots for the treatment of sensorimotor deficits: A neurophysiological perspective. J. Neuroeng. Rehabil. 2018, 15, 46. [Google Scholar] [CrossRef] [Green Version]
- Turner, D.L.; Ramos-Murguialday, A.; Birbaumer, N.; Hoffmann, U.; Luft, A.R. Neurophysiology of Robot-Mediated Training and Therapy: A Perspective for Future Use in Clinical Populations. Front. Neurol. 2013, 4, 184. [Google Scholar] [CrossRef] [Green Version]
- Calabrò, R.S.; Portaro, S.; Manuli, A.; Leo, A.; Naro, A.; Bramanti, A. Rethinking the robotic rehabilitation pathway for people with amyotrophic lateral sclerosis: A need for clinical trials. Innov. Clin. Neurosci. 2019, 16, 11–12. [Google Scholar]
- Paganoni, S.; Karam, C.; Joyce, N.; Bedlack, R.; Carter, G.T. Comprehensive rehabilitative care across the spectrum of amyotrophic lateral sclerosis. NeuroRehabilitation 2015, 37, 53–68. [Google Scholar] [CrossRef] [Green Version]
- Ferrazzoli, D.; Ortelli, P.; Zivi, I.; Cian, V.; Urso, E.; Ghilardi, M.F.; Maestri, R.; Frazzitta, G. Efficacy of intensive multidisciplinary rehabilitation in Parkinson’s disease: A randomised controlled study. J. Neurol. Neurosurg. Psychiatry 2018, 89, 828–835. [Google Scholar] [CrossRef]
- Tomlinson, C.L.; Patel, S.; Meek, C.; Herd, C.; E Clarke, C.; Stowe, R.; Shah, L.; Sackley, C.M.; Deane, K.; Wheatley, K.; et al. Physiotherapy versus placebo or no intervention in Parkinson’s disease. Cochrane Database Syst. Rev. 2012, 11, CD002817. [Google Scholar]
- Prodoehl, J.; Rafferty, M.R.; David, F.J.; Poon, C.; Vaillancourt, D.E.; Comella, C.L.; Leurgans, S.E.; Kohrt, W.M.; Corcos, D.M.; Robichaud, J.A. Two-year exercise program improves physical function in Parkinson’s disease: The PRET-PD randomized clinical trial. Neurorehabil. Neural Repair 2014, 29, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Shirota, C.; Van Asseldonk, E.H.F.; Matjačić, Z.; Vallery, H.; Barralon, P.; Maggioni, S.; Buurke, J.H.; Veneman, J.F. Robot-supported assessment of balance in standing and walking. J. Neuroeng. Rehabil. 2017, 14, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krebs, H.I.; Volpe, B. Rehabilitation Robotics. Handb. Clin. Neurol. 2013, 110, 283–294. [Google Scholar] [PubMed] [Green Version]
- Morris, M.; Martin, C.L.; Schenkman, M.L. Striding Out With Parkinson Disease: Evidence-Based Physical Therapy for Gait Disorders. Phys. Ther. 2010, 90, 280–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Major, K.; Major, Z.; Carbone, G.; Pisla, A.; Vaida, C.; Gherman, B.; Pisla, D. Ranges of Motion as Basis for Robot-Assisted Post-Stroke Rehabilitation. Hum. Vet. Med. 2016, 8, 192–196. [Google Scholar]
- Vaida, C.; Carbone, G.; Maior, K.; Maior, Z.; Plitea, N.; Pisla, D. On Human Robot Interaction Modalities in the Upper Limb Rehabilitation after Stroke. ACTA Tech. Napoc. Ser. Appl. Math. Mech. Eng. 2017, 60, 91–102. [Google Scholar]
- Plitea, N.; Vaida, C.; Carbone, G.; Pisla, A.; Ulinici, I.; Pisla, D.; Carvalho, J.C.M.; Martins, D.; Simoni, R.; Simas, H. On the kinematics of an innovative spherical parallel robot for shoulder rehabilitation. In International Symposiu on Multibody Systems and Mechatronics; Springer: Berlin/Heidelberg, Germany, 2017; pp. 464–473. [Google Scholar]
- Tucan, P.; Vaida, C.; Plitea, N.; Pisla, A.; Carbone, G.; Pisla, D. Risk-Based Assessment Engineering of a Parallel Robot Used in Post-Stroke Upper Limb Rehabilitation. Sustainability 2019, 11, 2893. [Google Scholar] [CrossRef] [Green Version]
- Birlescu, I.; Vaida, C.; Pisla, A.; Carbone, G.; Pisla, D. Singularity analysis of a spherical robot used in upper limb rehabilitation. In Interdisciplinary Applications of Kinematics; Springer: Berlin/Heidelberg, Germany, 2019; pp. 205–213. [Google Scholar]
- Plitea, N.; Gherman, B.; Carbone, G.; Ceccarelli, M.; Vaida, C.; Banica, A.; Pisla, D.; Pisla, A.; Carvalho, J.C.M.; Martins, D.; et al. Kinematic analysis of an exoskeleton-based robot for elbow and wrist rehabilitation. In International Symposiu on Multibody Systems and Mechatronics; Springer: Berlin/Heidelberg, Germany, 2017; pp. 424–433. [Google Scholar]
- Calabrò, R.S.; Accorinti, M.; Porcari, B.; Carioti, L.; Ciatto, L.; Billeri, L.; Andronaco, V.A.; Galletti, F.; Filoni, S.; Naro, A. Does hand robotic rehabilitation improve motor function by rebalancing interhemispheric connectivity after chronic stroke? Encouraging data from a randomised-clinical-trial. Clin. Neurophysiol. 2019, 130, 767–780. [Google Scholar] [CrossRef]
- Laaksonen, K.; Helle, L.; Parkkonen, L.; Kirveskari, E.; Mäkelä, J.P.; Mustanoja, S.; Tatlisumak, T.; Kaste, M.; Forss, N. Alterations in Spontaneous Brain Oscillations during Stroke Recovery. PLoS ONE 2013, 8, e61146. [Google Scholar] [CrossRef]
- Ward, N.S. Using oscillations to understand recovery after stroke. Brain 2015, 138, 2811–2813. [Google Scholar] [CrossRef] [PubMed]
- Boyd, L.A.; Hayward, K.S.; Ward, N.S.; Stinear, C.M.; Rosso, C.; Fisher, R.J.; Carter, A.R.; Leff, A.; A Copland, D.; Carey, L.M.; et al. Biomarkers of stroke recovery: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. Int. J. Stroke 2017, 12, 480–493. [Google Scholar] [CrossRef] [PubMed]
- Stinear, C.M.; Barber, P.A.; Smale, P.R.; Coxon, J.; Fleming, M.K.; Byblow, W. Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain 2006, 130, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.-J.; Wang, C.-P.; Tsai, P.-Y.; Chan, R.-C.; Lin, S.-H.; Lin, F.-G.; Hsieh, C.-Y. Corticospinal Integrity and Motor Impairment Predict Outcomes After Excitatory Repetitive Transcranial Magnetic Stimulation: A Preliminary Study. Arch. Phys. Med. Rehabil. 2015, 96, 69–75. [Google Scholar] [CrossRef]
- Byblow, W.; Stinear, C.M.; Barber, P.A.; Petoe, M.A.; Ackerley, S.J. Proportional recovery after stroke depends on corticomotor integrity. Ann. Neurol. 2015, 78, 848–859. [Google Scholar] [CrossRef]
- Koski, L.; Mernar, T.J.; Dobkin, B.H. Immediate and Long-Term Changes in Corticomotor Output in Response to Rehabilitation: Correlation with Functional Improvements in Chronic Stroke. Neurorehabil. Neural Repair 2004, 18, 230–249. [Google Scholar] [CrossRef]
- Wu, J.; Quinlan, E.B.; Dodakian, L.; McKenzie, A.; Kathuria, N.; Zhou, R.J.; Augsburger, R.; See, J.; Le, V.H.; Srinivasan, R.; et al. Connectivity measures are robust biomarkers of cortical function and plasticity after stroke. Brain 2015, 138, 2359–2369. [Google Scholar] [CrossRef] [Green Version]
- Frontera, W.R.; Grimby, L.; Larsson, L. Firing rate of the lower motoneuron and contractile properties of its muscle fibers after upper motoneuron lesion in man. Muscle Nerve 1997, 20, 938–947. [Google Scholar] [CrossRef]
- Hu, X.; Tong, K.; Hung, L.; Tong, K. Firing properties of motor units during fatigue in subjects after stroke. J. Electromyogr. Kinesiol. 2006, 16, 469–476. [Google Scholar] [CrossRef]
- Yan, K.; Fang, J.; Shahani, B.T. Motor unit discharge behaviors in stroke patients. Muscle Nerve 1998, 21, 1502–1506. [Google Scholar] [CrossRef]
- Yan, K.; Fang, J.; Shahani, B.T. An assessment of motor unit discharge patterns in stroke patients using a surface electromyographic technique. Muscle Nerve 1998, 21, 946–947. [Google Scholar] [CrossRef]
- Klassen, B.T.; Hentz, J.G.; Shill, H.A.; Driver-Dunckley, E.; Evidente, V.G.H.; Sabbagh, M.N.; Adler, C.H.; Caviness, J.N. Quantitative EEG as a predictive biomarker for Parkinson disease dementia. Neurology 2011, 77, 118–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cozac, V.; Gschwandtner, U.; Hatz, F.; Hardmeier, M.; Rüegg, S.; Fuhr, P. Quantitative EEG and Cognitive Decline in Parkinson’s Disease. Parkinsons Dis. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamei, S. Electroencephalogram and event-related potential analyses in Parkinson disease. Brain Nerve 2012, 64, 433–443. [Google Scholar] [PubMed]
- Caviness, J.N.; Utianski, R.L.; Hentz, J.G.; Beach, T.G.; Dugger, B.N.; Shill, H.A.; Driver-Dunckley, E.D.; Sabbagh, M.N.; Mehta, S.; Adler, C.H. Differential spectral quantitative electroencephalography patterns between control and Parkinson’s disease cohorts. Eur. J. Neurol. 2015, 23, 387–392. [Google Scholar] [CrossRef]
- Vucic, S.; Kiernan, M.C. Transcranial Magnetic Stimulation for the Assessment of Neurodegenerative Disease. Neurotherapeutics 2016, 14, 91–106. [Google Scholar] [CrossRef]
- Meigal, A.Y.; Rissanen, S.M.; Tarvainen, M.P.; Airaksinen, O.; Kankaanpaa, M.; Karjalainen, P.A. Non-Linear EMG Parameters for Differential and Early Diagnostics of Parkinson’s Disease. Front. Neurol. 2013, 4, 135. [Google Scholar] [CrossRef] [Green Version]
- Meigal, A.Y.; Rissanen, S.M.; Tarvainen, M.P.; Karjalainen, P.A.; Iudina-Vassel, I.; Airaksinen, O.; Kankaanpää, M. Novel parameters of surface EMG in patients with Parkinson’s disease and healthy young and old controls. J. Electromyogr. Kinesiol. 2009, 19, e206–e213. [Google Scholar] [CrossRef]
- McMackin, R.; Muthuraman, M.; Groppa, S.; Babiloni, C.; Taylor, J.-P.; Kiernan, M.C.; Nasseroleslami, B.; Hardiman, O. Measuring network disruption in neurodegenerative diseases: New approaches using signal analysis. J. Neurol. Neurosurg. Psychiatry 2019, 90, 1011–1020. [Google Scholar] [CrossRef]
- McMackin, R.; Dukic, S.; Broderick, M.; Iyer, P.M.; Pinto-Grau, M.; Mohr, K.S.; Chipika, R.; Coffey, A.; Buxo, T.; Schuster, C.; et al. Dysfunction of attention switching networks in amyotrophic lateral sclerosis. Neuroimage Clin. 2019, 22, 101707. [Google Scholar] [CrossRef]
- Dukic, S.; McMackin, R.; Buxo, T.; Fasano, A.; Chipika, R.; Pinto-Grau, M.; Costello, E.; Schuster, C.; Hammond, M.; Heverin, M.; et al. Patterned functional network disruption in amyotrophic lateral sclerosis. Hum. Brain Mapp. 2019, 40, 4827–4842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geevasinga, N.; Menon, P.; Özdinler, P.H.; Kiernan, M.C.; Vucic, S. Pathophysiological and diagnostic implications of cortical dysfunction in ALS. Nat. Rev. Neurol. 2016, 12, 651–661. [Google Scholar] [CrossRef] [PubMed]
- Vucic, S.; Ziemann, U.; Eisen, A.; Hallett, M.; Kiernan, M.C. Transcranial magnetic stimulation and amyotrophic lateral sclerosis: Pathophysiological insights. J. Neurol. Neurosurg. Psychiatry 2012, 84, 1161–1170. [Google Scholar] [CrossRef] [PubMed]
- Jahanmiri-Nezhad, F.; Hu, X.; Suresh, N.L.; Rymer, W.Z.; Zhou, P. EMG-force relation in the first dorsal interosseous muscle of patients with amyotrophic lateral sclerosis. Neurorehabilitation 2014, 35, 307–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikoeva, G.A.; Nikityuk, I.E.; Kivoenko, O.I.; Moshonkina, T.R.; Solopova, I.A.; Sukhotina, I.A.; Vissarionov, S.V.; Umnov, V.V.; Gerasimenko, Y.P.; Александрoвна, И.Г.; et al. Clinical, neurological, and neurophysiological evaluation of the efficiency of motor rehabilitation in children with cerebral palsy using robotic mechanotherapy and transcutaneous electrical stimulation of the spinal cord. Pediatr. Traumatol. Orthop. Reconstr. Surg. 2016, 4, 47–55. [Google Scholar] [CrossRef]
- Vaida, C.; Plitea, N.; Pisla, D.; Carbone, G.; Gherman, B.; Ulinici, I.; Pisla, A. Spherical Robot for Medical Rehabilitation of Proximal Area of Upper Limb. Patent No. RO-132233, 30 March 2020. [Google Scholar]
- Gherman, B.; Pisla, D.; Plitea, N.; Vaida, C.; Carbone, G.; Pisla, A. Parallel Robotic System for Medical Rehabilitation of Upper Limb. Patent No. RO-132234, 30 March 2020. [Google Scholar]
- Vaida, C.; Birlescu, I.; Pisla, A.; Carbone, G.; Plitea, N.; Ulinici, I.; Gherman, B.; Puskas, F.; Tucan, P.; Pisla, D. RAISE-An innovative parallel robotic system for lower limb rehabilitation. In New Trends in Medical and Service Robotics; Springer: Berlin/Heidelberg, Germany, 2018; pp. 293–302. [Google Scholar]
- Gherman, B.; Birlescu, I.; Puskas, F.; Pisla, A.; Carbone, G.; Tucan, P.; Banica, A.; Pisla, D. A kinematic characterization of a parallel robotic system for lower limb rehabilitation. In European Conference on Mechanism Science; Springer: Berlin/Heidelberg, Germany, 2018; pp. 27–34. [Google Scholar]
- Khanna, P.; Carmena, J.M. Neural oscillations: Beta band activity across motor networks. Curr. Opin. Neurobiol. 2015, 32, 60–67. [Google Scholar] [CrossRef]
- Shaw, C.; Bains, J.S. Synergistic versus antagonistic actions of glutamate and glutathione: The role of excitotoxicity and oxidative stress in neuronal disease. Cell. Mol. Boil. 2002, 48, 127–136. [Google Scholar]
- Calabrò, R.S.; Manuli, A.; Leo, A.; Russo, M.; Naro, A.; Bramanti, P. Gait Rehabilitation Following Neurological Disorders: Are Robotic Devices the Future? Innov. Clin. Neurosci. 2018, 15, 11–13. [Google Scholar]
Vascular | Extrapyramidal | Neuromuscular | |
---|---|---|---|
Age | |||
Mean ± s.e. | 75.92 ± 1.77 | 71.17 ± 4.13 | 66.00 ± 3.85 |
p (Kruskal-Wallis) | 0.138 | ||
Gender | |||
Male | 50% | 50% | 60% |
Female | 50% | 50% | 40% |
Vascular Group | Extrapyramidal Group | Neuromuscular Group |
---|---|---|
Passive exercises of the upper limb, 2 times a day 10–12 repeats: | Passive exercises of the upper limb, 2 times a day 10–12 repeats: | Passive exercises of the upper limb, 2 times a day 8–10 repeats: |
-phalanx flexion | -Pollicis flexion | -phalanx flexion |
-finger flexion and extension | -phalanx flexion | -finger flexion and extension |
-Radio-carpal joint flexion and extension | -finger flexion and extension | -Radio-carpal joint flexion and extension |
-Radio-carpal joint rotation | -Radio-carpal joint flexion and extension | -Radio-carpal joint rotation |
-forearm supination and pronation | -Radio-carpal joint rotation | -forearm supination and pronation with slight resistance |
-elbow flexion | -forearm supination and pronation | -elbow flexion with 10–20% resistance |
-shoulder flexion and extension | -elbow flexion | -stretching program, positioning in extension |
-shoulder adduction and adduction | -shoulder flexion and extension | -shoulder adduction and adduction |
-shoulder rotation | -shoulder adduction and adduction | -shoulder rotation against reduced resistance |
-shoulder rotation |
Left vs. Right (Mann-Whitney U Test) | Delta | Theta | Alpha | Beta | Peak | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Density (mV2) | Freq. (Hz) | ||||||||||||
I | II | I | II | I | II | I | II | I | II | I | II | ||
p | Vascular | 0.22 | 0.75 | 0.21 | 0.4 | 0.4 | 0.25 | 0.75 | 0.6 | 0.75 | 0.05 | 0.14 | 0.75 |
Left vs. Right | TMCT_I | TMCT_II | PMCT_I | PMCT_II | CMCT_I | CMCT_II |
---|---|---|---|---|---|---|
p | 0.75 | 0.47 | 0.94 | 0.94 | 0.47 | 0.94 |
Left vs. Right (Mann-Whitney U Test) | Interval (ms) | Amplit. (µV) | Turns (1/s) | Ratio | Activity (%) | RMS (µV) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
I | II | I | II | I | II | I | II | I | II | I | II | |
p | 0.63 | 0.75 | 0.87 | 0.52 | 0.75 | 0.75 | 0.81 | 0.34 | 0.75 | 0.75 | 0.75 | 0.87 |
Left vs. Right (Wilcoxon) | Delta | Theta | Alpha | Beta | Peak | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Density (mV2) | Freq. (Hz) | ||||||||||||
I | II | I | II | I | II | I | II | I | II | I | II | ||
p | Extrapyramidal | 0.60 | 0.20 | 0.59 | 0.40 | 0.50 | 0.68 | 0.35 | 0.17 | 0.25 | 0.05 | 0.08 | 0.27 |
Left vs. Right (Wilcoxon) | TMCT I | TMCT II | PMCT I | PMCT II | CMCT I | CMCT II |
---|---|---|---|---|---|---|
p | 0.67 | 0.50 | 0.34 | 0.42 | 0.69 | 0.22 |
Left vs. Right (Wilcoxon) | Interval (ms) | Amplitude (µV) | Turns (1/s) | Ratio | Activity (%) | RMS (µV) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
I | II | I | II | I | II | I | II | I | II | I | II | |
p | 0.35 | 0.92 | 0.17 | 0.17 | 0.60 | 0.75 | 0.17 | 0.34 | 0.92 | 0.05 | 0.34 | 0.46 |
Left vs. Right (Wilcoxon) | Delta | Theta | Alpha | Beta | Peak | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Density (mV2) | Freq. (Hz) | ||||||||||||
I | II | I | II | I | II | I | II | I | II | I | II | ||
p | Neuromuscular | 0.21 | 0.59 | 0.60 | 0.26 | 0.14 | 0.68 | 0.35 | 0.47 | 0.14 | 0.35 | 1.00 | 0.20 |
Left vs. Right | TMCT I | TMCT II | PMCT I | PMCT II | CMCT I | CMCT II |
---|---|---|---|---|---|---|
Neuromuscular | 0.25 | 0.89 | 0.28 | 0.07 | 0.46 | 0.24 |
Left vs. Right (Wilcoxon) | Interval (ms) | Amplit. (µV) | Turns (1/s) | Ratio | Activity (%) | RMS (µV) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
I | II | I | II | I | II | I | II | I | II | I | II | |
p | 0.35 | 0.046 | 0.75 | 0.03 | 0.35 | 0.07 | 0.92 | 0.60 | 0.60 | 0.046 | 0.60 | 0.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Major, Z.Z.; Vaida, C.; Major, K.A.; Tucan, P.; Simori, G.; Banica, A.; Brusturean, E.; Burz, A.; Craciunas, R.; Ulinici, I.; et al. The Impact of Robotic Rehabilitation on the Motor System in Neurological Diseases. A Multimodal Neurophysiological Approach. Int. J. Environ. Res. Public Health 2020, 17, 6557. https://doi.org/10.3390/ijerph17186557
Major ZZ, Vaida C, Major KA, Tucan P, Simori G, Banica A, Brusturean E, Burz A, Craciunas R, Ulinici I, et al. The Impact of Robotic Rehabilitation on the Motor System in Neurological Diseases. A Multimodal Neurophysiological Approach. International Journal of Environmental Research and Public Health. 2020; 17(18):6557. https://doi.org/10.3390/ijerph17186557
Chicago/Turabian StyleMajor, Zoltán Zsigmond, Calin Vaida, Kinga Andrea Major, Paul Tucan, Gábor Simori, Alexandru Banica, Emanuela Brusturean, Alin Burz, Raul Craciunas, Ionut Ulinici, and et al. 2020. "The Impact of Robotic Rehabilitation on the Motor System in Neurological Diseases. A Multimodal Neurophysiological Approach" International Journal of Environmental Research and Public Health 17, no. 18: 6557. https://doi.org/10.3390/ijerph17186557
APA StyleMajor, Z. Z., Vaida, C., Major, K. A., Tucan, P., Simori, G., Banica, A., Brusturean, E., Burz, A., Craciunas, R., Ulinici, I., Carbone, G., Gherman, B., Birlescu, I., & Pisla, D. (2020). The Impact of Robotic Rehabilitation on the Motor System in Neurological Diseases. A Multimodal Neurophysiological Approach. International Journal of Environmental Research and Public Health, 17(18), 6557. https://doi.org/10.3390/ijerph17186557